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Preface

Mathematics is not about calculations, but ideas. My goal as a teacher is to pro-
vide students with the opportunity to grapple with these ideas and to be im-
mersed in the process of mathematical discovery. Repeatedly engaging in this
process hones the mind and develops mental maturity marked by clear and rig-
orous thinking. Like music and art, mathematics provides an opportunity for
enrichment, experiencing beauty, elegance, and aesthetic value. The medium of
a painter is color and shape, whereas the medium of a mathematician is abstract
thought. The creative aspect of mathematics is what captivates me and fuels my
motivation to keep learning and exploring.

While the content we teach our students is important, it is not enough. An
education must prepare individuals to ask and explore questions in contexts that
do not yet exist and to be able to tackle problems they have never encountered. It
is important that we put these issues front and center and place an explicit focus
on students producing, rather than consuming, knowledge. If we truly want our
students to be independent, inquisitive, and persistent, then we need to provide
them with the means to acquire these skills. Their viability as professionals in
the modern workforce depends on their ability to embrace this mindset.

When I started teaching, I mimicked the experiences I had as a student. Be-
cause it was all I knew, I lectured. By standard metrics, this seemed to work out
just fine. Glowing student and peer evaluations, as well as reoccurring teaching
awards, indicated that I was effectively doingmy job. People consistently told me
that I was an excellent teacher. However, two observations made me reconsider
how well I was really doing. Namely, many of my students seemed to depend on
me to be successful, and second, they retained only some of what I had taught
them. In the words of Dylan Retsek:

Things my students claim that I taught them masterfully, they
don’t know.

Inspired by a desire to address these concerns, I began transitioning away fromdi-
rect instruction towards amore student-centered approach. The goals and philos-
ophy behind inquiry-based learning (IBL) resonate deeply with my ideals, which

vii



viii Preface

is why I have embraced this paradigm. According to the Academy of Inquiry-
Based Learning, IBL is a method of teaching that engages students in sense-
making activities. Students are given tasks requiring them to solve problems,
conjecture, experiment, explore, create, and communicate—all those wonderful
skills and habits of mind that mathematicians engage in regularly. This book has
IBL baked into its core.

This book is intended to be a task sequence for an introduction to proof
course that utilizes an IBL approach. The primary objectives of this book are
to:

• Expand the mathematical content knowledge of the reader,

• Provide an opportunity for the reader to experience the profound beauty of
mathematics,

• Allow the reader to exercise creativity in producing and discovering mathe-
matics,

• Enhance the ability of the reader to be a robust and persistent problem solver.

Ultimately, this is really a book about productive struggle and learning how to
learn. Mathematics is simply the vehicle.

You can find the most up-to-date version of this textbook on GitHub:

http://dcernst.github.io/IBL-IntroToProof/

I would be thrilled if you used this textbook and improved it. If you make any
modifications, you can either make a pull request on GitHub or submit the im-
provements via email. You are also welcome to fork the source and modify the
text for your purposes as long as you maintain the Creative Commons Attribu-
tion–Share Alike 4.0 International License.

Much more important than specific
mathematical results are the habits of mind
used by the people who create those results.
. . .Although it is necessary to infuse courses
and curricula with modern content, what is
even more important is to give students the
tools they will need in order to use,
understand, and even make mathematics
that does not yet exist.

Cuoco, Goldenberg, & Mark in Habit of
Mind: An Organizing Principle for
Mathematics Curriculum

http://dcernst.github.io/IBL-IntroToProof/
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The mathematician does not study pure
mathematics because it is useful; he studies
it because he delights in it, and he delights
in it because it is beautiful.

Henri Poincaré, mathematician & physicist1
Introduction

1.1 What Is this Book All About?

This book is intended to be used for a one-semester/quarter introduction to proof
course (sometimes referred to as a transition to proof course). The purpose of
this book is to introduce the reader to the process of constructing and writing
formal and rigorous mathematical proofs. The intended audience is mathemat-
ics majors andminors. However, this book is also appropriate for anyone curious
about mathematics and writing proofs. Most users of this book will have taken
at least one semester of calculus, although other than some familiarity with a
few standard functions in Chapter 8, content knowledge of calculus is not re-
quired. The book includes more content than one can expect to cover in a single
semester/quarter. This allows the instructor/reader to pick and choose the sec-
tions that suit their needs and desires. Each chapter takes a focused approach to
the included topics, but also includes many gentle exercises aimed at developing
intuition.

The following sections form the core of the book and are likely the sections
that an instructor would focus on in a one-semester introduction to proof course.
• Chapter 2: Mathematics and Logic. All sections.

• Chapter 3: Set Theory. Sections 3.1, 3.3, 3.4, and 3.5.

• Chapter 4: Induction. All sections.

• Chapter 7: Relations and Partitions. Sections 7.1, 7.2, and 7.3.

• Chapter 8: Functions. Sections 8.1, 8.2, 8.3, and 8.4.

• Chapter 9: Cardinality. All sections.

1



2 Chapter 1. Introduction

Time permitting, instructors can pick and choose topics from the remaining sec-
tions. I typically cover the core sections listed above together with Chapter 6:
Three Famous Theorems during a single semester. The Instructor Guide contains
examples of a few possible paths through the material, as well as information
about which sections and theorems depend on material earlier in the book.

Mathematics, rightly viewed, possesses not
only truth, but supreme beauty—a beauty
cold and austere, like that of sculpture,
without appeal to any part of our weaker
nature, without the gorgeous trappings of
painting or music, yet sublimely pure, and
capable of a stern perfection such as only
the greatest art can show. The true spirit of
delight, the exaltation, the sense of being
more than Man, which is the touchstone of
the highest excellence, is to be found in
mathematics as surely as poetry.

Bertrand Russell, philosopher &
mathematician

1.2 What Should You Expect?

Up to this point, it is possible that your experience ofmathematics has been about
using formulas and algorithms. You are used to being asked to do things like:
“solve for 𝑥”, “take the derivative of this function”, “integrate this function”, etc.
Accomplishing tasks like these usually amounts tomimicking examples that you
have seen in class or in your textbook. However, this is only one part of math-
ematics. Mathematicians experiment, make conjectures, write definitions, and
prove theorems. While engaging with the material contained in this book, we
will learn about doing all of these things, especially writing proofs. Mathemati-
cians are in the business of proving theorems and this is exactly our endeavor.
Ultimately, the focus of this book is on producing and discovering mathematics.

Your progress will be fueled by your ability to wrestle with mathematical
ideas and to prove theorems. As you work through the book, you will find that
you have ideas for proofs, but you are unsure of them. Do not be afraid to tinker
and make mistakes. You can always revisit your work as you becomemore profi-
cient. Do not expect to do most things perfectly on your first—or even second or
third—attempt. The material is too rich for a human being to completely under-
stand immediately. Learning a new skill requires dedication and patience during
periods of frustration. Moreover, solving genuine problems is difficult and takes
time. But it is also rewarding!
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You may encounter many defeats, but you
must not be defeated.

Maya Angelou, poet & activist

1.3 An Inquiry-Based Approach

In many mathematics classrooms, “doing mathematics” means following the
rules dictated by the teacher, and “knowing mathematics” means remembering
and applying them. However, this is not a typical mathematics textbook and is
likely a significant departure from your prior experience, where mimicking pre-
fabricated examples led you to success. In order to promote a more active partic-
ipation in your learning, this book adheres to an educational philosophy called
inquiry-based learning (IBL). IBL is a student-centered method of teaching that
engages students in sense-making activities and challenges them to create or dis-
cover mathematics. In this book, you will be expected to actively engage with
the topics at hand and to construct your own understanding. You will be given
tasks requiring you to solve problems, conjecture, experiment, explore, create,
and communicate. Rather than showing facts or a clear, smooth path to a solu-
tion, this book will guide andmentor you through an adventure in mathematical
discovery.

This book makes no assumptions about the specifics of how your instruc-
tor chooses to implement an IBL approach. Generally speaking, students are
told which problems and theorems to grapple with for the next class sessions,
and then the majority of class time is devoted to students working in groups on
unresolved solutions/proofs or having students present their proposed solution-
s/proofs to the rest of the class. Students should—as much as possible—be re-
sponsible for guiding the acquisition of knowledge and validating the ideas pre-
sented. That is, you should not be looking to the instructor as the sole authority.
In an IBL course, instructor and students have joint responsibility for the depth
and progress of the course. While effective IBL courses come in a variety of forms,
they all possess a few essential ingredients. According to Laursen andRasmussen
(2019), the Four Pillars of IBL are:

• Students engage deeply with coherent and meaningful mathematical tasks.

• Students collaboratively process mathematical ideas.

• Instructors inquire into student thinking.

• Instructors foster equity in their design and facilitation choices.

This book can only address the first pillar while it is the responsibility of your
instructor and class to develop a culture that provides an adequate environment

https://www.colorado.edu/eer/sites/default/files/attached-files/laursenrasmussencommentaryauthorversion0219.pdf
https://www.colorado.edu/eer/sites/default/files/attached-files/laursenrasmussencommentaryauthorversion0219.pdf


4 Chapter 1. Introduction

for the remaining pillars to take root. If you are studying this material indepen-
dent of a classroom setting, I encourage you to find a community where you can
collaborate and discuss your ideas.

Just like learning to play an instrument or sport, you will have to learn new
skills and ideas. Along this journey, you should expect a cycle of victory and de-
feat, experiencing a full range of emotions. Sometimes you will feel exhilarated,
other times youmight be seemingly paralyzed by extreme confusion. Youwill ex-
perience struggle and failure before you experience understanding. This is part
of the normal learning process. If you are doing things well, you should be con-
fused on a regular basis. Productive struggle and mistakes provide opportunities
for growth. As the author of this text, I am here to guide and challenge you, but I
cannot do the learning for you, just as a music teacher cannot move your fingers
and your heart for you. This is a very exciting time in your mathematical career.
You will experience mathematics in a new and profound way. Be patient with
yourself and others as you adjust to a new paradigm.

You could view this book as mountaineering guidebook. I have provided a
list of mountains to summit, sometimes indicating which trailhead to start at or
which trail to follow. There will always be multiple routes to top, some more
challenging than others. Some summits you will attain quickly and easily, others
might require amulti-day expedition. Oftentimes, your journeywill be lacedwith
false summits. Some summits will be obscured by clouds. Sometimes you will
have to wait out a storm, perhaps turning around and attempting another route,
or even attempting to summit on a different day after the weather has cleared.
The strength, fitness, and endurance you gain along the way will allow you to
take on more and more challenging, and often beautiful, terrain. Do not forget
to take in the view from the top! The joy you feel from overcoming obstacles and
reaching each summit under your ownwill and power has the potential to be life
changing. But make no mistake, the journey is vastly more important than the
destinations.

Don’t fear failure. Not failure, but low aim,
is the crime. In great attempts it is glorious
even to fail.

Bruce Lee, martial artist & actor

1.4 Structure of the Textbook

As you read this book, you will be required to digest the material in a meaningful
way. It is your responsibility to read and understand new definitions and their
related concepts. In addition, you will be asked to complete problems aimed at
solidifying your understanding of the material. Most importantly, you will be
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asked to make conjectures, produce counterexamples, and prove theorems. All
of these tasks will almost always be challenging.

The items labeled as Definition and Example are meant to be read and
digested. However, the items labeled as Problem, Theorem, and Corollary
require action on your part. Items labeled as Problem are sort of a mixed bag.
Some Problems are computational in nature and aimed at improving your under-
standing of a particular conceptwhile others ask you to provide a counterexample
for a statement if it is false or to provide a proof if the statement is true. Itemswith
the Theorem and Corollary designation are mathematical facts and the inten-
tion is for you to produce a valid proof of the given statement. Themain difference
between a theorem and a corollary is that corollaries are typically statements that
follow quickly from a previous theorem. In general, you should expect corollaries
to have very short proofs. However, that does not mean that you cannot produce
a more lengthy yet valid proof of a corollary.

Oftentimes, the problems and theorems are guiding you towards a substan-
tial, more general result. Other times, they are designed to get you to apply ideas
in a new way. One thing to always keep in mind is that every task in this book
can be done by you, the student. But it may not be on your first try, or even your
second.

Discussion of new topics is typically kept at a minimum and there are very
few examples in this book. This is intentional. One of the objectives of the items
labeled as Problem is for you to produce the examples needed to internalize un-
familiar concepts. The overarching goal of this book is to help you develop a
deep and meaningful understanding of the processes of producing mathematics
by putting you in direct contact with mathematical phenomena.

Don’t just read it; fight it! Ask your own
questions, look for your own examples,
discover your own proofs. Is the hypothesis
necessary? Is the converse true? What
happens in the classical special case? What
about the degenerate cases? Where does the
proof use the hypothesis?

Paul Halmos, mathematician

1.5 Some Minimal Guidance

Especially in the opening sections, it will not be clear what facts from your prior
experience in mathematics you are “allowed” to use. Unfortunately, addressing
this issue is difficult and is something we will sort out along the way. In addition,
you are likely unfamiliar with how to structure a valid mathematical proof. So
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that you do not feel completely abandoned, here are some guidelines to keep in
mind as you get started with writing proofs.

• The statement you are proving should be on the same page as the beginning
of your proof.

• You should indicate where the proof begins by writing “Proof.” at the begin-
ning.

• Make it clear to yourself and the reader what your assumptions are at the
very beginning of your proof. Typically, these statements will start off “As-
sume. . . ”, “Suppose. . . ”, or “Let. . . ”. Sometimes there will be some implicit
assumptions that we can omit, but at least in the beginning, you should get
in the habit of clearly stating your assumptions up front.

• Carefully consider the order in which you write your proof. Each sentence
should follow from an earlier sentence in your proof or possibly a result you
have already proved.

• Unlike the experiencemany of you hadwriting proofs in your high school ge-
ometry class, our proofs should bewritten in complete sentences. You should
break sections of a proof into paragraphs and use proper grammar. There are
some pedantic conventions for doing this that will be pointed out along the
way. Initially, this will be an issue that you may struggle with, but you will
get the hang of it.

• There will be many situations where you will want to refer to an earlier def-
inition, problem, theorem, or corollary. In this case, you should reference
the statement by number, but it is also helpful to the reader to summarize
the statement you are citing. For example, you might write something like,
“According to Theorem 2.3, the sum of two consecutive integers is odd, and
so. . . ” or “By the definition of divides (Definition 2.5), it follows that. . . ”. One
thingworth pointing out is that if we are citing a definition, theorem, or prob-
lem by number, we should capitalize “Definition”, “Theorem”, or “Problem”,
respectively (e.g., “According to Theorem 2.3. . . ”). Otherwise, we do not cap-
italize these words (e.g., “By the definition of divides. . . ”).

• There will be times when we will need to do some basic algebraic manipu-
lations. You should feel free to do this whenever the need arises. But you
should show sufficient work along the way. In addition, you should organize
your calculations so that each step follows from the previous. The order in
which we write things matters. You do not need to write down justifications
for basic algebraic manipulations (e.g., adding 1 to both sides of an equation,
adding and subtracting the same amount on the same side of an equation,
adding like terms, factoring, basic simplification, etc.).
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• On the other hand, you do need to make explicit justification of the logical
steps in a proof. As stated above, you should cite a previous definition, theo-
rem, etc. when necessary.

• Similar tomaking it clearwhere your proof begins, you should indicatewhere
it ends. It is common to conclude a proof with the standard “proof box” (□
or■). This little square at end of a proof is sometimes called a tombstone or
Halmos symbol after Hungarian-born American mathematician Paul Hal-
mos (1916–2006).

It is of utmost importance that you work to understand every proof. Ques-
tions—asked to your instructor, your peers, and yourself—are often your best
tool for determining whether you understand a proof. Another way to help you
process and understand a proof is to try and make observations and connections
between different ideas, proof statements and methods, and to compare various
approaches.

If you would like additional guidance before you dig in, look over the guide-
lines in Appendix A: Elements of Style for Proofs. It is suggested that you review
this appendix occasionally as you progress through the book as some guidelines
may not initially make sense or seem relevant. Be prepared to put in a lot of time
and do all the work. Your effort will pay off in intellectual development. Now,
go have fun and start exploring mathematics!

Our greatest glory is not in never falling, but
in rising every time we fall.

Confucius, philosopher

https://en.wikipedia.org/wiki/Paul_Halmos
https://en.wikipedia.org/wiki/Paul_Halmos




Pure mathematics is the poetry of logical
ideas.

Albert Einstein, theoretical physicist

2
Mathematics and Logic

Before you get started, make sure you have readChapter 1, which sets the tone for
the work we will begin doing here. In addition, you might find it useful to read
Appendix A: Elements of Style for Proofs. As stated at the end of Section 1.5, you
are encouraged to review this appendix occasionally as you progress through the
book as some guidelines may not initially make sense or seem relevant.

2.1 A Taste of Number Theory

It is important to point out that we are diving in head first here. As we get started,
we are going to rely on your intuition and previous experience with proofs. This
is intentional. What you will likely encounter is a general sense of what a proof
entails, but you may not be able to articulate the finer details that you do and
do not comprehend. There are going to be some subtle issues that you will be
confronted with and one of our goals will be to elucidate as many of them as pos-
sible. We need to calibrate and develop an intellectual need for structure. You
are encouraged to just try your hand at writing proofs for the problems in this
section without too much concern for whether you are “doing it the right way.”
In Section 2.2, we will start over and begin to develop a formal foundation for
the material in the remainder of the book. Once you have gained more expe-
rience and a better understanding of what a proof entails, you should consider
returning to this section and reviewing your first attempts at writing proofs. In
the meantime, see what you can do!

In this section, wewill introduce the basics of a branch ofmathematics called
number theory, which is devoted to studying the properties of the integers. The

9



10 Chapter 2. Mathematics and Logic

integers is the set of numbers given by

ℤ ≔ {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} .
The collection of positive integers also have a special name. The set of natural
numbers is given by

ℕ ≔ {1, 2, 3, . . .} .
Some mathematicians (set theorists, in particular) include 0 in ℕ, but this will
not be our convention. If you look closely at the two sets we defined above, you
will notice that we wrote ≔ instead of =. We use≔ to mean that the symbol or
expression on the left is defined to be equal to the expression on the right. The
symbol ℝ is used to denote the set of all real numbers. We will not formally
define the real numbers, but instead rely on your prior intuition and understand-
ing.

Because you are so familiar with many of the properties of the integers and
real numbers, one of the issues that we will bump into is knowing which facts
we can take for granted. As a general rule of thumb, you should attempt to use
the definitions provided without relying toomuch on your prior knowledge. The
order in which we develop things is important.

It is common practice in mathematics to use the symbol ∈ as an abbrevi-
ation for the phrase “is an element of” or sometimes simply “in.” For example,
the mathematical expression “𝑛 ∈ ℤ” means “𝑛 is an element of the integers.”
However, some care should be taken in how this symbol is used. We will only
use the symbol “∈” in expressions of the form 𝑎 ∈ 𝐴 , where𝐴 is a set and 𝑎 is an
element of 𝐴. We will write expressions like 𝑎, 𝑏 ∈ 𝐴 as shorthand for “𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐴.” We should avoid writing phrases such as “𝑎 is a number ∈ 𝐴” and
“𝑛 ∈ integers”.

We will now encounter our very first definition. In mathematics, a defini-
tion is a precise and unambiguous description of the meaning of a mathematical
term. It characterizes the meaning of a word by giving all the properties and
only those properties that must be true. Check out Appendix B for a list of other
mathematical terms that we should be familiar with.

Definition 2.1. An integer 𝑛 is even if 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ. An integer 𝑛 is
odd if 𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ.

Notice that we framed the definition of “even” in terms of multiplication as
opposed to division. When tackling theorems and problems involving even or
odd, be sure to make use of our formal definitions and not some of the well-
known divisibility properties. For now, you should avoid arguments that involve
statements like, “even numbers have no remainder when divided by two” or “the
last digit of an even number is 0, 2, 4, 6, or 8.” Also notice that the notions of
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even and odd apply to zero and negative numbers. In particular, zero is even
since 0 = 2 ⋅ 0, where it is worth emphasizing that the occurrence of 0 on the
righthand side of the equation is an integer. As another example, we see that −1
is odd since −1 = 2(−1) + 1. Despite the fact that −1 = 2(−1/2), this does not
imply that −1 is also even since −1/2 is not an integer. For the remainder of this
section, you may assume that every integer is either even or odd but never both.

Our first theorem concerning the integers is stated below. A theorem is a
mathematical statement that is proved using rigorous mathematical reasoning.
As with most theorems in this book, your task is to try your hand at proving the
following theorem. Give it a try.

Theorem 2.2. If 𝑛 is an even integer, then 𝑛2 is an even integer.

One crux in proving the next theorem involves figuring out how to describe
an arbitrary pair of consecutive integers.

Theorem 2.3. The sum of two consecutive integers is odd.

One skill we will want to develop is determining whether a givenmathemat-
ical statement is true or false. In order to verify that a mathematical statement
is false, we should provide a specific example where the statement fails. Such an
example is called a counterexample. Notice that it is sufficient to provide a sin-
gle example to verify that a general statement is not true. On the other hand, if
we want to prove that a general mathematical statement is true, it is usually not
sufficient to provide just a single example, or even a hundred examples. Such
examples are just evidence that the statement is true.

Problem 2.4. Determine whether each of the following statements is true or
false. If a statement is true, prove it. If a statement is false, provide a counterex-
ample.
(a) The product of an odd integer and an even integer is odd.

(b) The product of an odd integer and an odd integer is odd.

(c) The product of an even integer and an even integer is even.

(d) The sum of an even integer and an odd integer is odd.

For the statements that were true in the previous problem, youmay cite them
later in a future proof as if they are theorems.

Definition 2.5. Given 𝑛,𝑚 ∈ ℤ, we say that 𝑛 divides𝑚, written 𝑛|𝑚 , if there
exists 𝑘 ∈ ℤ such that 𝑚 = 𝑛𝑘. If 𝑛|𝑚, we may also say that 𝑚 is divisible by 𝑛
or that 𝑛 is a factor of𝑚.



12 Chapter 2. Mathematics and Logic

Problem 2.6. For 𝑛,𝑚 ∈ ℤ, how are the following mathematical expressions
similar and how are they different? In particular, is each one a sentence or simply
a noun?

(a) 𝑛|𝑚

(b) 𝑚
𝑛

(c) 𝑚/𝑛

In this section on number theory, we allow addition, subtraction, and mul-
tiplication of integers. In general, we avoid division since an integer divided by
an integer may result in a number that is not an integer. The upshot is that we
will avoid writing 𝑚

𝑛
. When you feel the urge to divide, switch to an equivalent

formulation using multiplication. This will make your life much easier when
proving statements involving divisibility.

Theorem2.7. The sumof any three consecutive integers is always divisible by three.

Problem 2.8. Let 𝑎, 𝑏, 𝑛,𝑚 ∈ ℤ. Determine whether each of the following state-
ments is true or false. If a statement is true, prove it. If a statement is false,
provide a counterexample.

(a) If 𝑎|𝑛, then 𝑎|𝑚𝑛.

(b) If 6 divides 𝑛, then 2 divides 𝑛 and 3 divides 𝑛.

(c) If 𝑎𝑏 divides 𝑛, then 𝑎 divides 𝑛 and 𝑏 divides 𝑛.

A theorem that follows almost immediately from another theorem is called
a corollary. See if you can prove the next result quickly using a previous result.
Be sure to cite the result in your proof.

Corollary 2.9. If 𝑎, 𝑛 ∈ ℤ such that 𝑎 divides 𝑛, then 𝑎 divides 𝑛2.

The next two theorems are likely familiar to you.

Theorem 2.10. If 𝑎, 𝑛 ∈ ℤ such that 𝑎 divides 𝑛, then 𝑎 divides −𝑛.

Theorem 2.11. If 𝑎, 𝑛,𝑚 ∈ ℤ such that 𝑎 divides𝑚 and 𝑎 divides 𝑛, then 𝑎 divides
𝑚+ 𝑛.

Notice that we have been tinkering with statements of the form “If. . . ,
then. . . ”. Statements of this formare called conditional propositions, whichwe
revisit in the next section. The phrase that occurs after “If” but before “then” is
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called the hypothesiswhile the phrase that occurs after “then” is called the con-
clusion. For example, in Problem 2.8(a), “𝑎|𝑛” is the hypothesis while “𝑎|𝑚𝑛”
is the conclusion. Note that conditional propositions can also be written in the
form “. . . if . . . ”, where the conclusion is written before “if” and the hypothesis af-
ter. For example, we can rewrite Problem 2.8(a) as “𝑎|𝑚𝑛 if 𝑎|𝑛”. While the order
of the hypothesis and conclusion have been reversed in the sentence, their roles
have not.

Whenever we encounter a conditional statement in mathematics, we want
to get in the habit of asking ourselves what happens when we swap the roles of
the hypothesis and the conclusion. The statement that results from reversing the
roles of the hypothesis and conclusion in a conditional statement is called the
converse of the original statement. For example, the converse of Problem 2.8(a)
is “If 𝑎|𝑚𝑛, then 𝑎|𝑛”, which happens to be false. The converse of Theorem 2.2 is
“If 𝑛2 is an even integer, then 𝑛 is an even integer”. While this statement is true
it does not have the same meaning as Theorem 2.2.

Problem 2.12. Determine whether the converse of each of Corollary 2.9, Theo-
rem 2.10, and Theorem 2.11 is true. That is, for 𝑎, 𝑛,𝑚 ∈ ℤ, determine whether
each of the following statements is true or false. If a statement is true, prove it. If
a statement is false, provide a counterexample.

(a) If 𝑎 divides 𝑛2, then 𝑎 divides 𝑛. (Converse of Corollary 2.9)

(b) If 𝑎 divides −𝑛, then 𝑎 divides 𝑛. (Converse of Theorem 2.10)

(c) If 𝑎 divides 𝑚 + 𝑛, then 𝑎 divides 𝑚 and 𝑎 divides 𝑛. (Converse of Theo-
rem 2.11)

The next theorem is often referred to as the transitivity of division of in-
tegers.

Theorem 2.13. If 𝑎, 𝑏, 𝑐∈ℤ such that 𝑎 divides 𝑏 and 𝑏 divides 𝑐, then 𝑎 divides 𝑐.

Once we have proved a few theorems, we should be on the look out to see if
we can utilize any of our current results to prove new results. There is no point
in reinventing the wheel if we do not have to.

Theorem 2.14. If 𝑎, 𝑛,𝑚 ∈ ℤ such that 𝑎 divides𝑚 and 𝑎 divides 𝑛, then 𝑎 divides
𝑚− 𝑛.

Theorem 2.15. If 𝑛 ∈ ℤ such that 𝑛 is odd, then 8 divides 𝑛2 − 1.
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Time spent thinking about a problem is
always time well spent. Even if you seem to
make no progress at all.

Paul Zeitz, mathematician

2.2 Introduction to Logic

In the previous section, we jumped in head first and attempted to prove several
theorems in the context of number theory without a formal understanding of
what it was we were doing. Likely, many issues bubbled to the surface. What is a
proof? What sorts of statements require proof? What should a proof entail? How
should a proof be structured? Let’s take a step back and do a more careful exam-
ination of what it is we are actually doing. In the the next two sections, we will
introduce the basics of propositional logic—also referred to as propositional
calculus or sometimes zeroth-order logic.

Definition 2.16. Aproposition is a sentence that is either true or false but never
both. The truth value (or logical value) of a proposition refers to its attribute
of being true or false.

For example, the sentence “All dogs have four legs” is a false proposition.
However, the perfectly good sentence “𝑥 = 1” is not a proposition all by itself
since we do not actually know what 𝑥 is.

Problem 2.17. Determine whether each of the following is a proposition. Ex-
plain your reasoning.

(a) All cars are red.

(b) Every person whose name begins with J has the name Joe.

(c) 𝑥2 = 4.

(d) There exists a real number 𝑥 such that 𝑥2 = 4.

(e) For all real numbers 𝑥, 𝑥2 = 4.

(f) √2 is an irrational number.

(g) 𝑝 is prime.

(h) Is it raining?

(i) It will rain tomorrow.

(j) Led Zeppelin is the best band of all time.
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The last two sentences in the previous problem may stir debate. It is not so
important that we come to consensus as to whether either of these two sentences
is actually a proposition or not. The good news is that in mathematics we do
not encounter statements whose truth value is dependent on either the future or
opinion.

Given two propositions, we can form more complicated propositions using
logical connectives.

Definition 2.18. Let 𝐴 and 𝐵 be propositions.
(a) The proposition “not 𝐴” is true if 𝐴 is false; expressed symbolically as ¬𝐴

and called the negation of 𝐴.
(b) The proposition “𝐴 and 𝐵” is true if both 𝐴 and 𝐵 are true; expressed sym-

bolically as 𝐴 ∧ 𝐵 and called the conjunction of 𝐴 and 𝐵.
(c) The proposition “𝐴 or 𝐵” is true if at least one of 𝐴 or 𝐵 is true; expressed

symbolically as 𝐴 ∨ 𝐵 and called the disjunction of 𝐴 and 𝐵.
(d) The proposition “If 𝐴, then 𝐵” is true if both 𝐴 and 𝐵 are true, or 𝐴 is false;

expressed symbolically as 𝐴⟹ 𝐵 and called a conditional proposition
(or implication). In this case, 𝐴 is called the hypothesis and 𝐵 is called the
conclusion. Note that 𝐴⟹ 𝐵may also be read as “𝐴 implies 𝐵”, “𝐴 only if
𝐵”, “𝐵 if 𝐴”, or “𝐵 whenever 𝐴”.

(e) The proposition “𝐴 if and only if 𝐵” (alternatively, “𝐴 is necessary and
sufficient for𝐵”) is true if both𝐴 and𝐵 have the same truth value; expressed
symbolically as 𝐴⟺ 𝐵 and called a biconditional proposition. If𝐴⟺
𝐵 is true, we say that 𝐴 and 𝐵 are logically equivalent.

Each of the boxed propositions is called a compound proposition, where𝐴 and
𝐵 are referred to as the components of the compound proposition.

It is worth pointing out that definitions in mathematics are typically written
in the form “𝐵 if𝐴” (or “𝐵 provided that𝐴” or “𝐵whenever𝐴”), where 𝐵 contains
the term or phrase we are defining and 𝐴 provides the meaning of the concept
we are defining. In the case of definitions, we should always interpret “𝐵 if 𝐴”
as describing precisely the collection of “objects” (e.g., numbers, sets, functions,
etc.) that should be identified with the term or phrase we defining. That is, if an
object does not meet the condition specified in 𝐴, then it is never referred to by
the term or phrase we are defining. Some authors will write definitions in the
form “𝐵 if and only if 𝐴”. However, a definition is not at all the same kind of
statement as a usual biconditional since one of the two sides is undefined until
the definition is made. A definition is really a statement that the newly defined
term or phrase is synonymous with a previously defined concept.
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We can form complicated compound propositions with several components
by utilizing logical connectives.

Problem 2.19. Let 𝐴 represent “6 is an even integer” and 𝐵 represent “4 divides
6.” Express each of the following compound propositions in an ordinary English
sentence and then determine its truth value.

(a) 𝐴 ∧ 𝐵

(b) 𝐴 ∨ 𝐵

(c) ¬𝐴

(d) ¬𝐵

(e) ¬(𝐴 ∧ 𝐵)

(f) ¬(𝐴 ∨ 𝐵)

(g) 𝐴⟹ 𝐵

Definition 2.20. A truth table for a compound proposition is a table that illus-
trates all possible combinations of truth values for the components of the com-
pound proposition together with the resulting truth value for each combination.

Example 2.21. If𝐴 and𝐵 are propositions, then the truth table for the compound
proposition 𝐴 ∧ 𝐵 is given by the following.

𝐴 𝐵 𝐴 ∧ 𝐵
T T T
T F F
F T F
F F F

Notice that we have columns for each of 𝐴 and 𝐵. The rows for these two col-
umns correspond to all possible combinations of truth values for 𝐴 and 𝐵. The
third column yields the truth value of 𝐴 ∧ 𝐵 given the possible truth values
for 𝐴 and 𝐵.

Each component of a compound proposition has two possible truth values,
namely true or false. Thus, if a compound proposition is built from 𝑛 component
propositions, then the truth table will require 2𝑛 rows.

Problem 2.22. Create a truth table for each of the following compound proposi-
tions. You should add additional columns to your tables as needed to assist you
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with intermediate steps. For example, youmight need four columns for the third
and fourth compound propositions below.

(a) ¬𝐴

(b) 𝐴 ∨ 𝐵

(c) ¬(𝐴 ∧ 𝐵)

(d) ¬𝐴 ∧ ¬𝐵

Problem 2.23. A coach promises her players, “If we win tonight, then I will buy
you pizza tomorrow.” Determine the cases in which the players can rightly claim
to have been lied to. If the team lost the game and the coach decided to buy them
pizza anyway, was she lying?

Problem 2.24. Use Definition 2.18(d) to construct a truth table for 𝐴 ⟹ 𝐵.
Compare your truth table with Problem 2.23. The combination you should pay
particular attention to is when the hypothesis is false while the conclusion is true.

In accordance with Definition 2.18(d), a conditional proposition 𝐴 ⟹ 𝐵 is
only false when the hypothesis is true and the conclusion is false. Perhaps you
are bothered by the fact that 𝐴 ⟹ 𝐵 is true when 𝐴 is false no matter what the
truth value of 𝐵 is. The thing to keep in mind is that the truth value of 𝐴 ⟹ 𝐵
relies on a very specific definition and may not always agree with the colloquial
use of “If. . . , then. . . ” statements that we encounter in everyday language. For
example, if someone says, “If you break the rules, then you will be punished”, the
speaker likely intends the statement to be interpreted as “You will be punished
if and only if you break the rules.” In logic and mathematics, we aim to remove
such ambiguity by explicitly saying exactly what we mean. For our purposes, we
should view a conditional proposition as a contract or obligation. If the hypoth-
esis is false and the conclusion is true, the contract is not violated. On the other
hand, if the hypothesis is true and the conclusion is false, then the contract is
broken.

We can often prove facts concerning logical statements using truth tables.
Recall that two propositions 𝑃 and 𝑄 (both of which might be complicated com-
pound propositions) are logically equivalent if 𝑃 ⟺ 𝑄 is true (see Definition
2.18(e)). This happens when 𝑃 and 𝑄 have the same truth value. We can ver-
ify whether 𝑃 and 𝑄 have the same truth value by constructing a truth table that
includes columns for each of the components of 𝑃 and𝑄, listing all possible com-
binations of their truth values, together with columns for 𝑃 and 𝑄 that lists their
resulting truth values. If the truth values in the columns for 𝑃 and 𝑄 agree, then
𝑃 and 𝑄 are logically equivalent, and otherwise they are not logically equivalent.
When constructing truth tables to verifywhether𝑃 and𝑄 are logically equivalent,



18 Chapter 2. Mathematics and Logic

you should add any necessary intermediate columns to aid in your “calculations”.
Use truth tables when attempting to justify the next few problems.

Theorem 2.25. If 𝐴 is a proposition, then ¬(¬𝐴) is logically equivalent to 𝐴.

The next theorem, referred to as De Morgan’s Law, provides a method for
negating a compound proposition involving a conjunction.

Theorem 2.26 (De Morgan’s Law). If 𝐴 and 𝐵 are propositions, then ¬(𝐴 ∧ 𝐵) is
logically equivalent to ¬𝐴 ∨ ¬𝐵.

Problem 2.27 (De Morgan’s Law). Let 𝐴 and 𝐵 be propositions. Conjecture a
statement similar to Theorem 2.26 for the proposition ¬(𝐴 ∨ 𝐵) and then prove
it. This is also called De Morgan’s Law.

We will make use of both versions De Morgan’s Law on on a regular basis.
Sometimes conjunctions and disjunctions are “buried” in a mathematical state-
ment, whichmakes negating statements tricky business. Keep this inmindwhen
approaching the next problem.

Problem 2.28. Let 𝑥 be your favorite real number. Negate each of the following
statements. Note that the statement in Part (b) involves a conjunction.

(a) 𝑥 < −1 or 𝑥 ≥ 3.

(b) 0 ≤ 𝑥 < 1.

Theorem 2.29. If 𝐴 and 𝐵 are propositions, then 𝐴 ⟺ 𝐵 is logically equivalent
to (𝐴⟹ 𝐵) ∧ (𝐵 ⟹ 𝐴).

Theorem 2.30. If 𝐴, 𝐵, and 𝐶 are propositions, then (𝐴 ∨ 𝐵) ⟹ 𝐶 is logically
equivalent to (𝐴⟹ 𝐶) ∧ (𝐵 ⟹ 𝐶).

We already introduced the following notion in the discussion following The-
orem 2.11

Definition 2.31. If 𝐴 and 𝐵 are propositions, then the converse of 𝐴 ⟹ 𝐵 is
𝐵 ⟹ 𝐴.

Problem 2.32. Provide an example of a true conditional proposition whose con-
verse is false.

Definition 2.33. If 𝐴 and 𝐵 are propositions, then the inverse of 𝐴 ⟹ 𝐵 is
¬𝐴⟹ ¬𝐵.
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Problem 2.34. Provide an example of a true conditional proposition whose in-
verse is false.

Based on Problems 2.32 and 2.34, we can conclude that the converse and
inverse of a conditional proposition do not necessarily have the same truth value
as the original statement. Moreover, the converse and inverse of a conditional
proposition do not necessarily have the same truth value as each other.

Problem 2.35. If possible, provide an example of a conditional proposition
whose converse is true but whose inverse is false. If this is not possible, explain
why.

What if we swap the roles of the hypothesis and conclusion of a conditional
proposition and negate each?

Definition 2.36. If 𝐴 and 𝐵 are propositions, then the contrapositive of 𝐴⟹
𝐵 is ¬𝐵 ⟹ ¬𝐴.

Problem 2.37. Let𝐴 and 𝐵 represent the statements from Problem 2.19. Express
each of the following in an ordinary English sentence.
(a) The converse of 𝐴⟹ 𝐵.
(b) The contrapositive of 𝐴⟹ 𝐵.

Problem 2.38. Find the converse and the contrapositive of the following state-
ment: “If Dana lives in Flagstaff, then Dana lives in Arizona.”

Use a truth table to prove the following theorem.

Theorem 2.39. If 𝐴 and 𝐵 are propositions, then 𝐴⟹ 𝐵 is logically equivalent
to its contrapositive.

So far we have discussed how to negate propositions of the form𝐴,𝐴∧𝐵, and
𝐴 ∨ 𝐵 for propositions 𝐴 and 𝐵. However, we have yet to discuss how to negate
propositions of the form 𝐴⟹ 𝐵. Prove the following result with a truth table.

Theorem 2.40. If 𝐴 and 𝐵 are propositions, then the implication 𝐴⟹ 𝐵 is logi-
cally equivalent to the disjunction ¬𝐴 ∨ 𝐵.

The next result follows quickly from Theorem 2.40 together with De Mor-
gan’s Law. You can also verify this result using a truth table.

Corollary 2.41. If 𝐴 and 𝐵 are propositions, then ¬(𝐴 ⟹ 𝐵) is logically equiva-
lent to 𝐴 ∧ ¬𝐵.



20 Chapter 2. Mathematics and Logic

Problem 2.42. Let𝐴 and 𝐵 be the propositions “√2 is an irrational number” and
“Every rectangle is a trapezoid,” respectively.
(a) Express 𝐴⟹ 𝐵 as an English sentence involving the disjunction “or.”
(b) Express ¬(𝐴⟹ 𝐵) as an English sentence involving the conjunction “and.”

Problem 2.43. It turns out that the proposition “If .99 = 9
10
+ 9

100
+ 9

1000
+⋯,

then .99 ≠ 1” is false. Write its negation as a conjunction.

Recall that a proposition is exclusively either true or false—it can never be
both.

Definition 2.44. A compound proposition that is always false is called a con-
tradiction. A compound proposition that is always true is called a tautology.

Theorem2.45. If𝐴 is a proposition, then the proposition¬𝐴∧𝐴 is a contradiction.

Problem 2.46. Provide an example of a tautology using arbitrary propositions
and any of the logical connectives ¬, ∧, and ∨. Prove that your example is in fact
a tautology.

I didn’t want to just know names of things. I
remember really wanting to know how it all
worked.

Elizabeth Blackburn, biologist

2.3 Techniques for Proving Conditional Propositions

Each of the theorems that we proved in Section 2.1 are examples of conditional
propositions. However, some of the statements were disguised as such. For ex-
ample, Theorem 2.3 states, “The sum of two consecutive integers is odd.” We can
reword this theorem as, “If 𝑛 ∈ ℤ, then 𝑛 + (𝑛 + 1) is odd.”

Problem 2.47. Reword Theorem 2.7 so that it explicitly reads as a conditional
proposition.

Each of the proofs that you produced in Section 2.1 had the same format,
which we refer to as a direct proof.

Skeleton Proof 2.48 (Proof of 𝐴 ⟹ 𝐵 by direct proof). If you want to prove
the implication 𝐴 ⟹ 𝐵 via a direct proof, then the structure of the proof is as
follows.
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Proof. [State any upfront assumptions.] Assume 𝐴.
. . . [Use definitions and known results to derive 𝐵] . . .

Therefore, 𝐵.

Take a fewminutes to review the proofs that you wrote in Section 2.1 and see
if you can witness the structure of Skeleton Proof 2.48 in your proofs.

The upshot of Theorem 2.39 is that if you want to prove a conditional propo-
sition, you can prove its contrapositive instead. This approach is called a proof
by contraposition.

Skeleton Proof 2.49 (Proof of 𝐴⟹ 𝐵 by contraposition). If you want to prove
the implication 𝐴 ⟹ 𝐵 by proving its contrapositive ¬𝐵 ⟹ ¬𝐴 instead, then
the structure of the proof is as follows.
Proof. [State any upfront assumptions.] We will utilize a proof by contrapo-
sition. Assume ¬𝐵.

. . . [Use definitions and known results to derive ¬𝐴] . . .
Therefore, ¬𝐴. We have proved the contrapositive, and hence if 𝐴, then
𝐵.

Wehave introduced the logical symbols¬,∧,∨,⟹, and⟺ since it provides
a convenient way of discussing the formality of logic. However, when writing
mathematical proofs, you should avoid using these symbols.

Problem 2.50. Consider the following statement: If 𝑥 ∈ ℤ such that 𝑥2 is odd,
then 𝑥 is odd.

The items below can be assembled to form a proof of this statement, but they
are currently out of order. Put them in the proper order.
(1) Assume that 𝑥 is an even integer.
(2) We will utilize a proof by contraposition.
(3) Thus, 𝑥2 is twice an integer.
(4) Since 𝑥 = 2𝑘, we have that 𝑥2 = (2𝑘)2 = 4𝑘2.
(5) Since 𝑘 is an integer, 2𝑘2 is also an integer.
(6) By the definition of even, there is an integer 𝑘 such that 𝑥 = 2𝑘.
(7) We have proved the contrapositive, and hence the desired statement is true.
(8) Assume 𝑥 ∈ ℤ.
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(9) By the definition of even integer, 𝑥2 is an even integer.
(10) Notice that 𝑥2 = 2(2𝑘2).

Prove the next two theorems by proving the contrapositive of the given state-
ment.

Theorem 2.51. If 𝑛 ∈ ℤ such that 𝑛2 is even, then 𝑛 is even.

Theorem 2.52. If 𝑛,𝑚 ∈ ℤ such that 𝑛𝑚 is even, then 𝑛 is even or𝑚 is even.

Suppose that we want to prove some proposition 𝑃 (which might be some-
thing like 𝐴 ⟹ 𝐵 or even more complicated). One approach, called proof by
contradiction, is to assume ¬𝑃 and then logically deduce a contradiction of the
form 𝑄 ∧ ¬𝑄, where 𝑄 is some proposition. Since this is absurd, the assumption
¬𝑃 must have been false, so 𝑃 is true. The tricky part about a proof by contradic-
tion is that it is not usually obvious what the statement 𝑄 should be.

Skeleton Proof 2.53 (Proof of 𝑃 by contradiction). Here is what the general
structure for a proof by contradiction looks like ifwe are trying to prove the propo-
sition 𝑃.

Proof. [State any upfront assumptions.] For sake of a contradiction, assume
¬𝑃.

. . . [Use definitions and known results to derive
some 𝑄 and its negation ¬𝑄.] . . .

This is a contradiction. Therefore, 𝑃.

Proof by contradiction can be useful for proving statements of the form𝐴⟹
𝐵, where ¬𝐵 is easier to “get your hands on,” because ¬(𝐴 ⟹ 𝐵) is logically
equivalent to 𝐴 ∧ ¬𝐵 (see Corollary 2.41).

Skeleton Proof 2.54 (Proof of 𝐴 ⟹ 𝐵 by contradiction). If you want to prove
the implication 𝐴 ⟹ 𝐵 via a proof by contradiction, then the structure of the
proof is as follows.

Proof. [State any upfront assumptions.] For sake of a contradiction, assume
𝐴 and ¬𝐵.

. . . [Use definitions and known results to derive
some 𝑄 and its negation ¬𝑄.] . . .

This is a contradiction. Therefore, if 𝐴, then 𝐵.
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Problem 2.55. Assume that 𝑥 ∈ ℤ. Consider the following proposition: If 𝑥 is
odd, then 2 does not divide 𝑥.
(a) Prove the contrapositive of this statement.

(b) Prove the statement using a proof by contradiction.

Prove the following theorem via a proof by contradiction. Afterward, con-
sider the difficulties one might encounter when trying to prove the result more
directly. The given statement is not true if we replace ℕwith ℤ. Do you see why?

Theorem 2.56. Assume that 𝑥, 𝑦 ∈ ℕ. If 𝑥 divides 𝑦, then 𝑥 ≤ 𝑦.

Oftentimes a conditional proposition can be proved via a direct proof and by
using a proof by contradiction. Most mathematicians view a direct proof to be
more elegant than a proof by contradiction. When approaching the proof of a
conditional proposition, you should strive for a direct proof. In general, if you
are attempting to prove 𝐴 ⟹ 𝐵 using a proof by contradiction and you end up
with ¬𝐵 and 𝐵 (which yields a contradiction), then this is evidence that a proof
by contradiction was unnecessary. On the other hand, if you end up with ¬𝑄 and
𝑄, where 𝑄 is not the same as 𝐵, then a proof by contradiction is a reasonable
approach.

In light of Theorem 2.29, if we want to prove a biconditional of the form
𝐴 ⟺ 𝐵, we need to prove both 𝐴 ⟹ 𝐵 and 𝐵 ⟹ 𝐴. You should always
make it clear to the reader when you are proving each implication. One approach
is to label each subproof with “(⟹)” and “(⟸)” (including the parentheses),
respectively. Occasionally, you will discover that the proof of one implication is
exactly the reverse of the proof of the other implication. If this happens to be the
case, you may skip writing two subproofs and simply write a single proof that
chains together each step using biconditionals. Such proofs will almost always
be shorter, but can be challenging to write in an eloquent way. It is always a safe
bet to write a separate subproof for each implication.

When proving each implication of a biconditional, youmay choose to utilize
a direct proof, a proof by contraposition, or a proof by contradiction. For example,
you could prove the first implication using a proof by contradiction and a direct
proof for the second implication.

The following theoremprovides an opportunity to gain some experiencewith
writing proofs of biconditional statements.

Theorem 2.57. Let 𝑛 ∈ ℤ. Then 𝑛 is even if and only if 4 divides 𝑛2.

Making learning easy does not necessarily
ease learning.

Manu Kapur, learning scientist
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2.4 Introduction to Quantification

In this section and the next, we introduce first-order logic—also referred to as
predicate logic, quantificational logic, and first-order predicate calculus.
The sentence “𝑥 > 0” is not itself a proposition because its truth value depends
on 𝑥. In this case, we say that 𝑥 is a free variable. A sentence with at least one
free variable is called a predicate (or open sentence). To turn a predicate into a
proposition, we must either substitute values for each free variable or “quantify”
the free variables. We will use notation such as 𝑃(𝑥) and 𝑄(𝑎, 𝑏) to represent
predicates with free variables 𝑥 and 𝑎, 𝑏, respectively. The letters “𝑃” and “𝑄”
that we used in the previous sentence are not special; we can use any letter or
symbol we want. For example, each of the following represents a predicate with
the indicated free variables.

• 𝑆(𝑥) ≔ “𝑥2 − 4 = 0”

• 𝐿(𝑎, 𝑏) ≔ “𝑎 < 𝑏”

• 𝐹(𝑥, 𝑦) ≔ “𝑥 is friends with 𝑦”
Note that we used quotation marks above to remove some ambiguity. What
would 𝑆(𝑥) = 𝑥2 − 4 = 0 mean? It looks like 𝑆(𝑥) equals 0, but actually we
want 𝑆(𝑥) to represent the whole sentence “𝑥2 − 4 = 0”. Also, notice that the
order in which we utilize the free variables might matter. For example, compare
𝐿(𝑎, 𝑏) with 𝐿(𝑏, 𝑎).

One way we can make propositions out of predicates is by assigning specific
values to the free variables. That is, if 𝑃(𝑥) is a predicate and 𝑥0 is specific value
for 𝑥, then 𝑃(𝑥0) is now a proposition that is either true or false.

Problem 2.58. Consider 𝑆(𝑥) and 𝐿(𝑎, 𝑏) as defined above. Determine the truth
values of 𝑆(0), 𝑆(−2), 𝐿(2, 1), and 𝐿(−3,−2). Is 𝐿(2, 𝑏) a proposition or a predi-
cate?

Besides substituting specific values for free variables in a predicate, we can
also make a claim about which values of the free variables apply to the predicate.

Problem2.59. Both of the following sentences are propositions. Decidewhether
each is true or false. What would it take to justify your answers?

(a) For all 𝑥 ∈ ℝ, 𝑥2 − 4 = 0.

(b) There exists 𝑥 ∈ ℝ such that 𝑥2 − 4 = 0.

Definition 2.60. “For all” is the universal quantifier and “there exists. . . such
that” is the existential quantifier.
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In mathematics, the phrases “for all”, “for any”, “for every”, and “for each”
can be used interchangeably (even though they might convey slightly different
meanings in colloquial language). We can replace “there exists. . . such that” with
phrases like “for some” (possibly with some tweaking of the wording of the sen-
tence). It is important to note that the existential quantifier is making a claim
about “at least one”, not “exactly one.”

Variables that are quantifiedwith a universal or existential quantifier are said
to be bound. To be a proposition, all variables of a predicate must be bound.

We must take care to specify the collection of acceptable values for the free
variables. Consider the sentence “For all 𝑥, 𝑥 > 0.” Is this sentence true or false?
The answer depends on what set the universal quantifier applies to. Certainly,
the sentence is false if we apply it for all 𝑥 ∈ ℤ. However, the sentence is true for
all 𝑥 ∈ ℕ. Contextmay resolve ambiguities, but otherwise, wemust write clearly:
“For all 𝑥 ∈ ℤ, 𝑥 > 0” or “For all 𝑥 ∈ ℕ, 𝑥 > 0.” The collection of intended values
for a variable is called the universe of discourse.

Problem 2.61. Suppose our universe of discourse is the set of integers.
(a) Provide an example of a predicate 𝑃(𝑥) such that “For all 𝑥, 𝑃(𝑥)” is true.
(b) Provide an example of a predicate 𝑄(𝑥) such that “For all 𝑥, 𝑄(𝑥)” is false

while “There exists 𝑥 such that 𝑄(𝑥)” is true.

If a predicate hasmore than one free variable, thenwe can build propositions
by quantifying each variable. However, the order of the quantifiers is extremely
important!

Problem 2.62. Let 𝑃(𝑥, 𝑦) be a predicate with free variables 𝑥 and 𝑦 in a universe
of discourse 𝑈. One way to quantify the variables is “For all 𝑥 ∈ 𝑈, there exists
𝑦 ∈ 𝑈 such that 𝑃(𝑥, 𝑦).” How else can the variables be quantified?

The next problem illustrates that at least some of the possibilities you discov-
ered in the previous problem are not equivalent to each other.

Problem 2.63. Suppose the universe of discourse is the set of people and con-
sider the predicate 𝑀(𝑥, 𝑦) ≔‶ 𝑥 is married to 𝑦″. We can interpret the formal
statement “For all 𝑥, there exists 𝑦 such that𝑀(𝑥, 𝑦)” as meaning “Everybody is
married to somebody.” Interpret themeaning of each of the following statements
in a similar way.
(a) For all 𝑥, there exists 𝑦 such that𝑀(𝑥, 𝑦).
(b) There exists 𝑦 such that for all 𝑥,𝑀(𝑥, 𝑦).
(c) For all 𝑥, for all 𝑦,𝑀(𝑥, 𝑦).
(d) There exists 𝑥 such that there exists 𝑦 such that𝑀(𝑥, 𝑦).
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Problem 2.64. Suppose the universe of discourse is the set of real numbers and
consider the predicate 𝐹(𝑥, 𝑦) ≔‶ 𝑥 = 𝑦2″. Interpret the meaning of each of the
following statements.
(a) There exists 𝑥 such that there exists 𝑦 such that 𝐹(𝑥, 𝑦).
(b) There exists 𝑦 such that there exists 𝑥 such that 𝐹(𝑥, 𝑦).
(c) For all 𝑦, for all 𝑥, 𝐹(𝑥, 𝑦).

There are a couple of key points to keep in mind about quantification. To be
a proposition, all variables must be quantified. This can happen in at least two
ways:
• The variables are explicitly bound by quantifiers in the same sentence.

• The variables are implicitly bound by preceding sentences or by context.
Statements of the form “Let 𝑥 = . . .” and “Assume 𝑥 ∈ . . .” bind the vari-
able 𝑥 and remove ambiguity.

Also, the order of the quantification is important. Reversing the order of the
quantifiers can substantially change the meaning of a proposition.

Quantification and logical connectives (“and”, “or”, “If. . . , then. . . ”, and
“not”) enable complex mathematical statements. For example, if 𝑓 is a function
while 𝑐 and 𝐿 are real numbers, then the formal definition of lim𝑥→𝑐 𝑓(𝑥) = 𝐿,
which you may have encountered in calculus, is:

For all 𝜀 > 0, there exists 𝛿 > 0 such that for all 𝑥, if 0 < |𝑥 − 𝑐| < 𝛿, then
|𝑓(𝑥) − 𝐿| < 𝜀.
In order to study the abstract nature of complicated mathematical state-

ments, it is useful to adopt some notation.

Definition 2.65. The universal quantifier “for all” is denoted ∀ , and the exis-
tential quantifier “there exists. . . such that” is denoted ∃ .

Using our abbreviations for the logical connectives and quantifiers,
we can symbolically represent mathematical propositions. For example,
the (true) proposition “There exists 𝑥 ∈ ℝ such that 𝑥2 − 1 = 0” becomes
“(∃𝑥 ∈ ℝ)(𝑥2 − 1 = 0),” while the (false) proposition “For all 𝑥 ∈ ℕ, there
exists 𝑦 ∈ ℕ such that 𝑦 < 𝑥” becomes “(∀𝑥 ∈ ℕ)(∃𝑦 ∈ ℕ)(𝑦 < 𝑥).”

Problem 2.66. Convert the following propositions into statements using only
logical and mathematical symbols. Assume that the universe of discourse is the
set of real numbers.
(a) There exists 𝑥 such that 𝑥2 + 1 is greater than zero.
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(b) There exists a natural number 𝑛 such that 𝑛2 = 36.

(c) For every 𝑥, 𝑥2 is greater than or equal to zero.

Problem 2.67. Express the formal definition of a limit (given above Definition
2.65) in logical and mathematical symbols.

If you look closely, many of the theorems that we have encountered up until
this point were of the form 𝐴(𝑥) ⟹ 𝐵(𝑥), where 𝐴(𝑥) and 𝐵(𝑥) are predicates.
For example, consider Theorem 2.2, which states, “If 𝑛 is an even integer, then 𝑛2
is an even integer.” In this case, “𝑛 is an even integer” and “𝑛2 is an even integer”
are both predicates. So, it would be reasonable to assume that the entire theorem
statement is a predicate. However, it is standard practice to interpret the sentence
𝐴(𝑥) ⟹ 𝐵(𝑥) to mean (∀𝑥)(𝐴(𝑥) ⟹ 𝐵(𝑥)) (where the universe of discourse
for 𝑥 needs to be made clear). We can also retool such statements to “hide” the
implication. In particular, (∀𝑥)(𝐴(𝑥) ⟹ 𝐵(𝑥)) has the same meaning as (∀𝑥 ∈
𝑈′)𝐵(𝑥), where𝑈′ is the collection of items from the universe of discourse𝑈 that
makes 𝐴(𝑥) true. For example, we could rewrite the statement of Theorem 2.2 as
“For every even integer 𝑛, 𝑛2 is even.”

Problem 2.68. Reword Theorem 2.7 so that it explicitly reads as a universally
quantified statement. Compare with Problem 2.47.

Problem 2.69. Find at least two other instances of theorem statements that ap-
peared earlier in the book and are written in the form 𝐴(𝑥) ⟹ 𝐵(𝑥). Rewrite
each in an equivalent way that makes the universal quantifier explicit while pos-
sibly suppressing the implication.

Problem 2.70. Consider the proposition “If 𝜀 > 0, then there exists 𝑁 ∈ ℕ such
that 1/𝑁 < 𝜀.” Assume the universe of discourse is the set ℝ.

(a) Express the statement in logical andmathematical symbols. Is the statement
true?

(b) Reverse the order of the quantifiers to get a new statement. Does themeaning
change? If so, how? Is the new statement true?

The symbolic expression (∀𝑥)(∀𝑦) can be abbreviated as ∀𝑥, 𝑦 as long as 𝑥
and 𝑦 are elements of the same universe.

Problem 2.71. Express the proposition “For all 𝑥, 𝑦 ∈ ℝwith 𝑥 < 𝑦, there exists
𝑚 ∈ ℝ such that 𝑥 < 𝑚 < 𝑦” using logical and mathematical symbols.
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Problem 2.72. Rewrite each of the following propositions in words and deter-
mine whether the proposition is true or false.

(a) (∀𝑛 ∈ ℕ)(𝑛2 ≥ 5)

(b) (∃𝑛 ∈ ℕ)(𝑛2 − 1 = 0)

(c) (∃𝑁 ∈ ℕ)(∀𝑛 > 𝑁)( 1
𝑛
< 0.01)

(d) (∀𝑚, 𝑛 ∈ ℤ)((2|𝑚 ∧ 2|𝑛)⟹ 2|(𝑚 + 𝑛))

(e) (∀𝑥 ∈ ℕ)(∃𝑦 ∈ ℕ)(𝑥 − 2𝑦 = 0)

(f) (∃𝑥 ∈ ℕ)(∀𝑦 ∈ ℕ)(𝑦 ≤ 𝑥)

Problem 2.73. Consider the proposition (∀𝑥)(∃𝑦)(𝑥𝑦 = 1).
(a) Provide an example of a universe of discourse where this proposition is true.

(b) Provide an example of a universe of discourse where this proposition is false.

To whet your appetite for the next section, consider how you might prove a
true proposition of the form “For all 𝑥. . . .” If a proposition is false, then its nega-
tion is true. Howwould you go about negating a statement involving quantifiers?

Like what you do, and then you will do your
best.

Katherine Johnson, mathematician

2.5 More About Quantification

When writing mathematical proofs, we do not explicitly use the symbolic rep-
resentation of a given statement in terms of quantifiers and logical connectives.
Nonetheless, having this notation at our disposal allows us to compartmentalize
the abstract nature of mathematical propositions and provides us with a way to
talk about the general structure involved in the construction of a proof.

Definition 2.74. Two quantified propositions are logically equivalent if they
have the same truth value in every universe of discourse.

Problem 2.75. Consider the propositions (∃𝑥 ∈ 𝑈)(𝑥2 − 4 = 0) and (∃𝑥 ∈
𝑈)(𝑥2 − 2 = 0), where 𝑈 is some universe of discourse.

(a) Do these propositions have the same truth value if the universe of discourse
is the set of real numbers?
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(b) Provide an example of a universe of discourse such that the propositions yield
different truth values.

(c) What can you conclude about the logical equivalence of these propositions?

It is worth pointing out an important distinction. Consider the propositions
“All cars are red” and “All natural numbers are positive”. Both of these are in-
stances of the logical form (∀𝑥)𝑃(𝑥). It turns out that the first proposition is false
and the second is true; however, it does not make sense to attach a truth value
to the logical form. A logical form is a blueprint for particular propositions. If
we are careful, it makes sense to talk about whether two logical forms are log-
ically equivalent. For example, (∀𝑥)(𝑃(𝑥) ⟹ 𝑄(𝑥)) is logically equivalent to
(∀𝑥)(¬𝑄(𝑥)⟹ ¬𝑃(𝑥)) since a conditional proposition is logically equivalent to
its contrapositive (see Theorem 2.39). For fixed 𝑃(𝑥) and 𝑄(𝑥), these two forms
will always have the same truth value independent of the universe of discourse.
If you change 𝑃(𝑥) and𝑄(𝑥), then the truth value may change, but the two forms
will still agree.

The next theorem tells us how to negate logical forms involving quantifiers.
Your proof should involve several mini arguments. For example, in Part (a), you
will need to proof that if ¬(∀𝑥)𝑃(𝑥) is true, then (∃𝑥)(¬𝑃(𝑥)) is also true.

Theorem 2.76. Let 𝑃(𝑥) be a predicate in some universe of discourse. Then
(a) ¬(∀𝑥)𝑃(𝑥) is logically equivalent to (∃𝑥)(¬𝑃(𝑥));

(b) ¬(∃𝑥)𝑃(𝑥) is logically equivalent to (∀𝑥)(¬𝑃(𝑥)).

Problem2.77. Negate each of the following sentences. Disregard the truth value
and the universe of discourse.

(a) (∀𝑥)(𝑥 > 3)

(b) (∃𝑥)(𝑥 is prime ∧ 𝑥 is even)

(c) All cars are red.

(d) Every Wookiee is named Chewbacca.

(e) Some hippies are Republican.

(f) Some birds are not angry.

(g) Not every video game will rot your brain.

(h) For all 𝑥 ∈ ℕ, 𝑥2 + 𝑥 + 41 is prime.

(i) There exists 𝑥 ∈ ℤ such that 1/𝑥 ∉ ℤ.
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(j) There is no function𝑓 such that if𝑓 is continuous, then𝑓 is not differentiable.

Using Theorem 2.76 and our previous results involving quantification, we
can negate complexmathematical propositions by working from left to right. For
example, if we negate the false proposition

(∃𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)(𝑥 + 𝑦 = 0),
we obtain the proposition

¬(∃𝑥 ∈ ℝ)(∀𝑦 ∈ ℝ)(𝑥 + 𝑦 = 0),
which is logically equivalent to

(∀𝑥 ∈ ℝ)(∃𝑦 ∈ ℝ)(𝑥 + 𝑦 ≠ 0)
and must be true. For a more complicated example, consider the (false) proposi-
tion

(∀𝑥)[𝑥 > 0⟹ (∃𝑦)(𝑦 < 0 ∧ 𝑥𝑦 > 0)].
Then its negation

¬(∀𝑥)[𝑥 > 0⟹ (∃𝑦)(𝑦 < 0 ∧ 𝑥𝑦 > 0)]
is logically equivalent to

(∃𝑥)[𝑥 > 0 ∧ ¬(∃𝑦)(𝑦 < 0 ∧ 𝑥𝑦 > 0)],
which happens to be logically equivalent to

(∃𝑥)[𝑥 > 0 ∧ (∀𝑦)(𝑦 ≥ 0 ∨ 𝑥𝑦 ≤ 0)].
Can you identify the theorems that were used in the two examples above?

Problem 2.78. Negate each of the following propositions. Disregard the truth
value and the universe of discourse.

(a) (∀𝑛 ∈ ℕ)(∃𝑚 ∈ ℕ)(𝑚 < 𝑛)

(b) For every 𝑦 ∈ ℝ, there exists 𝑥 ∈ ℝ such that 𝑦 = 𝑥2.

(c) For all 𝑦 ∈ ℝ, if 𝑦 is not negative, then there exists 𝑥 ∈ ℝ such that 𝑦 = 𝑥2.

(d) For every 𝑥 ∈ ℝ, there exists 𝑦 ∈ ℝ such that 𝑦 = 𝑥2.

(e) There exists 𝑥 ∈ ℝ such that for all 𝑦 ∈ ℝ, 𝑦 = 𝑥2.

(f) There exists 𝑦 ∈ ℝ such that for all 𝑥 ∈ ℝ, 𝑦 = 𝑥2.

(g) (∀𝑥, 𝑦, 𝑧 ∈ ℤ)((𝑥𝑦 is even ∧ 𝑦𝑧 is even)⟹ 𝑥𝑧 is even)

(h) There exists a married person 𝑥 such that for all married people 𝑦, 𝑥 is mar-
ried to 𝑦.
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Problem2.79. Consider the following proposition in someuniverse of discourse:
For all goofy wobblers 𝑥, there exists a dinglehopper 𝑦 such that if 𝑥 is a not a
nugget, then 𝑦 is a doofus. Find the negation of this proposition so that it in-
cludes the phrase “is not a doofus.”

Problem2.80. Consider the following proposition in someuniverse of discourse:
If 𝑥 and 𝑦 are both snazzy, then 𝑥𝑦 is not nifty. Find the contrapositive of this
proposition so that it includes the phrase “not snazzy”.

At this point, we should be able to use our understanding of quantification to
construct counterexamples to complicated false propositions and proofs of com-
plicated true propositions. Here are some general proof structures for various
logical forms.

Skeleton Proof 2.81 (Direct Proof of (∀𝑥)𝑃(𝑥)). Here is the general structure for
a direct proof of the proposition (∀𝑥)𝑃(𝑥). Assume𝑈 is the universe of discourse.
Proof. [State any upfront assumptions.] Let 𝑥 ∈ 𝑈.

. . . [Use definitions and known results.] . . .
Therefore, 𝑃(𝑥) is true. Since 𝑥 was arbitrary, for all 𝑥, 𝑃(𝑥).

Combining Skeleton Proof 2.81 with Skeleton Proof 2.48, we obtain the fol-
lowing skeleton proof.

Skeleton Proof 2.82 (Proof of (∀𝑥)(𝐴(𝑥)⟹ 𝐵(𝑥))). Below is the general struc-
ture for a direct proof of the proposition (∀𝑥)(𝐴(𝑥) ⟹ 𝐵(𝑥). Assume 𝑈 is the
universe of discourse.
Proof. [State any upfront assumptions.] Let 𝑥 ∈ 𝑈. Assume 𝐴(𝑥).

. . . [Use definitions and known results to derive 𝐵(𝑥)] . . .
Therefore, 𝐵(𝑥).

Skeleton Proof 2.83 (Proof of (∀𝑥)𝑃(𝑥) by Contradiction). Here is the general
structure for a proof of the proposition (∀𝑥)𝑃(𝑥) via contradiction. Assume 𝑈 is
the universe of discourse.
Proof. [State any upfront assumptions.] For sake of a contradiction, assume
that there exists 𝑥 ∈ 𝑈 such that ¬𝑃(𝑥).

. . . [Do something to derive a contradiction.] . . .
This is a contradiction. Therefore, for all 𝑥, 𝑃(𝑥) is true.
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Skeleton Proof 2.84 (Direct Proof of (∃𝑥)𝑃(𝑥)). Here is the general structure for
a direct proof of the proposition (∃𝑥)𝑃(𝑥). Assume𝑈 is the universe of discourse.

Proof. [State any upfront assumptions.] . . .
. . . [Use definitions, axioms, and previous results to deduce that an 𝑥 exists for
which 𝑃(𝑥) is true; or if you have an 𝑥 that works, just verify that it does.] . . .
Therefore, there exists 𝑥 ∈ 𝑈 such that 𝑃(𝑥).

Skeleton Proof 2.85 (Proof of (∃𝑥)𝑃(𝑥) by Contradiction). Below is the general
structure for a proof of the proposition (∃𝑥)𝑃(𝑥) via contradiction. Assume 𝑈 is
the universe of discourse.

Proof. [State any upfront assumptions.] For sake of a contradiction, assume
that for all 𝑥 ∈ 𝑈, ¬𝑃(𝑥).

. . . [Do something to derive a contradiction.] . . .
This is a contradiction. Therefore, there exists 𝑥 ∈ 𝑈 such that 𝑃(𝑥).

Note that if 𝑄(𝑥) is a predicate for which (∀𝑥)𝑄(𝑥) is false, then a counterex-
ample to this proposition amounts to showing (∃𝑥)(¬𝑄(𝑥)), which can be proved
by following the structure of Skeleton Proof 2.84.

It is important to point out that sometimes we will have to combine vari-
ous proof techniques in a single proof. For example, if you wanted to prove a
proposition of the form (∀𝑥)(𝑃(𝑥) ⟹ 𝑄(𝑥)) by contradiction, we would start
by assuming that there exists 𝑥 in the universe of discourse such that 𝑃(𝑥) and
¬𝑄(𝑥).

Problem 2.86. Determine whether each of the following statements is true or
false. If the statement is true, prove it. If the statement is false, provide a coun-
terexample.

(a) For all 𝑛 ∈ ℕ, 𝑛2 ≥ 5.

(b) There exists 𝑛 ∈ ℕ such that 𝑛2 − 1 = 0.

(c) There exists 𝑥 ∈ ℕ such that for all 𝑦 ∈ ℕ, 𝑦 ≤ 𝑥.

(d) For all 𝑥 ∈ ℤ, 𝑥3 ≥ 𝑥.

(e) For all 𝑛 ∈ ℤ, there exists𝑚 ∈ ℤ such that 𝑛 + 𝑚 = 0.

(f) There exists integers 𝑎 and 𝑏 such that 2𝑎 + 7𝑏 = 1.

(g) There do not exist integers𝑚 and 𝑛 such that 2𝑚 + 4𝑛 = 7.
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(h) For all 𝑎, 𝑏, 𝑐 ∈ ℤ, if 𝑎 divides 𝑏𝑐, then either 𝑎 divides 𝑏 or 𝑎 divides 𝑐.

(i) For all 𝑎, 𝑏 ∈ ℤ, if 𝑎𝑏 is even, then either 𝑎 or 𝑏 is even.

Problem 2.87. Explain why the following “proof” is not a valid argument.

Claim. For all 𝑥, 𝑦 ∈ ℤ, if 𝑥 and 𝑦 are even, then 𝑥 + 𝑦 is even.

“Proof.” Suppose 𝑥, 𝑦 ∈ ℤ such that 𝑥 and 𝑦 are even. For sake of a contradic-
tion, assume that 𝑥+𝑦 is odd. Then there exists 𝑘 ∈ ℤ such that 𝑥+𝑦 = 2𝑘+1.
This implies that (𝑥 + 𝑦) − 2𝑘 = 1. We see that the left side of the equation is
even because it is the difference of even numbers. However, the right side is
odd. Since an even number cannot equal an odd number, we have a contra-
diction. Therefore, 𝑥 + 𝑦 is even.

Sometimes it is useful to split the universe of discourse into multiple collec-
tions to deal with separately. When doing this, it is important to make sure that
your cases are exhaustive (i.e., every possible element of the universe of discourse
has been accounted for). Ideally, your cases will also be disjoint (i.e., you have
not considered the same element more than once). For example, if our universe
of discourse is the set of integers, we can separately consider even versus odd
integers. If our universe of discourse is the set of real numbers, we might want
to consider rational versus irrational numbers, or possibly negative versus zero
versus and positive. Attacking a proof in this way, is often referred to as a proof
by cases (or proof by exhaustion). A proof by cases may also be useful when
dealing with hypotheses involving “or”. Note that the use of a proof by cases is
justified by Theorem 2.30.

If you decide to approach a proof using cases, be sure to inform the reader
that you are doing so and organize your proof in a sensible way. Note that doing
an analysis of cases should be avoided if possible. For example, while it is valid to
separately consider the cases of whether 𝑎 is an even integer versus odd integer
in the proof of Theorem 2.11, it is completely unnecessary. To prove the next
theorem, you might want to consider two cases.

Theorem 2.88. For all 𝑛 ∈ ℤ, 3𝑛2 + 𝑛 + 14 is even.

Prove the following theorem by proving the contrapositive using two cases.

Theorem 2.89. For all 𝑛,𝑚 ∈ ℤ, if 𝑛𝑚 is odd, then 𝑛 is odd and𝑚 is odd.

When proving the previous theorem, you likely experienced some dèjá vu.
You should have assumed “𝑛 is even or 𝑚 is even” at some point in your proof.
The first case is “𝑛 is even” while the second case is “𝑚 is even.” (Note that you



34 Chapter 2. Mathematics and Logic

do not need to handle the case when both 𝑛 and𝑚 are even since the two individ-
ual cases already yield the desired result.) The proofs for both cases are identical
except the roles of 𝑛 and 𝑚 are interchanged. In instances such as this, mathe-
maticians have a shortcut. Instead of writing two essentially identical proofs for
each case, you can simply handle one of the cases and indicate that the remaining
case follows from a nearly identical proof. The quickest way to do this is to use
the phrase, “Without loss of generality, assume. . . ”. For example, here is a proof
of Theorem 2.89 that utilizes this approach.

Proof of Theorem 2.89. Wewill prove the contrapositive. Let 𝑛,𝑚 ∈ ℤ and assume
𝑛 is even or 𝑚 is even. Without loss of generality, assume 𝑛 is even. Then there
exists 𝑘 ∈ ℤ such that 𝑛 = 2𝑘. We see that

𝑛𝑚 = (2𝑘)𝑚 = 2(𝑘𝑚).
Since both 𝑘 and 𝑚 are integers, 𝑘𝑚 is an integer. This shows that 𝑛𝑚 is even.
We have proved the contrapositive, and hence for all 𝑛,𝑚 ∈ ℤ, if 𝑛𝑚 is odd, then
𝑛 is odd and𝑚 is odd.

Note that it would not be appropriate to utilize the “without loss of gener-
ality” approach to combine the two cases in the proof of Theorem 2.88 since the
proof of the second case is not as simple as swapping the roles of symbols in the
proof of the first case.

There are times when a theoremwill make a claim about the uniqueness of a
particular mathematical object. For example, in Section 5.1, you will be asked to
prove that both the additive andmultiplicative identities (i.e, 0 and 1) are unique
(see Theorems 5.2 and 5.3). As another example, the Fundamental Theorem of
Arithmetic (see Theorem 6.17) states that every natural number greater than 1
can be expressed uniquely (up to the order in which they appear) as the product
of one or more primes. The typical approach to proving uniqueness is to suppose
that there are potentially two objects with the desired property and then show
that these objects are actually equal. Whether you approach this as a proof by
contradiction is a matter of taste. It is common to use ∃! as a symbolic abbrevi-
ation for “there exists a unique. . . such that”.

SkeletonProof 2.90 (Direct Proof of (∃!𝑥)𝑃(𝑥)). Here is the general structure for
a direct proof of the proposition (∃!𝑥)𝑃(𝑥). Assume𝑈 is the universe of discourse.

Proof. [State any upfront assumptions.] . . .
. . . [Use definitions, axioms, and previous results to deduce that an 𝑥 exists for
which 𝑃(𝑥) is true; or if you have an 𝑥 that works, just verify that it does.] . . .
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Therefore, there exists 𝑥 ∈ 𝑈 such that 𝑃(𝑥). Now, suppose 𝑥1, 𝑥2 ∈ 𝑈 such
that 𝑃(𝑥1) and 𝑃(𝑥2).

. . . [Prove that 𝑥1 = 𝑥2.] . . .
This implies that there exists a unique 𝑥 such that 𝑃(𝑥).

The next theorem provides an opportunity to practice proving uniqueness.

Theorem 2.91. If 𝑐, 𝑎, 𝑟 ∈ ℝ such that 𝑐 ≠ 0 and 𝑟 ≠ 𝑎/𝑐, then there exists a
unique 𝑥 ∈ ℝ such that (𝑎𝑥 + 1)/(𝑐𝑥) = 𝑟.

With two published novels and a file full of
ideas for others, the only thing I know about
writing is this: it only happens when you sit
down and do it. Studying good writing is
important, reading good writing is
important, talking to other writers is
important, but the only way you can
produce good writing is to write.

Jamie Beth Cohen, novelist





Pass on what you have learned. Strength,
mastery. But weakness, folly, failure also.
Yes, failure most of all. The greatest teacher,
failure is.

Yoda, Jedi master3
Set Theory

At its essence, all of mathematics is built on set theory. In this chapter, we will
introduce some of the basics of sets and their properties.

3.1 Sets

Definition 3.1. A set is a collection of objects called elements. If 𝐴 is a set and
𝑥 is an element of 𝐴, we write 𝑥 ∈ 𝐴 . Otherwise, we write 𝑥 ∉ 𝐴 . The set
containing no elements is called the empty set, and is denoted by the symbol
∅ . Any set that contains at least one element is referred to as a nonempty set.

If we think of a set as a box potentially containing some stuff, then the empty
set is a box with nothing in it. One assumption we will make is that for any set
𝐴, 𝐴 ∉ 𝐴. The language associated to sets is specific. We will often define sets
using the following notation, called set-builder notation:

𝑆 = {𝑥 ∈ 𝐴 ∣ 𝑃(𝑥)} ,
where 𝑃(𝑥) is some predicate statement involving 𝑥. The first part “𝑥 ∈ 𝐴” de-
notes what type of 𝑥 is being considered. The predicate to the right of the vertical
bar (not to be confused with “divides”) determines the condition(s) that each 𝑥
must satisfy in order to be a member of the set. This notation is read as “The set
of all 𝑥 in 𝐴 such that 𝑃(𝑥).” As an example, the set {𝑥 ∈ ℕ ∣ 𝑥 is even and 𝑥 ≥ 8}
describes the collection of even natural numbers that are greater than or equal to
8.

There are a few sets that are commonly discussed in mathematics and have
predefined symbols to denote them. We have already encountered the integers,

37
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natural numbers, and real numbers. Notice that our definition of the rational
numbers uses set-builder notation.

• Natural Numbers: ℕ ≔ {1, 2, 3, . . .} . Some books will include zero in the
set of natural numbers, but we do not.

• Integers: ℤ ≔ {0, ±1, ±2, ±3, . . .} .

• Rational Numbers: ℚ ≔ {𝑎/𝑏 ∣ 𝑎, 𝑏 ∈ ℤ and 𝑏 ≠ 0} .

• Real Numbers: ℝ denotes the set of real numbers. We are taking for
granted that you have some familiarity with this set.

Since the set of natural numbers consists of the positive integers, the natural
numbers are sometimes denoted by ℤ+ .

Problem 3.2. Unpack the meaning of each of the following sets and provide a
description of the elements that each set contains.

(a) 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 = 3𝑘 for some 𝑘 ∈ ℕ}

(b) 𝐵 = {𝑡 ∈ ℝ ∣ 𝑡 ≤ 2 or 𝑡 ≥ 7}

(c) 𝐶 = {𝑡 ∈ ℤ ∣ 𝑡2 ≤ 2}

(d) 𝐷 = {𝑠 ∈ ℤ ∣ −3 < 𝑠 ≤ 5}

(e) 𝐸 = {𝑚 ∈ ℝ ∣ 𝑚 = 1 − 1
𝑛
, where 𝑛 ∈ ℕ}

Problem 3.3. Write each of the following sentences using set-builder notation.

(a) The set of all real numbers less than −√2.

(b) The set of all real numbers greater than −12 and less than or equal to 42.

(c) The set of all even integers.

Parts (a) and (b) of Problem 3.3 are examples of intervals.

Definition 3.4. For 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏, we define the following sets, referred
to as intervals.

(a) (𝑎, 𝑏) ≔ {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏}

(b) [𝑎, 𝑏] ≔ {𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏}

(c) [𝑎, 𝑏) ≔ {𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 < 𝑏}
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(d) (𝑎,∞) ≔ {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥}

(e) (−∞, 𝑏) ≔ {𝑥 ∈ ℝ ∣ 𝑥 < 𝑏}

(f) (−∞,∞) ≔ ℝ

We analogously define (𝑎, 𝑏] , [𝑎,∞) , and (−∞, 𝑏] . Intervals of the form
(𝑎, 𝑏), (−∞, 𝑏), (𝑎,∞), and (−∞,∞) are called open intervals while [𝑎, 𝑏] is
referred to as a closed interval. A bounded interval is any interval of the form
(𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], and [𝑎, 𝑏]. For bounded intervals, 𝑎 and 𝑏 are called the end-
points of the interval.

We will always assume that any time we write (𝑎, 𝑏), [𝑎, 𝑏], (𝑎, 𝑏], or [𝑎, 𝑏)
that 𝑎 < 𝑏. We will see where the terminology of “open” and “closed” comes
from in Section 5.2.

Problem 3.5. Give an example of each of the following.

(a) An interval that is neither an open nor closed interval.

(b) An infinite set that is not an interval.

Definition 3.6. If 𝐴 and 𝐵 are sets, then we say that 𝐴 is a subset of 𝐵, written
𝐴 ⊆ 𝐵 , provided that every element of 𝐴 is an element of 𝐵.

Problem 3.7. List all of the subsets of 𝐴 = {1, 2, 3}.

Every nonempty set always has two subsets. Notice that if 𝐴 = ∅, then
Parts (a) and (b) of the next theorem say the same thing.

Theorem 3.8. Let 𝐴 be a set. Then
(a) 𝐴 ⊆ 𝐴, and

(b) ∅ ⊆ 𝐴.

Observe that “𝐴 ⊆ 𝐵” is equivalent to “For all 𝑥 (in the universe of discourse),
if 𝑥 ∈ 𝐴, then 𝑥 ∈ 𝐵.” Since we know how to deal with “for all” statements and
conditional propositions, we know how to go about proving 𝐴 ⊆ 𝐵. If 𝐴 happens
to be the empty set, then the statement “For all 𝑥 (in the universe of discourse), if
𝑥 ∈ 𝐴, then 𝑥 ∈ 𝐵” is vacuously true. This is in agreement with Theorem 3.8(b),
which states that the empty set is always a subset of every set. In light of this, it
is common to omit discussion of the case when 𝐴 is the empty set when proving
that 𝐴 is s a subset of 𝐵.
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Problem 3.9. Suppose 𝐴 and 𝐵 are sets. Describe a skeleton proof for proving
that 𝐴 ⊆ 𝐵.

Theorem 3.10 (Transitivity of Subsets). Suppose that 𝐴, 𝐵, and 𝐶 are sets. If
𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶, then 𝐴 ⊆ 𝐶.

Definition 3.11. Two sets𝐴 and𝐵 are equal, denoted 𝐴 = 𝐵 , if the sets contain
the same elements.

Since the next theorem is a biconditional proposition, you need to write two
distinct subproofs, one for “𝐴 = 𝐵 implies 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴”, and another for
“𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 implies 𝐴 = 𝐵”. Be sure to make it clear to the reader when
you are proving each implication.

Theorem 3.12. Suppose that 𝐴 and 𝐵 are sets. Then 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵
and 𝐵 ⊆ 𝐴.

Note that if we want to prove 𝐴 = 𝐵, then we have to do two separate sub-
proofs: one for 𝐴 ⊆ 𝐵 and one for 𝐵 ⊆ 𝐴. Be sure to make it clear to the reader
where these subproofs begin and end. One approach is to label each subproof
with “(⊆)” and “(⊇)” (including the parentheses), respectively.

Definition 3.13. If𝐴 ⊆ 𝐵, then𝐴 is called a proper subset provided that𝐴 ≠ 𝐵.
In this case, we may write 𝐴 ⊂ 𝐵 or 𝐴 ⊊ 𝐵 .

Note that some authors use ⊂ to mean ⊆, so some confusion could arise if
you are not reading carefully.

Definition 3.14. Let 𝐴 and 𝐵 be sets in some universe of discourse 𝑈.

(a) The union of the sets 𝐴 and 𝐵 is 𝐴 ∪ 𝐵 ≔ {𝑥 ∈ 𝑈 ∣ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵} .

(b) The intersection of the sets𝐴 and𝐵 is 𝐴 ∩ 𝐵 ≔ {𝑥 ∈ 𝑈 ∣ 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵} .

(c) The set difference of the sets 𝐴 and 𝐵 is 𝐴⧵𝐵 ≔ {𝑥∈𝑈 ∣ 𝑥∈𝐴 and 𝑥∉𝐵} .

(d) The complement of 𝐴 (relative to 𝑈) is the set

𝐴𝑐 ≔ 𝑈 ⧵ 𝐴 = {𝑥 ∈ 𝑈 ∣ 𝑥 ∉ 𝐴} .

Definition 3.15. If two sets 𝐴 and 𝐵 have the property that 𝐴 ∩ 𝐵 = ∅, then we
say that 𝐴 and 𝐵 are disjoint sets.
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Problem 3.16. Suppose that the universe of discourse is 𝑈 = {1, 2, 3, 4, 5, 6, 7, 8,
9, 10}. Let 𝐴 = {1, 2, 3, 4, 5}, 𝐵 = {1, 3, 5}, and 𝐶 = {2, 4, 6, 8}. Find each of the
following.

(a) 𝐴 ∩ 𝐶

(b) 𝐵 ∩ 𝐶

(c) 𝐴 ∪ 𝐵

(d) 𝐴 ⧵ 𝐵

(e) 𝐵 ⧵ 𝐴

(f) 𝐶 ⧵ 𝐵

(g) 𝐵𝑐

(h) 𝐴𝑐

(i) (𝐴 ∪ 𝐵)𝑐

(j) 𝐴𝑐 ∩ 𝐵𝑐

Problem 3.17. Suppose that the universe of discourse is 𝑈 = ℝ. Let 𝐴 =
[−3,−1), 𝐵 = (−2.5, 2), and 𝐶 = (−2, 0]. Find each of the following.

(a) 𝐴𝑐

(b) 𝐴 ∩ 𝐶
(c) 𝐴 ∩ 𝐵
(d) 𝐴 ∪ 𝐵
(e) (𝐴 ∩ 𝐵)𝑐

(f) (𝐴 ∪ 𝐵)𝑐

(g) 𝐴 ⧵ 𝐵

(h) 𝐴 ⧵ (𝐵 ∪ 𝐶)

(i) 𝐵 ⧵ 𝐴

Problem 3.18. Suppose that the universe of discourse is 𝑈 = {𝑥, 𝑦, 𝑧, {𝑦}, {𝑥, 𝑧}}.
Let 𝑆 = {𝑥, 𝑦, 𝑧} and 𝑇 = {𝑥, {𝑦}}. Find each of the following.
(a) 𝑆 ∩ 𝑇
(b) (𝑆 ∪ 𝑇)𝑐

(c) 𝑇 ⧵ 𝑆

Theorem 3.19. If 𝐴 and 𝐵 are sets such that 𝐴 ⊆ 𝐵, then 𝐵𝑐 ⊆ 𝐴𝑐.

Theorem 3.20. If 𝐴 and 𝐵 are sets, then 𝐴 ⧵ 𝐵 = 𝐴 ∩ 𝐵𝑐.

In Chapter 2, we encounteredDeMorgan’s Law (see Theorem 2.26 and Prob-
lem 2.27), which provided a method for negating compound propositions involv-
ing conjunctions and disjunctions. The next theorem provides a method for tak-
ing the complement of unions and intersections of sets. This result is also known
as De Morgan’s Law. Do you see why?

Theorem 3.21 (De Morgan’s Law). If 𝐴 and 𝐵 are sets, then
(a) (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐, and
(b) (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐.
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The next theorem indicates how intersections and unions interact with each
other.

Theorem 3.22 (Distribution of Union and Intersection). If 𝐴, 𝐵, and 𝐶 are sets,
then

(a) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶), and

(b) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

Problem 3.23. For each of the statements (a)–(d) on the left, find an equivalent
symbolic proposition chosen from the list (i)–(v) on the right. Note that not every
statement on the right will get used.

(a) 𝐴 ⊈ 𝐵.

(b) 𝐴 ∩ 𝐵 = ∅.

(c) (𝐴 ∪ 𝐵)𝑐 ≠ ∅.

(d) (𝐴 ∩ 𝐵)𝑐 = ∅.

(i) (∀𝑥)(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)

(ii) (∀𝑥)(𝑥 ∈ 𝐴⟹ 𝑥 ∉ 𝐵)

(iii) (∃𝑥)(𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵)

(iv) (∃𝑥)(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)

(v) (∃𝑥)(𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵)

In mathematics the art of proposing a
question must be held of higher value than
solving it.

Georg Cantor, mathematician

3.2 Russell’s Paradox

We now turn our attention to the issue of whether there is one mother of all
universal sets. Before reading any further, consider this for a moment. That is, is
there one largest set that all other sets are a subset of? Or, in other words, is there
a set of all sets? To help wrap our heads around this issue, consider the following
riddle, known as the Barber of Seville Paradox.

In Seville, there is a barber who shaves all those men, and only those
men, who do not shave themselves. Who shaves the barber?

Problem 3.24. In the Barber of Seville Paradox, does the barber shave himself
or not?

Problem 3.24 is an example of a paradox. A paradox is a statement that can
be shown, using a given set of axioms and definitions, to be both true and false.
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Recall that an axiom is a statement that is assumed to be true without proof.
These are the basic building blocks from which all theorems are proved. Para-
doxes are often used to show the inconsistencies in a flawed axiomatic theory.
The term paradox is also used informally to describe a surprising or counterintu-
itive result that follows from a given set of rules. Now, suppose that there is a set
of all sets and call it 𝒰. That is, 𝒰 ≔ {𝐴 ∣ 𝐴 is a set}.

Problem 3.25. Given our definition of 𝒰, explain why 𝒰 is an element of itself.

If we continue with this line of reasoning, it must be the case that some sets
are elements of themselves and some are not. Let 𝑋 be the set of all sets that are
elements of themselves and let 𝑌 be the set of all sets that are not elements of
themselves.

Problem 3.26. Does 𝑌 belong to 𝑋 or 𝑌? Explain why this is a paradox.

The above paradox is one way of phrasing a paradox referred to as Russell’s
Paradox, named after British mathematician and philosopher Bertrand Russell
(1872–1970). How did we get into this mess in the first place?! By assuming the
existence of a set of all sets, we can produce all sorts of paradoxes. The only way
to avoid these types of paradoxes is to conclude that there is no set of all sets. That
is, the collection of all sets cannot be a set itself.

According to naive set theory (i.e., approaching set theory using natural lan-
guage as opposed to formal logic), any definable collection is a set. As Russell’s
Paradox illustrates, this leads to problems. It turns out that any proposition can be
proved from a contradiction, and hence the presence of contradictions like Rus-
sell’s Paradox would appear to be catastrophic for mathematics. Since set theory
is often viewed as the basis for axiomatic development in mathematics, Russell’s
Paradox calls the foundations of mathematics into question. In response to this
threat, a great deal of research went into developing consistent axioms (i.e., free
of contradictions) for set theory in the early 20th century. In 1908, Ernst Zermelo
(1871–1953) proposed a collection of axioms for set theory that avoided the incon-
sistencies of naive set theory. In the 1920s, adjustments to Zermelo’s axiomswere
made by Abraham Fraenkel (1891–1965), Thoralf Skolem (1887–1963), and Zer-
melo that resulted in a collection of nine axioms, called ZFC, where ZF stands
for Zermelo and Fraenkel and C stands for the Axiom of Choice, which is one
of the nine axioms. Loosely speaking, the Axiom of Choice states that given any
collection of sets, each containing at least one element, it is possible tomake a se-
lection of exactly one object from each set, even if the collection of sets is infinite.
There was a period of time in mathematics when the Axiom of Choice was con-
troversial, but nowadays it is generally accepted. There is a fascinating history
concerning the Axiom of Choice, including its controversy. The Wikipedia page

https://en.wikipedia.org/wiki/Bertrand_Russell
https://en.wikipedia.org/wiki/Ernst_Zermelo
https://en.wikipedia.org/wiki/Abraham_Fraenkel
https://en.wikipedia.org/wiki/Thoralf_Skolem
https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
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for the Axiom of Choice is a good place to start if you are interested in learning
more. There are several competing axiomatic approaches to set theory, but ZFC
is considered the canonical collection of axioms by most mathematicians.

Appendix C includes a few more examples of paradoxes, which you are en-
couraged to ponder.

In times of change, learners inherit the
earth, while the learned find themselves
beautifully equipped to deal with a world
that no longer exists.

Eric Hoffer, moral and social philosopher

3.3 Power Sets

We have already seen that using union, intersection, set difference, and comple-
ment we can create new sets (in the same universe) from existing sets. In this
section, we will describe another way to generate new sets; however, the new
sets will not “live” in the same universe this time. The following set is always a
set of subsets. That is, its elements are themselves sets.

Definition 3.27. If 𝑆 is a set, then the power set of 𝑆 is the set of subsets of 𝑆.
The power set of 𝑆 is denoted 𝒫(𝑆) .

You can see that a power set of 𝑆 is not composed of elements of 𝑆, but rather
it is composed of subsets of 𝑆, and none of these subsets are elements of 𝑆.

For example, if 𝑆 = {𝑎, 𝑏}, then 𝒫(𝑆) = {∅, {𝑎}, {𝑏}, 𝑆}. It follows immediately
from the definition that 𝐴 ⊆ 𝑆 if and only if 𝐴 ∈ 𝒫(𝑆).

Problem 3.28. For each of the following sets, find the power set.

(a) 𝐴 = {∘,△,□}

(b) 𝐵 = {𝑎, {𝑎}}

(c) 𝐶 = ∅

(d) 𝐷 = {∅}

Problem 3.29. How many subsets do you think that a set with 𝑛 elements has?
What if 𝑛 = 0? You do not need to prove your conjecture at this time. We will
prove this later using mathematical induction.

It is important to realize that the concepts of element and subset need to be
carefully delineated. For example, consider the set 𝐴 = {𝑥, 𝑦}. The object 𝑥 is an
element of𝐴, but the object {𝑥} is both a subset of𝐴 and an element of𝒫(𝐴). This
can get confusing rather quickly. Consider the set 𝐵 from Problem 3.28. The set

https://en.wikipedia.org/wiki/Axiom_of_choice
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{𝑎} happens to be an element of 𝐵, a subset of 𝐵, and an element of 𝒫(𝐵). The
upshot is that it is important to pay close attention to whether “⊆” or “∈” is the
proper symbol to use.

Since the next theorem is a biconditional proposition, you need to write two
distinct subproofs, one for “𝑆 ⊆ 𝑇 implies𝒫(𝑆) ⊆ 𝒫(𝑇)”, and another for “𝒫(𝑆) ⊆
𝒫(𝑇) implies 𝑆 ⊆ 𝑇”.

Theorem 3.30. Let 𝑆 and 𝑇 be sets. Then 𝑆 ⊆ 𝑇 if and only if 𝒫(𝑆) ⊆ 𝒫(𝑇).

Problem 3.31. Let 𝑆 and 𝑇 be sets. Determine whether each of the following
statements is true or false. If the statement is true, prove it. If the statement is
false, provide a counterexample.

(a) 𝒫(𝑆 ∩ 𝑇) ⊆ 𝒫(𝑆) ∩ 𝒫(𝑇)

(b) 𝒫(𝑆) ∩ 𝒫(𝑇) ⊆ 𝒫(𝑆 ∩ 𝑇)

(c) 𝒫(𝑆 ∪ 𝑇) ⊆ 𝒫(𝑆) ∪ 𝒫(𝑇)

(d) 𝒫(𝑆) ∪ 𝒫(𝑇) ⊆ 𝒫(𝑆 ∪ 𝑇)

While power sets provide a useful way of generating new sets, they also play a
key role in Georg Cantor’s (1845–1918) investigation into the “size” of sets. Can-
tor’s Theorem (see Theorem 9.64) states that the power set of a set—even if the
set is infinite—is always “larger” than the original set. One consequence of this
is that there are different sizes of infinity and no largest infinity. Mathematics is
awesome.

The master has failed more times than the
beginner has even tried.

Stephen McCranie, author & illustrator

3.4 Indexing Sets

Suppose we consider the following collection of open intervals:
(0, 1), (0, 1/2), (0, 1/4), . . . , (0, 1/2𝑛−1), . . .

This collection has a natural way for us to “index” the sets:
𝐼1 = (0, 1), 𝐼2 = (0, 1/2), . . . , 𝐼𝑛 = (0, 1/2𝑛−1), . . .

In this case the sets are indexed by the set ℕ. The subscripts are taken from the
index set. If wewanted to talk about an arbitrary set from this indexed collection,
we could use the notation 𝐼𝑛.

https://en.wikipedia.org/wiki/Georg_Cantor
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Let’s consider another example:
{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, . . . , {𝑎, 𝑏, 𝑐, . . . , 𝑧}

An obvious way to index these sets is as follows:
𝐴1 = {𝑎}, 𝐴2 = {𝑎, 𝑏}, 𝐴3 = {𝑎, 𝑏, 𝑐}, . . . , 𝐴26 = {𝑎, 𝑏, 𝑐, . . . , 𝑧}

In this case, the collection of sets is indexed by {1, 2, . . . , 26}.
Using indexing sets in mathematics is an extremely useful notational tool,

but it is important to keep straight the difference between the sets that are be-
ing indexed, the elements in each set being indexed, the indexing set, and the
elements of the indexing set.

Any set (finite or infinite) can be used as an indexing set. Often capital Greek
letters are used to denote arbitrary indexing sets and small Greek letters to repre-
sent elements of these sets. If the indexing set is a subset ofℝ, then it is common
to use Roman letters as individual indices. Of course, these are merely conven-
tions, not rules.

• If Δ is a set and we have a collection of sets indexed by Δ, then we may write
{𝑆𝛼}𝛼∈∆ to refer to this collection. We read this as “the set of 𝑆-sub-alphas
over alpha in Delta.”

• If a collection of sets is indexed by ℕ, then we may write {𝑈𝑛}𝑛∈ℕ or {𝑈𝑛}∞𝑛=1.

• Borrowing from this idea, a collection {𝐴1, . . . , 𝐴26}maybewritten as {𝐴𝑛}26𝑛=1.

Definition 3.32. Let {𝐴𝛼}𝛼∈∆ be a collection of sets.
(a) The union of the entire collection is defined via

⋃
𝛼∈∆

𝐴𝛼 ≔ {𝑥 ∣ 𝑥 ∈ 𝐴𝛼 for some 𝛼 ∈ Δ} .

(b) The intersection of the entire collection is defined via

⋂
𝛼∈∆

𝐴𝛼 ≔ {𝑥 ∣ 𝑥 ∈ 𝐴𝛼 for all 𝛼 ∈ Δ} .

In the special case that Δ = ℕ, we write
∞

⋃
𝑛=1

𝐴𝑛 = {𝑥 ∣ 𝑥 ∈ 𝐴𝑛 for some 𝑛 ∈ ℕ} = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪⋯

and
∞

⋂
𝑛=1

𝐴𝑛 = {𝑥 ∣ 𝑥 ∈ 𝐴𝑛 for all 𝑛 ∈ ℕ} = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩⋯
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Similarly, if Δ = {1, 2, 3, 4}, then
4

⋃
𝑛=1

𝐴𝑛 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4

and
4

⋂
𝑛=1

𝐴𝑛 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4.

Notice the difference between “⋃” and “∪” (respectively, “⋂” and “∩”).

Problem 3.33. Let {𝐼𝑛}𝑛∈ℕ be the collection of open intervals from the beginning
of the section. Find each of the following.
(a) ⋃

𝑛∈ℕ
𝐼𝑛

(b) ⋂
𝑛∈ℕ

𝐼𝑛

Problem 3.34. Let {𝐴𝑛}26𝑛=1 be the collection from earlier in the section. Find
each of the following.

(a)
26

⋃
𝑛=1

𝐴𝑛

(b)
26

⋂
𝑛=1

𝐴𝑛

Problem 3.35. Let 𝑆𝑛 = {𝑥 ∈ ℝ ∣ 𝑛 − 1 < 𝑥 < 𝑛}, where 𝑛 ∈ ℕ. Find each of
the following.

(a)
∞

⋃
𝑛=1

𝑆𝑛

(b)
∞

⋂
𝑛=1

𝑆𝑛

Problem 3.36. Let 𝑇𝑛 = {𝑥 ∈ ℝ ∣ − 1
𝑛
< 𝑥 < 1

𝑛
}, where 𝑛 ∈ ℕ. Find each of the

following.

(a)
∞

⋃
𝑛=1

𝑇𝑛

(b)
∞

⋂
𝑛=1

𝑇𝑛



48 Chapter 3. Set Theory

Problem 3.37. For each 𝑟 ∈ ℚ (the rational numbers), let 𝑁𝑟 be the set contain-
ing all real numbers except 𝑟. Find each of the following.
(a) ⋃

𝑟∈ℚ
𝑁𝑟

(b) ⋂
𝑟∈ℚ

𝑁𝑟

Definition 3.38. A collection of sets {𝐴𝛼}𝛼∈∆ is pairwise disjoint if𝐴𝛼∩𝐴𝛽 = ∅
for 𝛼 ≠ 𝛽.

Problem 3.39. Provide an example of a collection of sets {𝐴𝛼}𝛼∈∆ that is not
pairwise disjoint even though⋂𝛼∈∆ 𝐴𝛼 = ∅.

Problem 3.40. For each of the following, provide an example of a collection of
sets with the stated property.
(a) A collection of three subsets of ℝ such that the collection is not pairwise dis-

joint, the union equals ℝ, and the intersection of the collection is empty.
(b) A collection of infinitely many subsets of ℝ such that the collection is not

pairwise disjoint, the union equals ℝ, and the intersection of the collection
is empty.

(c) A collection of infinitely many subsets of ℝ such that the collection is pair-
wise disjoint, the union equals ℝ, and the intersection of the collection is
empty.

Theorem 3.41 (Generalized Distribution of Union and Intersection). Let
{𝐴𝛼}𝛼∈∆ be a collection of sets and let 𝐵 be any set. Then

(a) 𝐵 ∪ (⋂
𝛼∈∆

𝐴𝛼) = ⋂
𝛼∈∆

(𝐵 ∪ 𝐴𝛼), and

(b) 𝐵 ∩ (⋃
𝛼∈∆

𝐴𝛼) = ⋃
𝛼∈∆

(𝐵 ∩ 𝐴𝛼).

Theorem 3.42 (Generalized De Morgan’s Law). Let {𝐴𝛼}𝛼∈∆ be a collection of
sets. Then

(a) (⋃
𝛼∈∆

𝐴𝛼)
𝐶

= ⋂
𝛼∈∆

𝐴𝐶𝛼, and

(b) (⋂
𝛼∈∆

𝐴𝛼)
𝐶

= ⋃
𝛼∈∆

𝐴𝐶𝛼.
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At the end of Section 3.2, we mentioned the Axiom of Choice. Using the
language of indexing sets, we can now state this axiom precisely.

Axiom 3.43 (Axiom of Choice). For every indexed collection {𝐴𝛼}𝛼∈∆ of non-
empty sets, there exists an indexed collection {𝑎𝛼}𝛼∈∆ of elements such that 𝑎𝛼 ∈ 𝐴𝛼
for each 𝛼 ∈ Δ.

Intuitively, the Axiom of Choice guarantees the existence of mathematical
objects that are obtained by a sequence of choices. It applies to both the finite
and infinite setting. As an analogy, we can think of each 𝐴𝛼 as a drawer in a
dresser and each 𝑎𝛼 as an article of clothing chosen from the drawer identified
with 𝐴𝛼. The Axiom of Choice is surprisingly powerful, sometimes leading to
unexpected consequences. It often gets used in subtle ways that mathematicians
are not always explicit with. We will require the Axiom of Choice when proving
Theorems 9.31 and 9.47. When proving these theorems, be on the lookout for
where you are invoking the Axiom of Choice.

All sorts of things can happen when you’re
open to new ideas and playing around with
things.

Stephanie Kwolek, chemist

3.5 Cartesian Products of Sets

Given a collection of sets, we can form new sets by taking unions, intersections,
complements, and set differences. In this section, we introduce a type of “prod-
uct” of sets. You have already encountered this concept when you learned to plot
points in the plane. You also crossed paths with this notion if you have taken a
course in linear algebra.

Definition 3.44. For each 𝑛 ∈ ℕ, we define an 𝑛-tuple to be an ordered list of 𝑛
elements of the form (𝑎1, 𝑎2, . . . , 𝑎𝑛) . We refer to 𝑎𝑖 as the 𝑖th component (or
coordinate) of (𝑎1, 𝑎2, . . . , 𝑎𝑛). Two 𝑛-tuples (𝑎1, 𝑎2, . . . , 𝑎𝑛) and (𝑏1, 𝑏2, . . . , 𝑏𝑛)
are equal if 𝑎𝑖 = 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. A 2-tuple (𝑎, 𝑏) is more commonly referred
to as an ordered pair while a 3-tuple (𝑎, 𝑏, 𝑐) is often called an ordered triple.

Occasionally, other symbols are used to surround the components of an 𝑛-
tuple, such as square brackets “[ ]” or angle brackets “⟨ ⟩”. In some programming
languages, curly braces “{ }” are used to specify arrays. However, we avoid this
convention in mathematics since curly braces are the standard notation for sets.
The term “tuple” can also occur when discussing other mathematical objects,
such as vectors.

We can use the notion of 𝑛-tuples to construct new sets from existing sets.
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Definition 3.45. If𝐴 and𝐵 are sets, theCartesian product (ordirect product)
of 𝐴 and 𝐵, denoted 𝐴 × 𝐵 (read as “𝐴 times 𝐵” or “𝐴 cross 𝐵”), is the set of all
ordered pairs where the first component is from 𝐴 and the second component is
from 𝐵. In set-builder notation, we have

𝐴 × 𝐵 ≔ {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .
We similarly define the Cartesian product of 𝑛 sets, say 𝐴1, . . . , 𝐴𝑛, by

𝑛
∏
𝑖=1

𝐴𝑖 ≔ 𝐴1 ×⋯ × 𝐴𝑛 ≔ {(𝑎1, . . . , 𝑎𝑛) ∣ 𝑎𝑗 ∈ 𝐴𝑗 for all 1 ≤ 𝑗 ≤ 𝑛} ,

where 𝐴𝑖 is referred to as the 𝑖th factor of the Cartesian product. As a special
case, the set

𝐴 ×⋯× 𝐴⏟⎵⎵⏟⎵⎵⏟
𝑛 factors

is often abbreviated as 𝐴𝑛.

Cartesian products are named after French philosopher and mathematician
René Descartes (1596–1650). Cartesian products will play a prominent role in
Chapter 7.

Example 3.46. If 𝐴 = {𝑎, 𝑏, 𝑐} and 𝐵 = {,,/}, then
𝐴 × 𝐵 = {(𝑎,,), (𝑎,/), (𝑏,,), (𝑏,/), (𝑐,,), (𝑐,/)}.

Example 3.47. The standard two-dimensional plane ℝ2 and standard three
space ℝ3 are familiar examples of Cartesian products. In particular, we have

ℝ2 = ℝ × ℝ = {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ ℝ}
and

ℝ3 = ℝ × ℝ × ℝ = {(𝑥, 𝑦, 𝑧) ∣ 𝑥, 𝑦, 𝑧 ∈ ℝ}.

Problem 3.48. Consider the sets 𝐴 and 𝐵 from Example 3.46.

(a) Find 𝐵 × 𝐴.

(b) Find 𝐵 × 𝐵.

Problem 3.49. If 𝐴 and 𝐵 are sets, why do you think that 𝐴 × 𝐵 is referred to
as a type of “product”? Think about the area model for multiplication of natural
numbers.

Problem 3.50. If𝐴 and 𝐵 are both finite sets, then howmany elements will𝐴×𝐵
have?

https://en.wikipedia.org/wiki/Rene_Descartes
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Problem 3.51. Let 𝐴 = {1, 2, 3}, 𝐵 = {1, 2}, and 𝐶 = {1, 3}. Find 𝐴 × 𝐵 × 𝐶.

Problem 3.52. Let 𝑋 = [0, 1] and 𝑌 = {1}. Write each of the following using set-
builder notation and then describe the set geometrically (e.g., draw a picture).
(a) 𝑋 × 𝑌
(b) 𝑌 × 𝑋
(c) 𝑋 × 𝑋
(d) 𝑌 × 𝑌

Problem 3.53. If 𝐴 is a set, then what is 𝐴 × ∅ equal to?

Problem 3.54. Given sets 𝐴 and 𝐵, when will 𝐴 × 𝐵 be equal to 𝐵 × 𝐴?

Problem 3.55. Write ℕ×ℝ using set-builder notation and then describe this set
geometrically by interpreting it as a subset of ℝ2.

We now turn our attention to subsets of Cartesian products.

Theorem3.56. Let𝐴, 𝐵,𝐶, and𝐷 be sets. If𝐴 ⊆ 𝐶 and𝐵 ⊆ 𝐷, then𝐴×𝐵 ⊆ 𝐶×𝐷.

Problem 3.57. Is it true that if 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷, then 𝐴 ⊆ 𝐶 and 𝐵 ⊆ 𝐷? Do not
forget to think about cases involving the empty set.

Problem 3.58. Is every subset of 𝐶 × 𝐷 of the form 𝐴 × 𝐵, where 𝐴 ⊆ 𝐶 and
𝐵 ⊆ 𝐷? If so, prove it. If not, find a counterexample.

Problem 3.59. If 𝐴, 𝐵, and 𝐶 are nonempty sets, is 𝐴 × 𝐵 a subset of 𝐴 × 𝐵 × 𝐶?

Problem 3.60. Let 𝐴 = [2, 5], 𝐵 = [3, 7], 𝐶 = [1, 3], and 𝐷 = [2, 4]. Compute
each of the following.
(a) (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)
(b) (𝐴 × 𝐶) ∩ (𝐵 × 𝐷)
(c) (𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)
(d) (𝐴 × 𝐶) ∪ (𝐵 × 𝐷)
(e) 𝐴 × (𝐵 ∩ 𝐶)
(f) (𝐴 × 𝐵) ∩ (𝐴 × 𝐶)
(g) 𝐴 × (𝐵 ∪ 𝐶)
(h) (𝐴 × 𝐵) ∪ (𝐴 × 𝐶)
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Problem 3.61. Let𝐴, 𝐵, 𝐶, and𝐷 be sets. Determine whether each of the follow-
ing statements is true or false. If a statement is true, prove it. Otherwise, provide
a counterexample.

(a) (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷) = (𝐴 × 𝐶) ∩ (𝐵 × 𝐷)

(b) (𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷) = (𝐴 × 𝐶) ∪ (𝐵 × 𝐷)

(c) 𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶)

(d) 𝐴 × (𝐵 ∪ 𝐶) = (𝐴 × 𝐵) ∪ (𝐴 × 𝐶)

(e) 𝐴 × (𝐵 ⧵ 𝐶) = (𝐴 × 𝐵) ⧵ (𝐴 × 𝐶)

Problem 3.62. If 𝐴 and 𝐵 are sets, conjecture a way to rewrite (𝐴 × 𝐵)𝐶 in a way
that involves 𝐴𝐶 and 𝐵𝐶 and then prove your conjecture.

If there is no struggle, there is no progress.

Frederick Douglass, writer & statesman



Every time that a human being succeeds in
making an effort of attention with the sole
idea of increasing [their] grasp of truth,
[they acquire] a greater aptitude for
grasping it, even if [their] effort produces no
visible fruit.

SimoneWeil, philosopher & political activist4
Induction

In this chapter, we introducemathematical induction, which is a proof technique
that is useful for proving statements of the form (∀𝑛 ∈ ℕ)𝑃(𝑛), or more generally
(∀𝑛 ∈ ℤ)(𝑛 ≥ 𝑎⟹ 𝑃(𝑛)), where 𝑃(𝑛) is some predicate and 𝑎 ∈ ℤ.

4.1 Introduction to Induction

Consider the claims:

(a) For all 𝑛 ∈ ℕ, 1 + 2 + 3 +⋯+ 𝑛 = 𝑛(𝑛 + 1)
2 .

(b) For all 𝑛 ∈ ℕ, 𝑛2 + 𝑛 + 41 is prime.

Let’s take a look at potential proofs.

“Proof” of (a). If 𝑛 = 1, then 1 = 1(1+1)
2

. If 𝑛 = 2, then 1 + 2 = 3 = 2(2+1)
2

. If

𝑛 = 3, then 1 + 2 + 3 = 6 = 3(3+1)
2

, and so on.

“Proof” of (b). If 𝑛 = 1, then 𝑛2 + 𝑛 + 41 = 43, which is prime. If 𝑛 = 2, then
𝑛2+𝑛+41 = 47, which is prime. If 𝑛 = 3, then 𝑛2+𝑛+41 = 53, which is prime,
and so on.

Are these actual proofs? No! In fact, the second claim isn’t even true. If
𝑛 = 41, then 𝑛2 + 𝑛 + 41 = 412 + 41 + 41 = 41(41 + 1 + 1), which is not prime
since it has 41 as a factor. It turns out that the first claim is true, butwhatwewrote
cannot be a proof since the same type of reasoning when applied to the second
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claim seems to prove something that isn not actually true. We need a rigorous
way of capturing “and so on” and a way to verify whether it really is “and so on.”

Recall that an axiom is a basic mathematical assumption. The following ax-
iom is one of the Peano Axioms, which is a collection of axioms for the natu-
ral numbers introduced in the 19th century by Italian mathematician Giuseppe
Peano (1858–1932).

Axiom 4.1 (Axiom of Induction). Let 𝑆 ⊆ ℕ such that both
(i) 1 ∈ 𝑆, and
(ii) if 𝑘 ∈ 𝑆, then 𝑘 + 1 ∈ 𝑆.
Then 𝑆 = ℕ.

We can think of the set 𝑆 as a ladder, where the first hypothesis as saying
that we have a first rung of a ladder. The second hypothesis says that if we are on
any arbitrary rung of the ladder, then we can always get to the next rung. Taken
together, this says that we can get from the first rung to the second, from the
second to the third, and in general, from any 𝑘th rung to the (𝑘 + 1)st rung, so
that our ladder is actuallyℕ. Do you agree that the Axiom of Induction is a pretty
reasonable assumption?

At the end of Section 3.2, we briefly discussed ZFC, which is the standard
choice for axiomatic set theory. It turns out that one can prove the Axiom of In-
duction as a theorem in ZFC. However, that will not be the approach we take. In-
stead, we are assuming the Axiom of Induction is true. Using this axiom, we can
prove the following theorem, known as the Principle ofMathematical Induc-
tion. One approach to proving this theorem is to let 𝑆 = {𝑘 ∈ ℕ ∣ 𝑃(𝑘) is true}
and use the Axiom of Induction. The set 𝑆 is sometimes called the truth set.
Your job is to show that the truth set is all of ℕ.

Theorem 4.2 (Principle of Mathematical Induction). Let 𝑃(1), 𝑃(2), 𝑃(3), . . . be a
sequence of statements, one for each natural number. Assume
(i) 𝑃(1) is true, and
(ii) if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true.
Then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ.

The Principle ofMathematical Induction provides us with a process for prov-
ing statements of the form: “For all 𝑛 ∈ ℕ, 𝑃(𝑛),” where 𝑃(𝑛) is some predicate
involving 𝑛. Hypothesis (i) above is called the base step (or base case) while (ii)
is called the inductive step.

You should not confusemathematical inductionwith inductive reasoning as-
sociated with the natural sciences. Inductive reasoning is a scientific method

https://en.wikipedia.org/wiki/Giuseppe_Peano
https://en.wikipedia.org/wiki/Giuseppe_Peano
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whereby one induces general principles from observations. On the other hand,
mathematical induction is a deductive form of reasoning used to establish the
validity of a proposition.

Skeleton Proof 4.3 (Proof of (∀𝑛 ∈ ℕ)𝑃(𝑛) by Induction). Here is the general
structure for a proof by induction.
Proof. We proceed by induction.

(i) Base step: [Verify that 𝑃(1) is true. This often, but not always, amounts to
plugging 𝑛 = 1 into two sides of some claimed equation and verifying that
both sides are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all 𝑘 ∈ ℕ, if 𝑃(𝑘) is true, then
𝑃(𝑘+1) is true.”] Let 𝑘 ∈ ℕ and assume that 𝑃(𝑘) is true. [Do something
to derive that 𝑃(𝑘 + 1) is true.] Therefore, 𝑃(𝑘 + 1) is true.

Thus, by induction, 𝑃(𝑛) is true for all 𝑛 ∈ ℕ.

Prove the next few theorems using induction. The first result may look fa-

miliar from calculus. Recall that
𝑛
∑
𝑖=1

𝑖 = 1 + 2 + 3 +⋯+ 𝑛, by definition.

Theorem 4.4. For all 𝑛 ∈ ℕ,
𝑛
∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2 .

Theorem 4.5. For all 𝑛 ∈ ℕ, 3 divides 4𝑛 − 1.

Theorem 4.6. For all 𝑛 ∈ ℕ, 6 divides 𝑛3 − 𝑛.

Theorem 4.7. Let 𝑝1, 𝑝2, . . . , 𝑝𝑛 be 𝑛 distinct points arranged on a circle. Then the
number of line segments joining all pairs of points is 𝑛2−𝑛

2
.

Problem 4.8. Consider a grid of squares that is 2𝑛 squares wide by 2𝑛 squares
long, where 𝑛 ∈ ℕ. One of the squares has been cut out, but you do not know
which one! You have a bunch of L-shapes made up of 3 squares. Prove that you
can perfectly cover this chessboard with the L-shapes (with no overlap) for any
𝑛 ∈ ℕ. Figure 4.1 depicts one possible covering for the case involving 𝑛 = 2.

Do not stop thinking of life as an adventure.
You have no security unless you can live
bravely, excitingly, imaginatively; unless you
can choose a challenge instead of
competence.

Eleanor Roosevelt, political figure & activist
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cut-out square

Figure 4.1. One possible covering for the case involving 𝑛 = 2
for Problem 4.8.

4.2 More on Induction

In the previous sectionwe discussed proving statements of the form (∀𝑛∈ℕ)𝑃(𝑛).
Mathematical induction can actually be used to prove a broader family of results;
namely, those of the form

(∀𝑛 ∈ ℤ)(𝑛 ≥ 𝑎⟹ 𝑃(𝑛))
for any value 𝑎 ∈ ℤ. Theorem 4.2 handles the special case when 𝑎 = 1. The
ladder analogy from the previous section holds for this more general situation,
too. To prove the next theorem, mimic the proof of Theorem 4.2, but this time
use the set 𝑆 = {𝑘 ∈ ℕ ∣ 𝑃(𝑎 + 𝑘 − 1) is true}.

Theorem 4.9 (Principle of Mathematical Induction). Let 𝑃(𝑎), 𝑃(𝑎 + 1), 𝑃(𝑎 +
2), . . . be a sequence of statements, one for each integer greater than or equal to 𝑎.
Assume that
(i) 𝑃(𝑎) is true, and
(ii) if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true.
Then 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑎.

Theorem 4.9 gives a process for proving statements of the form: “For all in-
tegers 𝑛 ≥ 𝑎, 𝑃(𝑛).” As before, hypothesis (i) is called the base step, and (ii) is
called the inductive step.
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Skeleton Proof 4.10 (Proof of (∀𝑛 ∈ ℤ)(𝑛 ≥ 𝑎 ⟹ 𝑃(𝑛)) by Induction). Here
is the general structure for a proof by induction when the base case does not
necessarily involve 𝑎 = 1.

Proof. We proceed by induction.

(i) Base step: [Verify that 𝑃(𝑎) is true. This often, but not always, amounts to
plugging 𝑛 = 𝑎 into two sides of some claimed equation and verifying that
both sides are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all 𝑘 ∈ ℤ, if 𝑃(𝑘) is true, then
𝑃(𝑘 + 1) is true.”] Let 𝑘 ≥ 𝑎 be an integer and assume that 𝑃(𝑘) is true.
[Do something to derive that 𝑃(𝑘 + 1) is true.] Therefore, 𝑃(𝑘 + 1) is true.

Thus, by induction, 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑎.

We encountered the next theorem back in Section 3.3 (see Conjecture 3.29),
but we did not prove it. When proving this theorem using induction, you will
need to argue that if you add one more element to a finite set, then you end up
with twice as many subsets. For your base case, consider the empty set.

Theorem 4.11. If 𝐴 is a finite set with 𝑛 elements, then 𝒫(𝐴) is a set with 2𝑛 ele-
ments.

Theorem 4.12. For all integers 𝑛 ≥ 0, 𝑛 < 2𝑛.

One consequence of the previous two theorems is that the power set of a
finite set always consists of more elements than the original set.

Theorem 4.13. For all integers 𝑛 ≥ 0, 4 divides 9𝑛 − 5.

Theorem 4.14. For all integers 𝑛 ≥ 0, 4 divides 6 ⋅ 7𝑛 − 2 ⋅ 3𝑛.

Theorem 4.15. For all integers 𝑛 ≥ 2, 2𝑛 > 𝑛 + 1.

Theorem 4.16. For all integers 𝑛 ≥ 0, 1 + 21 + 22 +⋯+ 2𝑛 = 2𝑛+1 − 1.

Theorem 4.17. Fix a real number 𝑟 ≠ 1. For all integers 𝑛 ≥ 0,

1 + 𝑟1 + 𝑟2 +⋯+ 𝑟𝑛 = 𝑟𝑛+1 − 1
𝑟 − 1 .

Theorem 4.18. For all integers 𝑛 ≥ 3,

2 ⋅ 3 + 3 ⋅ 4 +⋯+ (𝑛 − 1) ⋅ 𝑛 = (𝑛 − 2)(𝑛2 + 2𝑛 + 3)
3 .
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Theorem 4.19. For all integers 𝑛 ≥ 1, 1
1 ⋅ 2 +

1
2 ⋅ 3 +⋯+ 1

𝑛(𝑛 + 1) =
𝑛

𝑛 + 1 .

Theorem 4.20. For all integers 𝑛 ≥ 1,
1

1 ⋅ 3 +
1

3 ⋅ 5 +
1

5 ⋅ 7 +⋯+ 1
(2𝑛 − 1)(2𝑛 + 1) =

𝑛
2𝑛 + 1.

Theorem 4.21. For all integers 𝑛 ≥ 0, 32𝑛 − 1 is divisible by 8.

Theorem 4.22. For all integers 𝑛 ≥ 2, 2𝑛 < (𝑛 + 1)!.

Theorem 4.23. For all integers 𝑛 ≥ 2, 2 ⋅ 9𝑛 − 10 ⋅ 3𝑛 is divisible by 4.

We now consider an induction problem of a different sort, where you have to
begin with some experimentation. For Part (c), consider using the results from
Parts (a) and (b).

Problem 4.24. Suppose 𝑛 lines are drawn in the plane so that no two lines are
parallel and no three lines intersect at any one point. Such a collection of lines
is said to be in general position. Every collection of lines in general position
divides the plane into disjoint regions, some of which are polygons with finite
area (bounded regions) and some of which are not (unbounded regions).

(a) Let 𝑅(𝑛) be the number of regions the plane is divided into by 𝑛 lines in gen-
eral position. Conjecture a formula for 𝑅(𝑛) and prove that your conjecture
is correct.

(b) Let 𝑈(𝑛) be the number of unbounded regions the plane is divided into by 𝑛
lines in general position. Conjecture a formula for 𝑈(𝑛) and prove that your
conjecture is correct.

(c) Let 𝐵(𝑛) be the number of bounded regions the plane is divided into by 𝑛
lines in general position. Conjecture a formula for 𝐵(𝑛) and prove that your
conjecture is correct.

(d) Suppose we color each of the regions (bounded and unbounded) so that no
two adjacent regions (i.e., share a common edge) have the same color. What
is the fewest colors we could use to accomplish this? Prove your assertion.

If you don’t learn to fail, you will fail to
learn.

Manu Kapur, learning scientist
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4.3 Complete Induction

There is another formulation of induction, where the inductive step beginswith a
set of assumptions rather than one single assumption. This method is sometimes
called complete induction or strong induction.

Theorem 4.25 (Principle of Complete Mathematical Induction). Let 𝑃(1), 𝑃(2),
𝑃(3), . . . be a sequence of statements, one for each natural number. Assume that
(i) 𝑃(1) is true, and
(ii) For all 𝑘 ∈ ℕ, if 𝑃(𝑗) is true for all 𝑗 ∈ ℕ such that 𝑗 ≤ 𝑘, then 𝑃(𝑘 + 1) is true.
Then 𝑃(𝑛) is true for all 𝑛 ∈ ℕ.

Note the difference between ordinary induction (Theorems 4.2 and 4.9) and
complete induction. For the induction step of complete induction, we are not
only assuming that 𝑃(𝑘) is true, but rather that 𝑃(𝑗) is true for all 𝑗 from 1 to 𝑘.
Despite the name, complete induction is not any stronger or more powerful than
ordinary induction. It is worth pointing out that anytime ordinary induction is
an appropriate proof technique, so is complete induction. So, when should we
use complete induction?

In the inductive step, you need to reach 𝑃(𝑘+1), and you should ask yourself
which of the previous cases you need to get there. If all you need, is the statement
𝑃(𝑘), then ordinary induction is the way to go. If two preceding cases, 𝑃(𝑘 − 1)
and 𝑃(𝑘), are necessary to reach 𝑃(𝑘+1), then complete induction is appropriate.
In the extreme, if one needs the full range of preceding cases (i.e., all statements
𝑃(1), 𝑃(2), . . . , 𝑃(𝑘)), then again complete induction should be utilized.

Note that in situations where complete induction is appropriate, it might be
the case that you need to verify more than one case in the base step. The number
of base cases to be checked depends on how one needs to “look back” in the
induction step.

Skeleton Proof 4.26 (Proof of (∀𝑛 ∈ ℕ)𝑃(𝑛) by Complete Induction). Here is
the general structure for a proof by complete induction.

Proof. We proceed by induction.
(i) Base step: [Verify that 𝑃(1) is true. Depending on the statement, you may

also need to verify that 𝑃(𝑘) is true for other specific values of 𝑘.]
(ii) Inductive step: [Your goal is to prove “For all 𝑘 ∈ ℕ, if for each 𝑘 ∈ ℕ,

𝑃(𝑗) is true for all 𝑗 ∈ ℕ such that 𝑗 ≤ 𝑘, then 𝑃(𝑘+1) is true.”] Let 𝑘 ∈ ℕ.
Suppose 𝑃(𝑗) is true for all 𝑗 ≤ 𝑘. [Do something to derive that 𝑃(𝑘 + 1)
is true.] Therefore, 𝑃(𝑘 + 1) is true.

Thus, by complete induction, 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑎.
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When tackling the problems in this section, think carefully about howmany
base steps you must verify.

Theorem4.27. Define a sequence of numbers by𝑎1 = 1, 𝑎2 = 3, and𝑎𝑛 = 3𝑎𝑛−1−
2𝑎𝑛−2 for all natural numbers 𝑛 ≥ 3. Then 𝑎𝑛 = 2𝑛 − 1 for all 𝑛 ∈ ℕ.

Theorem 4.28. Define a sequence of numbers by 𝑎1 = 3, 𝑎2 = 5, 𝑎3 = 9, and
𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 − 2𝑎𝑛−3 for all natural numbers 𝑛 ≥ 4. Then 𝑎𝑛 = 2𝑛 + 1 for
all 𝑛 ∈ ℕ.

Problem 4.29. The Fibonacci sequence is given by 𝑓1 = 1, 𝑓2 = 1, and 𝑓𝑛 =
𝑓𝑛−1 + 𝑓𝑛−2 for all natural numbers 𝑛 ≥ 3. Prove that ( 3

2
)
𝑛−2

≤ 𝑓𝑛 ≤ 2𝑛 for all
𝑛 ∈ ℕ.

Recall that Theorem 4.9 generalized Theorem 4.2 and allowed us to handle
situations where the base case was something other than 𝑃(1). We can generalize
complete induction in the same way, but we will not write this down as a formal
theorem.

Problem 4.30. Prove that every amount of postage that is at least 12 cents can
be made from 4-cent and 5-cent stamps.

Problem 4.31. Whoziwhatzits come in boxes of 6, 9, and 20. Prove that for any
natural number 𝑛 ≥ 44, it is possible to buy exactly 𝑛 Whoziwhatzits with a
combination of these boxes.

Problem 4.32. Consider a grid of squares that is 2 squares wide and 𝑛 squares
long. Using 𝑛 dominoes that are 1 square by 2 squares, there are many ways to
perfectly cover this chessboard with no overlap. Howmany? Prove your answer.

Problem 4.33. A binary string of length 𝑛 is an ordered list of 𝑛 digits such that
each digit is either 0 or 1. For example 011101 and 011011 are distinct binary
strings of length 6. Here are the rules for Binary Solitaire: At any stage, you are
allowed to:

(i) Swap the leftmost digit (i.e., change 0 to 1, or 1 to 0). For example, we can do
011101 → 11101.

(ii) Swap the the digit immediately to the right of the leftmost occurrence of 1.
For example, we can do 011011 → 010011.

Prove that for all 𝑛 ∈ ℕ, you can change any binary string of length 𝑛 to any other
binary string of the same length.



4.4. The Well-Ordering Principle 61

Problem 4.34. Prove that the number of binary strings of length 𝑛 that never
have two consecutive 1’s is the Fibonacci number 𝑓𝑛+2. See Problem 4.29 for the
definition of the Fibonacci numbers.

Nothing that’s worth anything is ever easy.

Mike Hall, ultra-distance cyclist

4.4 The Well-Ordering Principle

The penultimate theorem of this chapter is known as theWell-Ordering Prin-
ciple. As you shall see, this seemingly obvious theorem requires a bit of work to
prove. It is worth noting that in some axiomatic systems, theWell-Ordering Prin-
ciple is sometimes taken as an axiom. However, in our case, the result follows
from complete induction. Before stating the Well-Ordering Principle, we need
an additional definition.

Definition 4.35. Let 𝐴 ⊆ ℝ and 𝑚 ∈ 𝐴. Then 𝑚 is called a maximum (or
greatest element) of 𝐴 if for all 𝑎 ∈ 𝐴, we have 𝑎 ≤ 𝑚. Similarly, 𝑚 is called
minimum (or least element) of 𝐴 if for all 𝑎 ∈ 𝐴, we have𝑚 ≤ 𝑎.

Not surprisingly, maximums and minimums are unique when they exist. It
might be helpful to review Skeleton Proof 2.90 prior to attacking the next result.

Theorem 4.36. If 𝐴 ⊆ ℝ such that the maximum (respectively, minimum) of 𝐴
exists, then the maximum (respectively, minimum) of 𝐴 is unique.

If the maximum of a set 𝐴 exists, then it is denoted by max(𝐴) . Similarly,
if the minimum of a set 𝐴 exists, then it is denoted by min(𝐴) .

Problem 4.37. Find the maximum and the minimum for each of the following
sets when they exist.
(a) {5, 11, 17, 42, 103}

(b) ℕ

(c) ℤ

(d) (0, 1]

(e) (0, 1] ∩ ℚ

(f) (0,∞)
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(g) {42}

(h) { 1
𝑛
∣ 𝑛 ∈ ℕ}

(i) { 1
𝑛
∣ 𝑛 ∈ ℕ} ∪ {0}

(j) ∅

Toprove theWell-OrderingPrinciple, consider a proof by contradiction. Sup-
pose 𝑆 is a nonempty subset of ℕ that does not have a least element. Define the
proposition 𝑃(𝑛) ≔“𝑛 is not an element of 𝑆” and then use complete induction
to prove the result.

Theorem 4.38 (Well-Ordering Principle). Every nonempty subset of the natural
numbers has a least element.

It turns out that the Well-Ordering Principle (Theorem 4.38) and the Axiom
of Induction (Axiom 4.1) are equivalent. In other words, one can prove the Well-
Ordering Principle from the Axiom of Induction, as we have done, but one can
also prove the Axiom of Induction if the Well-Ordering Principle is assumed.

The final two theorems of this section can be thought of as generalized ver-
sions of the Well-Ordering Principle.

Theorem 4.39. If𝐴 is a nonempty subset of the integers and there exists 𝑙 ∈ ℤ such
that 𝑙 ≤ 𝑎 for all 𝑎 ∈ 𝐴, then 𝐴 contains a least element.

Theorem 4.40. If 𝐴 is a nonempty subset of the integers and there exists 𝑢 ∈ ℤ
such that 𝑎 ≤ 𝑢 for all 𝑎 ∈ 𝐴, then 𝐴 contains a greatest element.

The element 𝑙 in Theorem 4.39 is referred to as a lower bound for 𝐴 while
the element 𝑢 in Theorem 4.40 is called an upper bound for 𝐴. We will study
lower and upper bounds in more detail in Section 5.1.

Life is like riding a bicycle. To keep your
balance you must keep moving.

Albert Einstein, theoretical physicist



All truths are easy to understand once they
are discovered; the point is to discover them.

Galileo Galilei, astronomer & physicist

5
The Real Numbers

In this chapter we will take a deep dive into structure of the real numbers by
building up the multitude of properties you are familiar with by starting with
a collection of fundamental axioms. Recall that an axiom is a statement that
is assumed to be true without proof. These are the basic building blocks from
which all theorems are proved. It is worth pointing out that one can carefully
construct the real numbers from the natural numbers. However, that will not
be the approach we take. Instead, we will simply list the axioms that the real
numbers satisfy.

5.1 Axioms of the Real Numbers

Our axioms for the real numbers fall into three categories:

(1) Field Axioms: These axioms provide the essential properties of arithmetic
involving addition and subtraction.

(2) Order Axioms: These axioms provide the necessary properties of inequali-
ties.

(3) Completeness Axiom: This axiom ensures that the familiar number line
that we use to model the real numbers does not have any holes in it.

We begin with the Field Axioms.
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Axioms 5.1 (Field Axioms). There exist operations + (addition) and ⋅ (multipli-
cation) on ℝ satisfying:
(F1) (Associativity for Addition) For all 𝑎, 𝑏, 𝑐 ∈ ℝwe have (𝑎+𝑏)+𝑐 = 𝑎+(𝑏+𝑐);
(F2) (Commutativity for Addition) For all 𝑎, 𝑏 ∈ ℝ, we have 𝑎 + 𝑏 = 𝑏 + 𝑎;
(F3) (Additive Identity) There exists 0 ∈ ℝ such that for all 𝑎 ∈ ℝ, 0 + 𝑎 = 𝑎;
(F4) (Additive Inverses) For all 𝑎 ∈ ℝ there exists−𝑎 ∈ ℝ such that 𝑎+ (−𝑎) = 0;
(F5) (Associativity for Multiplication) For all 𝑎, 𝑏, 𝑐 ∈ ℝ we have (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐);
(F6) (Commutativity for Multiplication) For all 𝑎, 𝑏 ∈ ℝ, we have 𝑎𝑏 = 𝑏𝑎;
(F7) (Multiplicative Identity) There exists 1 ∈ ℝ such that 1 ≠ 0 and for all 𝑎 ∈ ℝ,

1𝑎 = 𝑎;
(F8) (Multiplicative Inverses) For all 𝑎 ∈ ℝ ⧵ {0} there exists 𝑎−1 ∈ ℝ such that

𝑎𝑎−1 = 1.
(F9) (Distributive Property) For all 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐;

In the language of abstract algebra, Axioms F1–F4 and F5–F8 make each of
ℝ and ℝ ⧵ {0} an abelian group under addition and multiplication, respectively.
Axiom F9 provides a way for the operations of addition and multiplication to
interact. Collectively, Axioms F1–F9 make the real numbers a field. It follows
from the axioms that the elements 0 and 1 of ℝ are the unique additive and
multiplicative identities in ℝ. To prove the following theorem, suppose 0 and
0′ are both additive identities in ℝ and then show that 0 = 0′. This shows that
there can only be one additive identity.

Theorem 5.2. The additive identity of ℝ is unique.

To prove the next theorem, mimic the approach you used to prove Theo-
rem 5.2.

Theorem 5.3. The multiplicative identity of ℝ is unique.

For every 𝑎 ∈ ℝ, the elements −𝑎 and 𝑎−1 (as long as 𝑎 ≠ 0) are also the
unique additive andmultiplicative inverses, respectively.

Theorem 5.4. Every real number has a unique additive inverse.

Theorem 5.5. Every nonzero real number has a unique multiplicative inverse.

Since we are taking a formal axiomatic approach to the real numbers, we
should make it clear how the natural numbers are embedded in ℝ.
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Definition 5.6. We define the natural numbers, denoted byℕ, to be the small-
est subset of ℝ satisfying:
(a) 1 ∈ ℕ, and

(b) for all 𝑛 ∈ ℕ, we have 𝑛 + 1 ∈ ℕ.

Notice the similarity between the definition of the natural numbers presented
above and the Axiom of Induction given in Section 4.1. Of course, we use the
standard numeral system to represent the natural numbers, so thatℕ = {1, 2, 3, 4,
5, 6, 7, 8, 9, 10 . . .}.

Given the natural numbers, Axiom F3/Theorem 5.2 andAxiomF4/Theorem
5.4 together with the operation of addition allow us to define the integers, de-
noted by ℤ, in the obvious way. That is, the integers consist of the natural num-
bers together with the additive identity and all of the additive inverses of the nat-
ural numbers.

We now introduce some common notation that you are likely familiar with.
Take a moment to think about why the following is a definition as opposed to an
axiom or theorem.

Definition 5.7. For every 𝑎, 𝑏 ∈ ℝ and 𝑛 ∈ ℤ, we define the following:

(a) 𝑎 − 𝑏 ≔ 𝑎 + (−𝑏)

(b) 𝑎
𝑏 ≔ 𝑎𝑏−1 (for 𝑏 ≠ 0)

(c) 𝑎𝑛 ≔
⎧⎪
⎨⎪
⎩

𝑛
⏞⎴⏞⎴⏞𝑎𝑎⋯𝑎, if 𝑛 ∈ ℕ
1, if 𝑛 = 0 and 𝑎 ≠ 0
1
𝑎−𝑛 , if − 𝑛 ∈ ℕ and 𝑎 ≠ 0

The set of rational numbers, denoted by ℚ, is defined to be the collection
of all real numbers having the form given in Part (b) of Definition 5.7. The irra-
tional numbers are defined to be ℝ ⧵ ℚ.

Using the Field Axioms, we can prove each of the statements in the following
theorem.

Theorem 5.8. For all 𝑎, 𝑏, 𝑐 ∈ ℝ, we have the following:
(a) 𝑎 = 𝑏 if and only if 𝑎 + 𝑐 = 𝑏 + 𝑐;

(b) 0𝑎 = 0;

(c) −𝑎 = (−1)𝑎;
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(d) (−1)2 = 1;

(e) −(−𝑎) = 𝑎;

(f) If 𝑎 ≠ 0, then (𝑎−1)−1 = 𝑎;

(g) If 𝑎 ≠ 0 and 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐.

(h) If 𝑎𝑏 = 0, then either 𝑎 = 0 or 𝑏 = 0.

Carefully prove the next theorem by explicitly citing where you are utilizing
the Field Axioms and Theorem 5.8.

Theorem 5.9. For all 𝑎, 𝑏 ∈ ℝ, we have (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2.

We now introduce the Order Axioms of the real numbers.

Axioms 5.10 (Order Axioms). For 𝑎, 𝑏, 𝑐 ∈ ℝ, there is a relation < onℝ satisfy-
ing:

(O1) (Trichotomy Law) If 𝑎 ≠ 𝑏, then either 𝑎 < 𝑏 or 𝑏 < 𝑎 but not both;

(O2) (Transitivity) If 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐;

(O3) If 𝑎 < 𝑏, then 𝑎 + 𝑐 < 𝑏 + 𝑐;

(O4) If 𝑎 < 𝑏 and 0 < 𝑐, then 𝑎𝑐 < 𝑏𝑐;

Given Axioms O1–O4, we say that the real numbers are a linearly ordered
field. We call numbers greater than zeropositive and those greater than or equal
to zero nonnegative. There are similar definitions for negative and nonposi-
tive.

Notice that the Order Axioms are phrased in terms of “<”. We would also
like to be able to utilize “>”, “≤”, and “≥”.

Definition 5.11. For 𝑎, 𝑏 ∈ ℝ, we define:
(a) 𝑎 > 𝑏 if 𝑏 < 𝑎;

(b) 𝑎 ≤ 𝑏 if 𝑎 < 𝑏 or 𝑎 = 𝑏;

(c) 𝑎 ≥ 𝑏 if 𝑏 ≤ 𝑎.

Notice that we took the existence of the inequalities “<”, “>”, “≤”, and “≥”
on the real numbers for granted when we defined intervals of real numbers in
Definition 3.4.

Using the Order Axioms, we can prove many familiar facts.
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Theorem 5.12. For all 𝑎, 𝑏 ∈ ℝ, if 𝑎, 𝑏 > 0, then 𝑎 + 𝑏 > 0; and if 𝑎, 𝑏 < 0, then
𝑎 + 𝑏 < 0.

The next result extends Axiom O3.

Theorem 5.13. For all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, if 𝑎 < 𝑏 and 𝑐 < 𝑑, then 𝑎 + 𝑐 < 𝑏 + 𝑑.

Theorem 5.14. For all 𝑎 ∈ ℝ, 𝑎 > 0 if and only if −𝑎 < 0.

Theorem 5.15. If 𝑎, 𝑏, 𝑐, and 𝑑 are positive real numbers such that 𝑎 < 𝑏 and
𝑐 < 𝑑, then 𝑎𝑐 < 𝑏𝑑.

Theorem 5.16. For all 𝑎, 𝑏 ∈ ℝ, we have the following:
(a) 𝑎𝑏 > 0 if and only if either 𝑎, 𝑏 > 0 or 𝑎, 𝑏 < 0;

(b) 𝑎𝑏 < 0 if and only if 𝑎 < 0 < 𝑏 or 𝑏 < 0 < 𝑎.

Theorem 5.17. For all positive real numbers 𝑎 and 𝑏, 𝑎 < 𝑏 if and only if 𝑎2 < 𝑏2.

Consider using three cases when approaching the proof of the following the-
orem.

Theorem 5.18. For all 𝑎 ∈ ℝ, we have 𝑎2 ≥ 0.

It might come as a surprise that the following result requires proof.

Theorem 5.19. We have 0 < 1.

The previous theorem together with Theorem 5.14 implies that −1 < 0 as
you expect. It also follows from Axiom O3 that for all 𝑛 ∈ ℤ, we have 𝑛 < 𝑛 + 1.
We assume that there are no integers between 𝑛 and 𝑛 + 1.

Theorem 5.20. For all 𝑎 ∈ ℝ, if 𝑎 > 0, then 𝑎−1 > 0, and if 𝑎 < 0, then 𝑎−1 < 0.

Theorem 5.21. For all 𝑎, 𝑏 ∈ ℝ, if 𝑎 < 𝑏, then −𝑏 < −𝑎.

The last few results allow us to take for granted our usual understanding of
which real numbers are positive andwhich are negative. The next theorem yields
a result that extends Theorem 5.21.

Theorem 5.22. For all 𝑎, 𝑏, 𝑐 ∈ ℝ, if 𝑎 < 𝑏 and 𝑐 < 0, then 𝑏𝑐 < 𝑎𝑐.

There is a special function that we can now introduce.
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Definition 5.23. Given 𝑎 ∈ ℝ, we define the absolute value of 𝑎, denoted |𝑎|,
via

|𝑎| ≔ {𝑎, if 𝑎 ≥ 0
−𝑎, if 𝑎 < 0.

Theorem 5.24. For all 𝑎 ∈ ℝ, |𝑎| ≥ 0 with equality only if 𝑎 = 0.

We can interpret |𝑎| as the distance between 𝑎 and 0 as depicted in Figure 5.1.

0 𝑎

|𝑎|

(a) 𝑎 > 0

0𝑎

|𝑎|

(b) 𝑎 < 0

Figure 5.1. Visual representation of |𝑎|.

Theorem 5.25. For all 𝑎, 𝑏 ∈ ℝ, we have |𝑎 − 𝑏| = |𝑏 − 𝑎|.

Given two points 𝑎 and 𝑏, |𝑎−𝑏|, and hence |𝑏−𝑎| by the previous theorem,
is the distance between 𝑎 and 𝑏 as shown in Figure 5.2.

𝑎 𝑏

|𝑎 − 𝑏|

Figure 5.2. Visual representation of |𝑎 − 𝑏|.

Theorem 5.26. For all 𝑎, 𝑏 ∈ ℝ, |𝑎𝑏| = |𝑎||𝑏|.

In the next theorem, writing±𝑎 ≤ 𝑏 is an abbreviation for 𝑎 ≤ 𝑏 and−𝑎 ≤ 𝑏.

Theorem 5.27. For all 𝑎, 𝑏 ∈ ℝ, if ±𝑎 ≤ 𝑏, then |𝑎| ≤ 𝑏.

Theorem 5.28. For all 𝑎 ∈ ℝ, |𝑎|2 = 𝑎2.

Theorem 5.29. For all 𝑎 ∈ ℝ, ±𝑎 ≤ |𝑎|.

Theorem 5.30. For all 𝑎, 𝑟 ∈ ℝ with 𝑟 nonnegative, |𝑎| ≤ 𝑟 if and only if
−𝑟 ≤ 𝑎 ≤ 𝑟.
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0 𝑟−𝑟 𝑎

𝑟𝑟

|𝑎|

Figure 5.3. Visual representation of |𝑎| ≤ 𝑟.

The letter 𝑟wasused in the previous theorembecause it is the first letter of the
word “radius”. If 𝑟 is positive, we can think of the interval (−𝑟, 𝑟) as the interior of
a one-dimensional circle with radius 𝑟 centered at 0. Figure 5.3 provides a visual
interpretation of Theorem 5.30.

Corollary 5.31. For all 𝑎, 𝑏, 𝑟 ∈ ℝ with 𝑟 nonnegative, |𝑎 − 𝑏| ≤ 𝑟 if and only if
𝑏 − 𝑟 ≤ 𝑎 ≤ 𝑏 + 𝑟.

Since |𝑎 − 𝑏| represents the distance between 𝑎 and 𝑏, we can interpret |𝑎 −
𝑏| ≤ 𝑟 as saying that the distance between 𝑎 and 𝑏 is less than or equal to 𝑟. In
other words, 𝑎 is within 𝑟 units of 𝑏. See Figure 5.4.

𝑏 𝑏 + 𝑟𝑏 − 𝑟 𝑎

𝑟𝑟

|𝑎 − 𝑏|

Figure 5.4. Visual representation of |𝑎 − 𝑏| ≤ 𝑟.

Consider usingTheorems 5.29 and 5.30when attacking thenext result, which
is known as the Triangle Inequality. This result can be extremely useful in
some contexts.

Theorem 5.32 (Triangle Inequality). For all 𝑎, 𝑏 ∈ ℝ, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|.

Figure 5.5 depicts two of the cases for the Triangle Inequality.

Problem 5.33. Under what conditions do we have equality for the Triangle In-
equality?

Where did the Triangle Inequality get its name? Why “Triangle”? For any
triangle (including degenerate triangles), the sum of the lengths of any two sides
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0 𝑎 𝑏 𝑎 + 𝑏

|𝑎 + 𝑏|

|𝑏| |𝑎|
(a) 𝑎 ≥ 0, 𝑏 ≥ 0

𝑎 0 𝑎 + 𝑏 𝑏

|𝑎 + 𝑏|

|𝑎| |𝑏|
(b) 𝑎 < 0, 𝑏 ≥ 0

Figure 5.5. Visual representation of two of the cases for the
Triangle Inequality.

must be greater than or equal to the length of the remaining side. That is, if 𝑥,
𝑦, and 𝑧 are the lengths of the sides of the triangle, then 𝑧 ≤ 𝑥 + 𝑦, where we
have equality only in the degenerate case of a triangle with no area. In linear
algebra, the Triangle Inequality is a theorem about lengths of vectors. If 𝐚 and
𝐛 are vectors in ℝ𝑛, then the Triangle Inequality states that ‖𝐚 + 𝐛‖ ≤ ‖𝐚‖ +
‖𝐛‖. Note that ‖𝐚‖ denotes the length of vector 𝐚. See Figure 5.6. The version of
the Triangle Inequality that we presented in Theorem 5.32 is precisely the one-
dimensional version of the Triangle Inequality in terms of vectors.

𝐚 𝐛

𝐚 + 𝐛

Figure 5.6. Triangle Inequality in terms of vectors.

The next theorem is sometimes called the Reverse Triangle Inequality.

Theorem5.34 (Reverse Triangle Inequality). For all𝑎, 𝑏 ∈ ℝ, |𝑎−𝑏| ≥ ||𝑎| − |𝑏||.

Before we introduce the Completeness Axiom, we need some additional ter-
minology.

Definition 5.35. Let 𝐴 ⊆ ℝ. A point 𝑏 is called an upper bound of 𝐴 if for all
𝑎 ∈ 𝐴, 𝑎 ≤ 𝑏. The set 𝐴 is said to be bounded above if it has an upper bound.

Problem 5.36. The notion of a lower bound and the property of a set being
bounded below are defined similarly. Try defining them.
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Problem 5.37. Find all upper bounds and all lower bounds for each of the fol-
lowing sets when they exist.

(a) {5, 11, 17, 42, 103}

(b) ℕ

(c) ℤ

(d) (0, 1]

(e) (0, 1] ∩ ℚ

(f) (0,∞)

(g) {42}

(h) { 1
𝑛
∣ 𝑛 ∈ ℕ}

(i) { 1
𝑛
∣ 𝑛 ∈ ℕ} ∪ {0}

(j) ∅

Definition 5.38. A set 𝐴 ⊆ ℝ is bounded if 𝐴 is bounded above and below.

Notice that a set𝐴 ⊆ ℝ is bounded if and only if it is a subset of some bounded
closed interval.

Definition 5.39. Let 𝐴 ⊆ ℝ. A point 𝑝 is a supremum (or least upper bound)
of 𝐴 if 𝑝 is an upper bound of 𝐴 and 𝑝 ≤ 𝑏 for every upper bound 𝑏 of 𝐴. Analo-
gously, a point 𝑝 is an infimum (or greatest lower bound) of 𝐴 if 𝑝 is a lower
bound of 𝐴 and 𝑝 ≥ 𝑏 for every lower bound 𝑏 of 𝐴.

Our next result tells us that a supremum of a set and an infimum of a set are
unique when they exist.

Theorem 5.40. If𝐴 ⊆ ℝ such that a supremum (respectively, infimum) of𝐴 exists,
then the supremum (respectively, infimum) of 𝐴 is unique.

In light of the previous theorem, if the supremum of 𝐴 exists, it is denoted
by sup(𝐴) . Similarly, if the infimum of 𝐴 exists, it is denoted by inf(𝐴) .

Problem 5.41. Find the supremum and the infimum of each of the sets in Prob-
lem 5.37 when they exist.
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It is important to recognize that the supremum or infimum of a set may or
may not be contained in the set. In particular, we have the following theorem
concerning suprema and maximums. The analogous result holds for infima and
minimums.

Theorem 5.42. Let 𝐴 ⊆ ℝ. Then 𝐴 has a maximum if and only if 𝐴 has a supre-
mum and sup(𝐴) ∈ 𝐴, in which case themax(𝐴) = sup(𝐴).

Intuitively, a point is the supremum of a set 𝐴 if and only if no point smaller
than the supremum can be an upper bound of𝐴. The next result makes thismore
precise.

Theorem 5.43. Let 𝐴 ⊆ ℝ such that 𝐴 is bounded above and let 𝑏 be an upper
bound of 𝐴. Then 𝑏 is the supremum of 𝐴 if and only if for every 𝜀 > 0, there exists
𝑎 ∈ 𝐴 such that 𝑏 − 𝜀 < 𝑎.

Problem 5.44. State and prove the analogous result to Theorem 5.43 involving
infimum.

The following axiom states that every nonempty subset of the real numbers
that has an upper bound has a least upper bound.

Axiom 5.45 (Completeness Axiom). If 𝐴 is a nonempty subset of ℝ that is
bounded above, then sup(𝐴) exists.

Given the Completeness Axiom, we say that the real numbers satisfy the
least upper bound property. It is worth mentioning that we do not need the
Completeness Axiom to conclude that every nonempty subset of the integers that
is bounded above has a supremum, as this follows from Theorem 4.40 (a gener-
alized version of the Well-Ordering Principle).

Certainly, the real numbers also satisfy the analogous result involving infi-
mum.

Theorem 5.46. If 𝐴 is a nonempty subset of ℝ that is bounded below, then inf(𝐴)
exists.

Our next result, called the Archimedean Property, tells us that for every
real number, we can always find a natural number that is larger. To prove this
theorem, consider a proof by contradiction and then utilize the Completeness
Axiom and Theorem 5.43.

Theorem 5.47 (Archimedean Property). For every 𝑥 ∈ ℝ, there exists 𝑛 ∈ ℕ such
that 𝑥 < 𝑛.
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More generally, we can “squeeze” every real number between a pair of inte-
gers. The next result is sometimes referred to at theGeneralizedArchimedean
Property.

Theorem 5.48 (Generalized Archimedean Property). For every 𝑥 ∈ ℝ, there ex-
ists 𝑘, 𝑛 ∈ ℤ such that 𝑘 < 𝑥 < 𝑛.

Theorem 5.49. For any positive real number 𝑥, there exists 𝑁 ∈ ℕ such that 0 <
1
𝑁
< 𝑥.

The next theorem strengthens the Generalized Archimedean Property and
says that every real number is either an integer or lies between a pair of consec-
utive integers. To prove this theorem, let 𝑥 ∈ ℝ and define 𝐿 = {𝑘 ∈ ℤ ∣ 𝑘 ≤ 𝑥}.
Use the Generalized Archimedean Property to conclude that 𝐿 is nonempty and
then utilize Theorem 4.40.

Theorem 5.50. For every 𝑥 ∈ ℝ, there exists 𝑛 ∈ ℤ such that 𝑛 ≤ 𝑥 < 𝑛 + 1.

To prove the next theorem, let 𝑎 < 𝑏, utilize Theorem 5.49 on 𝑏−𝑎 to obtain
𝑁 ∈ ℕ such that 1

𝑁
< 𝑏−𝑎, and then apply Theorem 5.50 to𝑁𝑎 to conclude that

there exists 𝑛 ∈ ℕ such that 𝑛 ≤ 𝑁𝑎 < 𝑛+1. Lastly, argue that 𝑛+1
𝑁

is the rational
number you seek.

Theorem 5.51. If (𝑎, 𝑏) is an open interval, then there exists a rational number 𝑝
such that 𝑝 ∈ (𝑎, 𝑏).

Recall that the real numbers consist of rational and irrational numbers. Two
examples of an irrational number that you are likely familiar with are 𝜋 and√2.
In Section 6.2, we will prove that √2 is irrational, but for now we will take this
fact for granted. It turns out that √2 ≈ 1.41421356237 ∈ (1, 2). This provides
an example of an irrational number occurring between a pair of distinct rational
numbers. The following theorem is a good challenge to generalize this.

Theorem 5.52. If (𝑎, 𝑏) is an open interval, then there exists an irrational number
𝑝 such that 𝑝 ∈ (𝑎, 𝑏).

Repeated applications of the previous two theorems implies that every open
interval contains infinitelymany rational numbers and infinitelymany irrational
numbers. In light of these two theorems, we say that both the rationals and irra-
tionals are dense in the real numbers.

If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

John von Neumann, mathematician
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5.2 Standard Topology of the Real Line

In this section, we will introduce the notions of open, closed, compact, and con-
nected as they pertain to subsets of the real numbers. These properties form
the underpinnings of a branch of mathematics called topology (derived from
the Greek words tópos, meaning ‘place, location’, and ology, meaning ‘study of’).
Topology, sometimes called “rubber sheet geometry,” is concerned with proper-
ties of spaces that are invariant under any continuous deformation (e.g., bending,
twisting, and stretching like rubber while not allowing tearing apart or gluing
together). The fundamental concepts in topology are continuity, compactness,
and connectedness, which rely on ideas such as “arbitrary close” and “far apart”.
These ideas can be made precise using open sets.

Once considered an abstract branch of pure mathematics, topology now has
applications in biology, computer science, physics, and robotics. The goal of this
section is to introduce you to the basics of the set-theoretic definitions used in
topology and to provide you with an opportunity to tinker with open and closed
subsets of the real numbers. In Section 8.5, we will revisit these concepts and
explore continuous functions.

For this entire section, our universe of discourse is the set of real numbers.
You may assume all the usual basic algebraic properties of the real numbers (ad-
dition, subtraction, multiplication, division, commutative property, distribution,
etc.). We will often refer to an element in a subset of real numbers as a point.

Definition 5.53. A set 𝑈 is called an open set if for every 𝑥 ∈ 𝑈, there exists a
bounded open interval (𝑎, 𝑏) containing 𝑥 such that (𝑎, 𝑏) ⊆ 𝑈.

It follows immediately from the definition that every open set is a union of
bounded open intervals.

Problem 5.54. Determine whether each of the following sets is open. Justify
your assertions.

(a) (1, 2)

(b) (1,∞)

(c) (1, 2) ∪ (𝜋, 5)

(d) [1, 2]

(e) (−∞,√2]

(f) {4, 17, 42}

(g) { 1
𝑛
∣ 𝑛 ∈ ℕ}

(h) { 1
𝑛
∣ 𝑛 ∈ ℕ} ∪ {0}

(i) ℝ

(j) ℚ

(k) ℤ

(l) ∅
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As expected, every open interval (i.e., intervals of the form (𝑎, 𝑏), (−∞, 𝑏),
(𝑎,∞), or (−∞,∞)) is an open set.

Theorem 5.55. Every open interval is an open set.

However, it is important to point out that open sets can bemore complicated
than a single open interval.

Problem 5.56. Provide an example of an open set that is not a single open inter-
val.

Theorem 5.57. If 𝑈 and 𝑉 are open sets, then

(a) 𝑈 ∪ 𝑉 is an open set, and

(b) 𝑈 ∩ 𝑉 is an open set.

According to the next two theorems, the union of arbitrarily many open sets
is open while the intersection of a finite number of open sets is open.

Theorem 5.58. If {𝑈𝛼}𝛼∈∆ is a collection of open sets, then⋃𝛼∈∆𝑈𝛼 is an open set.

Consider using induction to prove the next theorem.

Theorem 5.59. If {𝑈𝑖}𝑛𝑖=1 is a finite collection of open sets for 𝑛 ∈ ℕ, then⋂𝑛
𝑖=1𝑈𝑖

is an open set.

Problem 5.60. Explain why we cannot utilize induction to prove that the inter-
section of infinitely many open sets indexed by the natural numbers is open.

Problem 5.61. Give an example of each of the following.

(a) A collection of open sets {𝑈𝛼}𝛼∈∆ such that⋂𝛼∈∆𝑈𝛼 is an open set.

(b) A collection of open sets {𝑈𝛼}𝛼∈∆ such that⋂𝛼∈∆𝑈𝛼 is not an open set.

According to the previous problem, the intersection of infinitely many open
setsmay ormay not be open. So, we know that there is no theorem that states that
the intersection of arbitrarily many open sets is open. We only know for certain
that the intersection of finitely many open sets is open by Theorem 5.59.

Definition 5.62. Suppose 𝐴 ⊆ ℝ. A point 𝑝 ∈ ℝ is an accumulation point
of 𝐴 if for every bounded open interval (𝑎, 𝑏) containing 𝑝, there exists a point
𝑞 ∈ (𝑎, 𝑏) ∩ 𝐴 such that 𝑞 ≠ 𝑝.
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Notice that if 𝑝 is an accumulation point of 𝐴, then 𝑝 may or may not be in
𝐴. Loosely speaking, 𝑝 is an accumulation point of a set 𝐴 if there are points in
𝐴 arbitrarily close to 𝑝. That is, if we zoom in on 𝑝, we should always see points
in 𝐴 nearby.

Problem5.63. Consider the open interval 𝐼 = (1, 2). Prove each of the following.
(a) The points 1 and 2 are accumulation points of 𝐼.

(b) If 𝑝 ∈ 𝐼, then 𝑝 is an accumulation point of 𝐼.

(c) If 𝑝 < 1 or 𝑝 > 2, then 𝑝 is not an accumulation point of 𝐼.

Theorem 5.64. A point 𝑝 is an accumulation point of the intervals (𝑎, 𝑏), (𝑎, 𝑏],
[𝑎, 𝑏), and [𝑎, 𝑏] if and only if 𝑝 ∈ [𝑎, 𝑏].

Problem 5.65. Prove that the point 𝑝 = 0 is an accumulation point of 𝐴 = { 1
𝑛
∣

𝑛 ∈ ℕ}. Are there any other accumulation points of 𝐴?

Problem 5.66. Provide an example of a set 𝐴 with exactly two accumulation
points.

Consider using Theorems 5.51 and 5.52 when proving the next result.

Theorem 5.67. If 𝑝 ∈ ℝ, then 𝑝 is an accumulation point ofℚ.

Definition 5.68. Aset𝐴 ⊆ ℝ is called closed if𝐴 contains all of its accumulation
points.

Problem 5.69. Determine whether each of the sets in Problem 5.54 is closed.
Justify your assertions.

The upshot of Parts (i) and (l) of Problems 5.54 and 5.69 is that ℝ and ∅ are
both open and closed. It turns out that these are the only two subsets of the real
numbers with this property. One issue with the terminology that could poten-
tially create confusion is that the open interval (−∞,∞) is both an open and a
closed set.

Problem 5.70. Provide an example of each of the following. You do not need to
prove that your answers are correct.
(a) A set that is open but not closed.

(b) A set that is closed but not open.

(c) A set that neither open nor closed.
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Another potentially annoying feature of the terminology illustrated by Prob-
lem 5.70 is that if a set is not open, it may or may not be closed. Similarly, if a
set is not closed, it may or may not be open. That is, open and closed are not
opposites of each other.

The next result justifies referring to [𝑎, 𝑏] as a closed interval.

Theorem 5.71. Every interval of the form [𝑎, 𝑏], (−∞, 𝑏], [𝑎,∞), or (−∞,∞) is a
closed set.

Theorem 5.72. Every finite subset of ℝ is closed.

Despite the fact that open and closed are not opposites of each other, there is
a nice relationship between open and closed sets in terms of complements.

Theorem 5.73. Let 𝑈 ⊆ ℝ. Then 𝑈 is open if and only if 𝑈𝐶 is closed.

Theorem 5.74. If 𝐴 and 𝐵 are closed sets, then
(a) 𝐴 ∪ 𝐵 is a closed set, and

(b) 𝐴 ∩ 𝐵 is a closed set.

The next two theorems are analogous to Theorems 5.58 and 5.59.

Theorem 5.75. If {𝐴𝛼}𝛼∈∆ is a collection of closed sets, then⋂𝛼∈∆ 𝐴𝛼 is a closed
set.

Theorem 5.76. If {𝐴𝑖}𝑛𝑖=1 is a finite collection of closed sets for 𝑛 ∈ ℕ, then⋃𝑛
𝑖=1 𝐴𝑖

is a closed set.

Problem 5.77. Provide an example of a collection of closed sets {𝐴𝛼}𝛼∈∆ such
that⋃𝛼∈∆ 𝐴𝛼 is not a closed set.

Problem 5.78. Determine whether each of the following sets is open, closed,
both, or neither.

(a) 𝑉 =
∞

⋃
𝑛=2

(𝑛 − 1
2 , 𝑛)

(b) 𝑊 =
∞

⋂
𝑛=2

(𝑛 − 1
2 , 𝑛)

(c) 𝑋 =
∞

⋂
𝑛=1

(−1𝑛 ,
1
𝑛)
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(d) 𝑌 =
∞

⋂
𝑛=1

(−𝑛, 𝑛)

(e) 𝑍 = (0, 1) ∩ ℚ

Problem 5.79. Prove or provide a counterexample: Every non-closed set has at
least one accumulation point.

We now introduce three special classes of subsets of ℝ: compact, connected,
and disconnected.

Definition 5.80. A set𝐾 ⊆ ℝ is called compact if𝐾 is both closed and bounded.

It is important to point out that there is a more general definition of compact
in an arbitrary topological space. However, using our notions of open and closed,
it is a theorem that a subset of the real line is compact if and only if it is closed
and bounded.

Problem 5.81. Determine whether each of the following sets is compact. Briefly
justify your assertions.

(a) [0, 1) ∪ [2, 3]

(b) [0, 1) ∪ (1, 2]

(c) [0, 1) ∪ [1, 2]

(d) ℝ

(e) ℚ

(f) ℝ ⧵ ℚ

(g) ℤ

(h) { 1
𝑛
∣ 𝑛 ∈ ℕ}

(i) [0, 1] ∪ {1 + 1
𝑛
∣ 𝑛 ∈ ℕ}

(j) {17, 42}

(k) {17}

(l) ∅

Problem 5.82. Is every finite set compact? Justify your assertion.

The next theorem says that every nonempty compact set contains its greatest
lower bound and its least upper bound. That is, every nonempty compact set
attains a minimum and a maximum value.

Theorem 5.83. If 𝐾 is a nonempty compact subset ofℝ, then sup(𝐾), inf(𝐾) ∈ 𝐾.

Definition 5.84. A set 𝐴 ⊆ ℝ is disconnected if there exists two disjoint open
sets 𝑈1 and 𝑈2 such that 𝐴 ∩ 𝑈1 and 𝐴 ∩ 𝑈2 are nonempty but 𝐴 ⊆ 𝑈1 ∪ 𝑈2
(equivalently, 𝐴 = (𝐴 ∩ 𝑈1) ∪ (𝐴 ∩ 𝑈2)). If a set is not disconnected, then we say
that it is connected.
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In other words, a set is disconnected if it can be partitioned into two non-
empty subsets such that each subset does not contain points of the other and
does not contain any accumulation points of the other. Showing that a set is
disconnected is generally easier than showing a set is connected. To prove that a
set is disconnected, you simply need to exhibit two open sets with the necessary
properties. However, to prove that a set is connected, you need to prove that no
such pair of open sets exists.

Problem 5.85. Determine whether each of the sets in Problem 5.81 is is con-
nected or disconnected. Briefly justify your assertions.

Theorem 5.86. If 𝑎 ∈ ℝ, then {𝑎} is connected.

The proof of the next theorem is harder than you might expect. Consider a
proof by contradiction and try to make use of the Completeness Axiom.

Theorem 5.87. Every closed interval [𝑎, 𝑏] is connected.

It turns out that every connected set in ℝ is either a singleton or an interval.
We have not officially proved this claim, but we do have the tools to do so. Feel
free to try your hand at proving this fact.

If you learn how to learn, it’s the ultimate
meta skill and I believe you can learn how
to be healthy, you can learn how to be fit,
you can learn how to be happy, you can
learn how to have good relationships, you
can learn how to be successful. These are all
things that can be learned. So if you can
learn that is a trump card, it’s an ace, it’s a
joker, it’s a wild card. You can trade it for
any other skill.

Naval Ravikant, entrepreneur & investor





Amathematician, like a painter or a poet, is
a maker of patterns. If his patterns are more
permanent than theirs, it is because they are
made with ideas.

G.H. Hardy, mathematician6
Three Famous Theorems

In the last few chapters, we have encountered all of the major proof techniques
one needs inmathematics and enhanced our proof-writing skills. In this chapter,
we put these techniques and skills to work to prove three famous theorems, as
well as numerous intermediate results along the way. All of these theorems are
ones you are likely familiar with from grade school, but perhaps these facts were
never rigorously justified for you.

In the first section, we develop all of the concepts necessary to state and then
prove the Fundamental Theorem of Arithmetic (Theorem 6.17), which you
may not recognize by name. The Fundamental TheoremofArithmetic states that
every natural number greater than 1 is the product of a unique combination of
prime numbers. To prove the Fundamental Theorem of Arithmetic, we will need
tomake use of theDivisionAlgorithm (Theorem 6.7), which in turn utilizes the
Well-Ordering Principle (Theorem 4.38). In the second section, we prove that√2
is irrational, which settles a claim made in Section 5.1. In the final section, we
prove that there are infinitely many primes.

6.1 The Fundamental Theorem of Arithmetic

The goal of this section is to prove The Fundamental Theorem of Arithmetic.
The Fundamental Theorem of Arithmetic (sometimes called the Unique Factor-
ization Theorem) states that every natural number greater than 1 is either prime
or is the product of prime numbers, where this product is unique up to the or-
der of the factors. For example, the natural number 12 has prime factorization
22 ⋅ 3, where the order in which we write the prime factors (i.e., 2, 2, and 3) is
irrelevant. That is, 22 ⋅ 3, 2 ⋅ 3 ⋅ 2, and 3 ⋅ 22 are all the same prime factorization

81
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of 12. The requirement that the factors be prime is necessary since factorizations
containing composite numbers may not be unique. For example, 12 = 2 ⋅ 6 and
12 = 3 ⋅ 4, but these factorizations into composite numbers are distinct. We have
just thrown around a few fancy terms; we should make sure we understand their
precise meaning.

Definition 6.1. Let 𝑛 ∈ ℤ.
(a) If 𝑎 ∈ ℤ such that 𝑎 divides 𝑛, then we say that 𝑎 is a factor of 𝑛.
(b) If 𝑛 ∈ ℕ such that 𝑛 has exactly two distinct positive factors (namely, 1 and

𝑛 itself), then 𝑛 is called prime.
(c) If 𝑛 > 1 such that 𝑛 is not prime, then 𝑛 is called composite.

Problem 6.2. According to our definition, is 1 a prime number or composite
number? Explain your answer. You may have heard prime numbers defined as
something like, “a prime number is a natural number that is only divisible by 1
and itself.” Does this definition agree with the one above?

The upshot is that according to our definition, 1 is neither prime nor com-
posite. However, throughout history, this has not always been the case. There
were times when andmathematicians for whom the number one was considered
prime. Whether 1 is prime or not is a matter of definition, and hence a matter
of choice. There are compelling reasons—that we will not elaborate on here—
why 1 is intentionally excluded from being prime. However, if you would like
to learn more, check out the excellent article “What is the Smallest Prime?” by
Chris Caldwell and Yeng Xiong.

Problem 6.3. List the first 10 prime numbers.

Problem 6.4. Prove or provide a counterexample: For all 𝑛 ∈ ℕ, if 4𝑛 − 1 is
prime, then 𝑛 is odd.

Problem 6.5. Prove or provide a counterexample: For all 𝑛 ∈ ℕ, 𝑛2 − 𝑛 + 11 is
prime.

The next result makes up half of the Fundamental Theorem of Arithmetic.
We provide a substantial hint for its proof. Let 𝑆 be the set of natural numbers
for which the theorem fails. For sake of a contradiction, assume 𝑆 ≠ ∅. By the
Well-Ordering Principle (Theorem 4.38), 𝑆 contains a least element, say 𝑛. Then
𝑛 cannot be prime since this would satisfy the theorem. So, it must be the case
that 𝑛 has a divisor other than 1 and itself. This implies that there exists natural
numbers 𝑎 and 𝑏 greater than 1 such that 𝑛 = 𝑎𝑏. Since 𝑛was our smallest coun-
terexample, what can you conclude about both 𝑎 and 𝑏? Use this information to
derive a counterexample for 𝑛.

https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell1/cald5.pdf
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Theorem 6.6. If 𝑛 is a natural number greater than 1, then 𝑛 can be expressed as
a product of primes. That is, we can write

𝑛 = 𝑝1𝑝2⋯𝑝𝑘,
where each of 𝑝1, 𝑝2, . . . , 𝑝𝑘 is a prime number (not necessarily distinct).

Theorem 6.6 states that we can write every natural number greater than 1
as a product of primes, but it does not say that the primes and the number of
times each prime appears are unique. To prove uniqueness, we will need Eu-
clid’s Lemma (Theorem 6.15). To prove Euclid’s Lemma, we will utilize a spe-
cial case of Bézout’s Lemma (Theorem 6.13), the proof of which relies on the
following result, known as the Division Algorithm. We include the proof of the
DivisionAlgorithmbelow, whichmakes use of theWell-Ordering Principle (The-
orem 4.38).

Theorem 6.7 (Division Algorithm). If 𝑛, 𝑑 ∈ ℤ such that 𝑑 > 0, then there exists
unique 𝑞, 𝑟 ∈ ℤ such that 𝑛 = 𝑑𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑑.

Proof. Let 𝑛, 𝑑 ∈ ℤ such that 𝑑 > 0 such that 𝑛 > 0. We have two tasks. First, we
need to show that 𝑞 and 𝑟 exist, and then we need to show that both are unique.

If 𝑑 = 1, it is clear that we can take 𝑞 = 𝑛 and 𝑟 = 0, so that 𝑛 = 1 ⋅ 𝑛 + 0 =
𝑑𝑞 + 𝑟, as desired. Now, assume that 𝑑 > 1 and define

𝑆 ≔ {𝑛 − 𝑑𝑘 ∣ 𝑘 ∈ ℤ and 𝑛 − 𝑑𝑘 ≥ 0}.
If we can show that 𝑆 ≠ ∅, then we can apply the Well-Ordering Principle (The-
orem 4.38) to conclude that 𝑆 has a least element of S. This least element will be
the remainder 𝑟 we are looking for. There are two cases.

First, suppose 𝑛 ≥ 0. If we take 𝑘 = 0, then we get 𝑛−𝑑𝑘 = 𝑛−𝑑 ⋅0 = 𝑛 ≥ 0,
which shows that 𝑛 ∈ 𝑆.

Now, suppose𝑛 < 0. In this case, we can take 𝑘 = 𝑛, so that𝑛−𝑑𝑘 = 𝑛−𝑑𝑛 =
𝑛(1 − 𝑑). Since 𝑛 < 0 and 𝑑 > 1, 𝑛(1 − 𝑑) > 0. This shows that 𝑛 − 𝑑𝑛 ∈ 𝑆.

We have shown that 𝑆 ≠ ∅, and so 𝑆 contains a least element 𝑟 = 𝑛 − 𝑑𝑞 for
some 𝑞 ∈ ℤ. Then 𝑛 = 𝑑𝑞 + 𝑟 with 𝑟 ≥ 0. For sake of a contradiction, assume
𝑟 ≥ 𝑑. This implies that there exists 𝑟′ ∈ ℤ such that 𝑟 = 𝑑 + 𝑟′ and 0 ≤ 𝑟′ < 𝑟.
But then we see that

𝑛 = 𝑑𝑞 + 𝑟 = 𝑑𝑞 + 𝑑 + 𝑟′ = 𝑑(𝑞 + 1) + 𝑟′.
This implies that 𝑟′ = 𝑛−𝑑(𝑞+1). Since 0 ≤ 𝑟′ < 𝑟, we have produced an element
of 𝑆 that is smaller than 𝑟. This contradicts the fact that 𝑟 is the least element of
𝑆, and so 𝑟 < 𝑑.

It remains to show that 𝑞 and 𝑟 are unique. Suppose 𝑞1, 𝑞2, 𝑟1, 𝑟2 ∈ ℤ such
that 𝑛 = 𝑑𝑞1 + 𝑟1 and 𝑛 = 𝑑𝑞2 + 𝑟2 and 0 ≤ 𝑟1, 𝑟2 < 𝑑. Without loss of generality,
suppose 𝑟2 ≥ 𝑟1, so that 0 ≤ 𝑟2 − 𝑟1 < 𝑑. Since 𝑑𝑞1 + 𝑟1 = 𝑑𝑞2 + 𝑟2, we see that
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𝑟2−𝑟1 = 𝑑(𝑞1−𝑞2). But then 𝑑 divides 𝑟2−𝑟1. If 𝑟2−𝑟1 > 0, then by Theorem 2.56,
it must be the case that 𝑟2 − 𝑟1 ≥ 𝑑. However, we know 0 ≤ 𝑟2 − 𝑟1 < 𝑑, and so we
must have 𝑟2 − 𝑟1 = 0. Therefore, 𝑟1 = 𝑟2, which in turn implies 𝑞1 = 𝑞2. We have
shown that 𝑞 and 𝑟 are unique.

In the Division Algorithm, we call 𝑛 the dividend, 𝑑 the divisor, 𝑞 the quo-
tient, and 𝑟 the remainder. It is worth pointing out that the Division Algorithm
holds more generally where the divisor 𝑑 is not required to be positive. In this
case, we must replace 0 ≤ 𝑟 < 𝑛 with 0 ≤ 𝑟 < |𝑛|.

Contrary to its name, our statement of the Division Algorithm is not actually
an algorithm, but this is the theorem’s traditional name. However, there is an
algorithm buried in this theorem. If 𝑛 is nonnegative, repeatedly subtract 𝑑 from
𝑛 until we obtain an integer value that lies between 0 (inclusive) and 𝑑 (exclu-
sive). The resulting value is the remainder 𝑟 while the number of times that 𝑑 is
subtracted is the quotient 𝑞. On the other hand, if 𝑛 is negative, repeatedly add 𝑑
to 𝑛 until we obtain an integer value that lies between 0 (inclusive) and 𝑑 (exclu-
sive). Again, the resulting value is 𝑟. However, in this case, we take −𝑞 to be the
number of times that 𝑑 is added, so that 𝑞 (a negative value) is the quotient.

Problem 6.8. Suppose 𝑛 = 27 and 𝑑 = 5. Find the quotient and remainder
that are guaranteed to exist by the Division Algorithm. That is, find the unique
𝑞, 𝑟 ∈ ℤ such that 0 ≤ 𝑟 < 𝑛 and 𝑛 = 𝑑𝑞 + 𝑟.

It is a little trickier to determine 𝑞 and 𝑟 when 𝑛 is negative.

Problem 6.9. Suppose 𝑛 = −26 and 𝑑 = 3. Find the quotient and remainder
that are guaranteed to exist by the Division Algorithm. That is, find the unique
𝑞, 𝑟 ∈ ℤ such that 0 ≤ 𝑟 < 𝑛 and 𝑛 = 𝑑𝑞 + 𝑟.

It is useful to have some additional terminology.

Definition 6.10. Let 𝑚, 𝑛 ∈ ℤ such that at least one of 𝑚 or 𝑛 is nonzero. The
greatest common divisor (gcd) of 𝑚 and 𝑛, denoted gcd(𝑚, 𝑛) , is the largest
positive integer that divides both𝑚 and 𝑛. If gcd(𝑚, 𝑛) = 1, we say that𝑚 and 𝑛
are relatively prime.

Problem 6.11. Find gcd(54, 72).

Problem 6.12. Provide an example of two natural numbers that are relatively
prime.

The next result is a special case of a theorem known as Bézout’s Lemma
(or Bézout’s Identity). Ultimately, we will need this theorem to prove Euclid’s
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Lemma (Theorem 6.15), which we then use to prove uniqueness for the Fun-
damental Theorem of Arithmetic (Theorem 6.17). To prove our special case of
Bézout’s Lemma, consider the set 𝑆 ≔ {𝑝𝑠 + 𝑎𝑡 > 0 ∣ 𝑠, 𝑡 ∈ ℤ}. First, observe
that 𝑝 ∈ 𝑆 (choose 𝑠 = 1 and 𝑡 = 0). It follows that 𝑆 is nonempty. By the
Well-Ordering Principle (Theorem 4.38), 𝑆 contains a least element, say 𝑑. This
implies that there exists 𝑠1, 𝑡1 ∈ ℤ such that 𝑑 = 𝑝𝑠1+𝑎𝑡1. Our goal is to show that
𝑑 = 1. Now, choose𝑚 ∈ 𝑆. Then there exists 𝑠2, 𝑡2 ∈ ℤ such that𝑚 = 𝑝𝑠2 + 𝑎𝑡2.
By the definition of 𝑑, we know 𝑑 ≤ 𝑚. By the Division Algorithm, there exists
unique 𝑞, 𝑟 ∈ ℕ ∪ {0} such that𝑚 = 𝑞𝑑 + 𝑟 with 0 ≤ 𝑟 < 𝑑. Now, solve for 𝑟 and
then replace𝑚 and 𝑑 with 𝑝𝑠1 + 𝑎𝑡1 and 𝑝𝑠2 + 𝑎𝑡2, respectively. You should end
up with an expression for 𝑟 involving 𝑝, 𝑎, 𝑠1, 𝑠2, 𝑡1, and 𝑡2. Next, rearrange this
expression to obtain 𝑟 as a linear combination of 𝑝 and 𝑎 (i.e., a sum of a multiple
of 𝑝 and a multiple of 𝑎). What does the minimality of 𝑑 imply about 𝑟? You
should be able to conclude that𝑚 is a multiple of 𝑑. That is, every element of 𝑆 is
a multiple of 𝑑. However, recall that 𝑝 ∈ 𝑆, 𝑝 is prime, and 𝑝 and 𝑎 are relatively
prime. What can you conclude about 𝑑?

Theorem 6.13 (Special Case of Bézout’s Lemma). If 𝑝, 𝑎 ∈ ℤ such that 𝑝 is prime
and 𝑝 and 𝑎 are relatively prime, then there exists 𝑠, 𝑡 ∈ ℤ such that 𝑝𝑠 + 𝑎𝑡 = 1.

Problem 6.14. Consider the natural numbers 2 and 7, which happen to be rela-
tively prime. Find integers 𝑠 and 𝑡 guaranteed to exist according to Theorem 6.13.
That is, find 𝑠, 𝑡 ∈ ℤ such that 2𝑠 + 7𝑡 = 1.

The following theorem is known as Euclid’s Lemma. Note that if 𝑝 divides
𝑎, the conclusion is certainly true. So, assume otherwise. That is, assume that 𝑝
does not divide 𝑎, so that 𝑝 and 𝑎 are relatively prime. Apply Theorem 6.13 to
𝑝 and 𝑎 and then multiply the resulting equation by 𝑏. Try to conclude that 𝑝
divides 𝑏.

Theorem 6.15 (Euclid’s Lemma). Assume that 𝑝 is prime. If 𝑝 divides 𝑎𝑏, where
𝑎, 𝑏 ∈ ℕ, then either 𝑝 divides 𝑎 or 𝑝 divides 𝑏.

In Euclid’s Lemma, it is crucial that 𝑝 is prime as illustrated by the next prob-
lem.

Problem 6.16. Provide an example of integers 𝑎, 𝑏, 𝑑 such that 𝑑 divides 𝑎𝑏 yet
𝑑 does not divide 𝑎 and 𝑑 does not divide 𝑏.

Alright, we are finally ready to tackle the proof of the Fundamental Theorem
of Arithmetic. Let 𝑛 be a natural number greater than 1. By Theorem 6.6, we
know that 𝑛 can be expressed as a product of primes. All that remains is to prove
that this product is unique (up to the order in which they appear). For sake of
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a contradiction, suppose 𝑝1𝑝2⋯𝑝𝑘 and 𝑞1𝑞2⋯𝑞𝑙 are both prime factorizations
of 𝑛. Your goal is to prove that 𝑘 = 𝑙 and that each 𝑝𝑖 is equal to some 𝑞𝑗 . Make
repeated use of Euclid’s Lemma.

Theorem 6.17 (Fundamental Theorem of Arithmetic). Every natural number
greater than 1 can be expressed uniquely (up to the order in which they appear) as
the product of one or more primes.

The Fundamental Theorem of Arithmetic is one of the many reasons why 1
is not considered a prime number. If 1 were prime, prime factorizations would
not be unique.

Any creative endeavor is built on the ash
heap of failure.

Michael Starbird, mathematician

6.2 The Irrationality of √2
In this section we will prove one of the oldest and most important theorems in
mathematics: √2 is irrational (see Theorem 6.19). First, we need to know what
this means.

Definition 6.18. Let 𝑟 ∈ ℝ.
(a) We say that 𝑟 is rational if 𝑟 = 𝑚

𝑛
, where𝑚, 𝑛 ∈ ℤ and 𝑛 ≠ 0.

(b) In contrast, we say that 𝑟 is irrational if it is not rational.

The Pythagoreans were an ancient secret society that followed their spiri-
tual leader: Pythagoras of Samos (c. 570–495 BCE). The Pythagoreans believed
that the way to spiritual fulfillment and to an understanding of the universe was
through the study of mathematics. They believed that all of mathematics, music,
and astronomy could be described via whole numbers and their ratios. In mod-
ern mathematical terms they believed that all numbers are rational. Attributed
to Pythagoras is the saying, “Beatitude is the knowledge of the perfection of the
numbers of the soul.” And their motto was “All is number.”

Thus they were stunned when one of their own—Hippasus of Metapontum
(c. 5th century BCE)—discovered that the side and the diagonal of a square are
incommensurable. That is, the ratio of the length of the diagonal to the length
of the side is irrational. Indeed, if the side of the square has length 𝑎, then the
diagonal will have length 𝑎√2; the ratio is√2 (see Figure 6.1).
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𝑎

𝑎

𝑎√2

Figure 6.1. The side and diagonal of a square are incommensurable.

In Section 5.1, we took for granted that√2was irrational. We now prove this
fact. Consider using a proof by contradiction. Suppose that there exist𝑚, 𝑛 ∈ ℤ
such that 𝑛 ≠ 0 and √2 = 𝑚

𝑛
. Are there an odd or even number of factors of

2 on each side of this equation? Does your conclusion violate the Fundamental
Theorem of Arithmetic (Theorem 6.17)?

Theorem 6.19. The real number√2 is irrational.

As one might expect, the Pythagoreans were unhappy with this discovery.
Legend says that Hippasus was expelled from the Pythagoreans and was perhaps
drowned at sea. Ironically, this result, which angered the Pythagoreans so much,
is probably their greatest contribution tomathematics: the discovery of irrational
numbers.

See if you can generalize the technique in the proof of Theorem 6.19 to prove
the next two theorems.

Theorem 6.20. Let 𝑝 be a prime number. Then√𝑝 is irrational.

Theorem 6.21. Let 𝑝 and 𝑞 be distinct primes. Then√𝑝𝑞 is irrational.

Problem 6.22. State a generalization of Theorem 6.21 and briefly describe how
its proof would go. Be as general as possible.

It is important to point out that not every positive irrational number is equal
to the square root of some natural number. For example, 𝜋 is irrational, but is
not equal to the square root of a natural number.

Getting better is not pretty. To get good we
have to be down to struggle, seek out
challenges, make some mistakes, to train
ugly.

Trevor Ragan, thelearnerlab.com

thelearnerlab.com
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6.3 The Infinitude of Primes

Thehighlight of this section is Theorem6.25, which states that there are infinitely
many primes. The first knownproof of this theorem is in Euclid’sElements (c. 300
BCE). Euclid stated it as follows:

Proposition IX.20. Prime numbers aremore than any assignedmultitude
of prime numbers.

There are a few interesting observations to make about Euclid’s proposition and
his proof. First, notice that the statement of the theorem does not contain the
word “infinity.” The Greek’s were skittish about the idea of infinity. Thus, he
proved that there were more primes than any given finite number. Today we
would say that there are infinitely many. In fact, Euclid proved that there are
more than three primes and concluded that there weremore than any finite num-
ber. While such a proof is not considered valid in the modern era, we can forgive
Euclid for this less-than-rigorous proof; in fact, it is easy to turn his proof into
the general one that you will give below. Lastly, Euclid’s proof was geometric.
He was viewing his numbers as line segments with integral length. The modern
concept of number was not developed yet.

Prior to tackling a proof of Theorem 6.25, we need to prove a couple of pre-
liminary results. The proof of the first result is provided for you.

Theorem 6.23. The only natural number that divides 1 is 1.

Proof. Let 𝑚 be a natural number that divides 1. We know that 𝑚 ≥ 1 because
1 is the smallest positive integer. Since 𝑚 divides 1, there exists 𝑘 ∈ ℕ such that
1 = 𝑚𝑘. Since 𝑘 ≥ 1, we see that𝑚𝑘 ≥ 𝑚. But 1 = 𝑚𝑘, and so 1 ≥ 𝑚. Thus, we
have 1 ≤ 𝑚 ≤ 1, which implies that𝑚 = 1, as desired.

For the next theorem, try utilizing a proof by contradiction together with
Theorem 6.23.

Theorem 6.24. Let 𝑝 be a prime number and let 𝑛 ∈ ℤ. If 𝑝 divides 𝑛, then 𝑝 does
not divide 𝑛 + 1.

We are now ready to prove the following important theorem. Use a proof
by contradiction. In particular, assume that there are finitely many primes, say
𝑝1, 𝑝2, . . . , 𝑝𝑘. Consider the product of all of them and then add 1.

Theorem 6.25. There are infinitely many prime numbers.

We conclude this chapter with a fun problem involving prime numbers. This
problem comes from David Richeson (Dickinson College).
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Problem6.26. Start with the first 𝑛 prime numbers, 𝑝1, . . . , 𝑝𝑛. Divide them into
two sets. Let 𝑎 be the product of the primes in one set and let 𝑏 be the product
of the primes in the other set. Assume the product is 1 if the set is empty. For
example, if 𝑛 = 5, we could have {2, 7} and {3, 5, 11}, and so 𝑎 = 14 and 𝑏 = 165.
In general, what can we conclude about 𝑎 + 𝑏 and 𝑎 − 𝑏? Form a conjecture and
then prove it.

It does not matter how slowly you go as long
as you do not stop.

Confucius, philosopher





The impediment to action advances action.
What stands in the way becomes the way.

Marcus Aurelius, Roman emperor

7
Relations and Partitions

While there is no agreed upon universal definition of mathematics, one could ar-
gue that mathematics focuses on the study of patterns and relationships. Certain
types of relationships occur over and over in mathematics. One way of formaliz-
ing the abstract nature and structure of these relationships is with the notion of
relations. In Chapter 8, we will see that a function is a special type of relation.

7.1 Relations

Recall from Section 3.5 that the Cartesian product of two sets 𝐴 and 𝐵, written
𝐴 × 𝐵, is the set of all ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. That is,
𝐴 × 𝐵 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Definition 7.1. Let 𝐴 and 𝐵 be sets. A relation 𝑅 from 𝐴 to 𝐵 is a subset of
𝐴 × 𝐵. If 𝑅 is a relation from 𝐴 to 𝐵 and (𝑎, 𝑏) ∈ 𝑅, then we say that 𝑎 is related
to 𝑏 and wemay write 𝑎𝑅𝑏 in place of (𝑎, 𝑏) ∈ 𝑅. If 𝑅 is a relation from 𝐴 to the
same set 𝐴, then we say that 𝑅 is a relation on 𝐴.

Example 7.2. The set ℕ×ℝ from Problem 3.55 is an example of a relation on ℝ
since ℕ × ℝ is a subset of ℝ × ℝ.

It is important to notice that the order in which we write things for relations
matters. In particular, if 𝑅 is a relation from 𝐴 to 𝐵 and 𝑎𝑅𝑏, then it may or may
not be the case that 𝑏𝑅𝑎.

Example 7.3. If𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐵 = {1, 2, 3, 4}, then the set of ordered pairs
𝑅 = {(𝑎, 1), (𝑎, 2), (𝑎, 4), (𝑐, 2), (𝑑, 2), (𝑒, 2), (𝑒, 4)}

91
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is an example of a relation from 𝐴 to 𝐵. In this case, we could write (𝑐, 2) ∈ 𝑅 or
𝑐𝑅2. We could also say that 𝑎 is related to 1, 2, and 4.

Example 7.4. As in the previous example, let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. One possible
relation on 𝐴 is given by
𝑅 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑑), (𝑐, 𝑒), (𝑑, 𝑑), (𝑑, 𝑎), (𝑑, 𝑐), (𝑒, 𝑎)}.

Example 7.5. Consider the set of accounts 𝐴 on the social media platform Twit-
ter. On Twitter, each account has a set of accounts that they follow. We can
model this situation mathematically using a relation on 𝐴. Define 𝑇 on 𝐴 via
𝑥𝑇𝑦 if 𝑥 follows 𝑦 on Twitter. As a set

𝑇 = {(𝑥, 𝑦) ∈ 𝐴 × 𝐴 ∣ 𝑥 follows 𝑦 on Twitter}.

Example 7.6. You are already familiar with many relations. For example, =, ≤,
and < are each examples of relations on the real numbers. We could say that
(3, 𝜋) is in the relation ≤ and the relation < since 3 ≤ 𝜋 and 3 < 𝜋. However,
(3, 𝜋) is not in the relation = since 3 ≠ 𝜋. Also, notice that order matters for the
relations ≤ and < yet does not for =. For example, (−√2, 4) is in the relation ≤
while (4, −√2) is not.

Example 7.7. Define the relation 𝑆 from {−1, 1} to ℤ via 1𝑆𝑥 if 𝑥 is even and
−1𝑆𝑥 if 𝑥 is odd. That is, 1 is related to all even integers and −1 is related to all
odd integers.

Example 7.8. Let 𝐴 be any set. Since ∅ ⊆ 𝐴 × 𝐴, the empty set forms a relation
on 𝐴. This relation is called the empty relation on 𝐴.

Relations can be represented using digraphs. A digraph (short for directed
graph) is a discrete graph that consists of a set of vertices connected by edges,
where the edges have a direction associated with them. If 𝑅 is a relation from
𝐴 to 𝐵, then the elements of 𝐴 and 𝐵 are the vertices of the digraph and there
is a directed edge from 𝑎 ∈ 𝐴 to 𝑏 ∈ 𝐵 if (𝑎, 𝑏) is in the relation 𝑅 (i.e., 𝑎𝑅𝑏).
We can visually represent digraphs by using dots to represent the vertices and
arrows to represent directed edges. We will not make a distinction between a
digraph and its visual representation. Utilizing a digraph to represent a relation
may be impractical if there is a large number of vertices or directed edges.

Example 7.9. Consider the relation given in Example 7.3. The corresponding
digraph is depicted in Figure 7.1. Notice that we have placed the vertices corre-
sponding to elements of 𝐴 on the left and the elements of 𝐵 on the right. This is
standard practice, but what really matters is the edge connections not how the
vertices are placed on the page.
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𝑎

𝑏

𝑐

𝑑

𝑒

1

2

3

4

𝐴
𝐵

Figure 7.1. Digraph for a relation from 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} to 𝐵 =
{1, 2, 3, 4}.

Problem 7.10. Let 𝐴 = {1, 2, 3, 4, 5, 6} and 𝐵 = {1, 2, 3, 4} and define 𝐷 from 𝐴 to
𝐵 via (𝑎, 𝑏) ∈ 𝐷 if 𝑎 − 𝑏 is divisible by 2. List the ordered pairs in 𝐷 and draw the
corresponding digraph.

If 𝑅 is a relation on 𝐴 (i.e., a relation from 𝐴 to 𝐴), then we can simplify the
structure of the digraph by only utilizing one copy of 𝐴 for the vertices. In this
case, wemay have directed edges that point from a vertex to itself. When drawing
digraphs for a relation on a set, we will default to this simplified digraph (like the
one depicted in Figure 7.2(b)).

Example 7.11. Figure 7.2(a) represents the relation of Example 7.4 as a digraph
from 𝐴 to 𝐴 while the digraph in Figure 7.2(b) provides a streamlined represen-
tation of the same relation that uses the elements in𝐴 only once instead of twice.

Problem 7.12. Let 𝐴 = {1, 2, 3, 4, 5, 6} and define | on 𝐴 via 𝑥|𝑦 if 𝑥 divides 𝑦.
List the ordered pairs in | and draw the corresponding digraph.

Problem 7.13. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and define 𝑅 on 𝐴 via
𝑅 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑐), (𝑐, 𝑎), (𝑐, 𝑏), (𝑑, 𝑑)}.

(a) Draw the digraph for 𝑅.
(b) Draw the digraph for the empty relation on 𝐴.
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𝑎

𝑏

𝑐

𝑑

𝑒

𝑎

𝑏

𝑐

𝑑

𝑒

𝐴 𝐴

(a)

𝑎

𝑏

𝑑

𝑐

𝑒

(b)

Figure 7.2. Two variations of digraphs for a relation on 𝐴 =
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

We can also visually represent a relation by plotting the points in the relation.
In particular, if𝑅 is a relation from𝐴 to𝐵 and𝑎𝑅𝑏, we canplot all points (𝑎, 𝑏) that
satisfy 𝑎𝑅𝑏 in two dimensions, where we interpret the set 𝐴 to be the horizontal
axis and 𝐵 to be the vertical axis. We will refer to this visual representation of a
relation as the graph of the relation.

Example 7.14. When we write 𝑥2+𝑦2 = 1, we are implicitly defining a relation.
In particular, the relation is the set of ordered pairs (𝑥, 𝑦) satisfying 𝑥2 + 𝑦2 = 1,
namely {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 = 1}. The graph of this relation in ℝ2 is the unit
circle centered at the origin in the plane as shown in Figure 7.3.

Problem 7.15. For each of the following, draw a portion of the graph that repre-
sents the relation as a subset of ℝ2.

(a) {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑦 = 𝑥2}

(b) {(𝑥, 𝑦) ∈ ℤ2 ∣ 𝑦 = 𝑥2}

(c) {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑦2 = 𝑥}

(d) {(𝑥, 𝑦) ∈ ℕ × ℝ ∣ 𝑦2 = 𝑥}

Problem 7.16. Draw a portion of the graph that represents the relation ≤ on ℝ.
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(1, 0)

(𝑥, 𝑦)

Figure 7.3. Graph of the relation determined by 𝑥2 + 𝑦2 = 1.

For a relation on a set, it is natural to consider the collection of elements that
a given element is related to. For example, a user’s “Following List” on Twitter is
the set of accounts on Twitter that the user is following.

Definition 7.17. Let 𝑅 be a relation on a set 𝐴. For each 𝑎 ∈ 𝐴, we define the
set of relatives of 𝑎with respect to 𝑅 via

rel(𝑎, 𝑅) ≔ {𝑏 ∈ 𝐴 ∣ 𝑎𝑅𝑏} .

We also define the collection of the sets of relatives with respect to 𝑅 by

Rel(𝑅) ≔ {rel(𝑎) ∣ 𝑎 ∈ 𝐴} .

If 𝑅 is clear from the context, we will usually write rel(𝑎) in place of
rel(𝑎, 𝑅). In terms of digraphs, rel(𝑎) is the collection of vertices that have a di-
rected edge pointing towards them from the vertex labeled by 𝑎. In graph theory,
this collection of vertices is called the out neighborhood of 𝑎 and each such ver-
tex is called an out neighbor. Notice that Rel(𝑅) is a set of sets. In particular,
an element in Rel(𝑅) is a subset of 𝐴—equivalently, an element of 𝒫(𝐴).

Example 7.18. Consider the relation given in Example 7.4. By inspecting
the ordered pairs in 𝑅 or by looking at the digraph in Figure 7.2(b), we see that
rel(𝑎) = {𝑎, 𝑏, 𝑐}, rel(𝑏) = {𝑎, 𝑏, 𝑐}, rel(𝑐) = {𝑑, 𝑒}, rel(𝑑) = {𝑎, 𝑐, 𝑑}, rel(𝑒) = {𝑎},
so that Rel(𝑅) = {{𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}, {𝑎, 𝑐, 𝑑}, {𝑎}}.

Problem 7.19. Consider the relation given in Problem 7.13(a). Find Rel(𝑅) by
determining rel(𝑥) for each 𝑥 ∈ 𝐴.
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Problem 7.20. Describe the collection of the sets of relatives with respect to the
empty relation from Problem 7.13(b).

Problem 7.21. Let 𝑃 denote the set of all people with accounts on Facebook and
define the relation 𝐹 on 𝑃 via 𝑥𝐹𝑦 if 𝑥 is friends with 𝑦. Describe rel(Maria),
where Maria is the name of a specific Facebook user. What is Rel(𝐹)?

Problem 7.22. Define the relation ≡5 on ℤ via 𝑎 ≡5 𝑏 if 𝑎 − 𝑏 is divisible by 5.
Find rel(1), rel(2), and rel(6). How many distinct sets are in Rel(≡5)? List the
distinct sets in Rel(≡5).

Problem 7.23. Consider the relation ≤ on ℝ. If 𝑥 ∈ ℝ, what is rel(𝑥)?

Problem 7.24. Suppose 𝑅 is a relation on 𝐴 = {1, 2, 3, 4, 5} such that rel(1) =
{1, 3, 4}, rel(2) = {4}, rel(3) = {3, 4, 5}, rel(4) = {1, 2}, and rel(5) = ∅. List the
ordered pairs in 𝑅 and draw the corresponding digraph.

We will now examine three important properties that a relation on a set may
or may not possess.

Definition 7.25. Let 𝑅 be a relation on a set 𝐴.

(a) The relation 𝑅 is reflexive if for all 𝑎 ∈ 𝐴, 𝑎𝑅𝑎.

(b) The relation 𝑅 is symmetric if for all 𝑎, 𝑏 ∈ 𝐴, if 𝑎𝑅𝑏, then 𝑏𝑅𝑎.

(c) The relation 𝑅 is transitive if for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, if 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then 𝑎𝑅𝑐.

Example 7.26. Here are a few examples that illustrate the concepts in the pre-
vious definition.

(a) The relation = on ℝ is reflexive, symmetric, and transitive.

(b) The relation ≤ is reflexive and transitive on ℝ, but not symmetric. However,
notice that < is transitive on ℝ, but neither symmetric nor reflexive.

(c) If 𝑆 is a set, then ⊆ on 𝒫(𝑆) is reflexive and transitive, but not symmetric.

Problem 7.27. Determine whether the relations given in each of the following
is reflexive, symmetric, or transitive.

(a) Example 7.4

(b) Problem 7.13



7.1. Relations 97

Problem 7.28. Suppose 𝑅 is a relation on a set 𝐴.
(a) Explain what it means for 𝑅 to not be reflexive.

(b) Explain what it means for 𝑅 to not be symmetric.

(c) Explain what it means for 𝑅 to not be transitive.

Problem 7.29. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.
(a) Define a relation 𝑅 on 𝐴 that is reflexive but not symmetric nor transitive.

(b) Define a relation 𝑆 on 𝐴 that is symmetric but not reflexive nor transitive.

(c) Define a relation 𝑇 on 𝐴 that is transitive but not reflexive nor symmetric.

Problem 7.30. Given a relation 𝑅 on a finite set 𝐴, describe what each of re-
flexive, symmetric, and transitive look like in terms of a digraph. That is, draw
pictures that represent each of reflexive, symmetric, and transitive. One thing to
keep in mind is that the elements used in the definitions of symmetric and tran-
sitive do not have to be distinct. So, you might need to consider multiple cases.

Below,we provide skeleton proofs for proving that a relation is reflexive, sym-
metric, or transitive. Notice that the skeleton proof for proving that a relation is
reflexive is a special case of Skeleton Proof 2.81. Similarly, the skeleton proofs
involving symmetric and transitive are both special cases of Skeleton Proof 2.82.
It is important to point out that every relation on the empty set is vacuously re-
flexive, symmetric, and transitive. In the skeleton proofs below, we are implicitly
assuming that the set in question is nonempty. In some circumstances, it may be
necessary to mention the possibility of the empty set.

SkeletonProof 7.31 (Proof that a relation is reflexive). Here is the general struc-
ture for proving that a relation is reflexive.

Proof. Assume 𝑅 is a relation on𝐴 defined by [or satisfying]. . . [Use the given
definition (or describe the given property) of 𝑅]. Let 𝑎 ∈ 𝐴.

. . . [Use the definition (or property) of 𝑅 to verify that 𝑎𝑅𝑎] . . .
Therefore, the relation 𝑅 is reflexive on 𝐴.
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Skeleton Proof 7.32 (Proof that a relation is symmetric). Here is the general
structure for proving that a relation is symmetric.

Proof. Assume 𝑅 is a relation on𝐴 defined by (or satisfying). . . [Use the given
definition (or describe the given property) of𝑅]. Let 𝑎, 𝑏 ∈ 𝐴 and suppose 𝑎𝑅𝑏.

. . . [Use assumption that 𝑎𝑅𝑏 with definition (or property)
of 𝑅 to verify that 𝑏𝑅𝑎] . . .

Therefore, the relation 𝑅 is symmetric on 𝐴.

Skeleton Proof 7.33 (Proof that a relation is transitive). Here is the general
structure for proving that a relation is transitive.

Proof. Assume 𝑅 is a relation on𝐴 defined by (or satisfying). . . [Use the given
definition (or describe the given property) of 𝑅]. Let 𝑎, 𝑏, 𝑐 ∈ 𝐴 and suppose
𝑎𝑅𝑏 and 𝑏𝑅𝑐.

. . . [Use assumption that 𝑎𝑅𝑏 and 𝑏𝑅𝑐 with definition
(or property) of 𝑅 to verify that 𝑎𝑅𝑐] . . .

Therefore, the relation 𝑅 is transitive on 𝐴.

Problem 7.34. Determine whether each of the following relations is reflexive,
symmetric, or transitive. In each case, you should either provide a specific coun-
terexample or a proof.

(a) Consider the relation 𝑇 described in Example 7.5.

(b) Consider the relation 𝐹 described in Problem 7.21.

(c) Consider the relation ≡5 described in Problem 7.22.

(d) Let 𝑃 be the set of all people and define𝐻 via 𝑥𝐻𝑦 if 𝑥 and 𝑦 have the same
height.

(e) Let 𝑃 be the set of all people and define 𝑇 via 𝑥𝑇𝑦 if 𝑥 is taller than 𝑦.

(f) Consider the relation “divides” on ℕ.

(g) Let 𝐿 be the set of lines and define ‖ via 𝑙1‖𝑙2 if 𝑙1 is parallel to 𝑙2.

(h) Let 𝐶[0, 1] be the set of continuous functions on [0, 1]. Define 𝑓 ∼ 𝑔 if

∫
1

0
|𝑓(𝑥)| 𝑑𝑥 = ∫

1

0
|𝑔(𝑥)| 𝑑𝑥.

(i) Define 𝑅 on ℕ via 𝑛𝑅𝑚 if 𝑛 + 𝑚 is even.
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(j) Define 𝐷 on ℝ via (𝑥, 𝑦) ∈ 𝐷 if 𝑥 = 2𝑦.

(k) Define 𝐹 on ℤ × (ℤ ⧵ {0}) via (𝑎, 𝑏)𝐹(𝑐, 𝑑) if 𝑎𝑑 = 𝑏𝑐. Do you recognize this
relation? Think about fractions.

(l) Define ∼ on ℝ2 via (𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) if 𝑥21 + 𝑦21 = 𝑥22 + 𝑦22 .

(m) Define 𝑆 onℝ via 𝑥𝑆𝑦 if ⌊𝑥⌋ = ⌊𝑦⌋, where ⌊𝑥⌋ is the greatest integer less than
or equal to 𝑥 (e.g., ⌊𝜋⌋ = 3, ⌊−1.5⌋ = −2, and ⌊4⌋ = 4).

(n) Define 𝐶 on ℝ via 𝑥𝐶𝑦 if |𝑥 − 𝑦| < 1.

Most of what we believe, we believe because
it was told to us by someone we trusted.
What I would like to suggest, however, is
that if we rely too much on that kind of
education, we could find in the end that we
have never really learned anything.

Paul Wallace, physicist & theologian

7.2 Equivalence Relations

As we have seen in the previous section, the notions of reflexive, symmetric, and
transitive are independent of each other. That is, a relation may have some com-
bination of these properties, possibly none of themandpossibly all of them. How-
ever, we have a special name for when a relation satisfies all three properties.

Definition 7.35. Let∼ be a relation on a set𝐴. Then∼ is called an equivalence
relation on 𝐴 if ∼ is reflexive, symmetric, and transitive.

The symbol “∼” is usually pronounced as “twiddle” or “tilde” and the phrase
“𝑎 ∼ 𝑏” could be read as “𝑎 is related to 𝑏” or “𝑎 twiddles 𝑏”.

Problem 7.36. Let 𝐴 = {1, 2, 3, 4, 5, 6} and define
𝑅 = {(1, 1), (1, 6), (2, 2), (2, 3), (2, 4),

(3, 3), (3, 2), (3, 4), (4, 4), (4, 2), (4, 3), (5, 5), (6, 6), (6, 1)}.
Using 𝑅, complete each of the following.
(a) Draw the digraph for 𝑅.

(b) Determine whether 𝑅 is an equivalence relation on 𝐴.

(c) Find Rel(𝑅) by determining rel(𝑥) for each 𝑥 ∈ 𝐴.
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Problem 7.37. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.
(a) Make up an equivalence relation ∼ on 𝐴 by drawing a digraph such that 𝑎 is

not related to 𝑏 and 𝑐 is not related to 𝑏.

(b) Using your digraph, find Rel(∼) by determining rel(𝑥) for each 𝑥 ∈ 𝐴.

Problem 7.38. Given a finite set 𝐴 and an equivalence relation ∼ on 𝐴, describe
what the corresponding digraph would have to look like.

Problem7.39. Determinewhich relations given in Problem7.34 are equivalence
relations.

Problem 7.40. Let 𝒯 be the set of all triangles and define ∼ on 𝒯 via 𝑇1 ∼ 𝑇2 if
𝑇1 is similar to 𝑇2. Determine whether ∼ is an equivalence relation on 𝒯.

Problem 7.41. If possible, construct an equivalence relation on the empty set. If
this is not possible, explain why.

Theorem 7.42. Suppose ∼ is an equivalence relation on a set 𝐴 and let 𝑎, 𝑏 ∈ 𝐴.
Then rel(𝑎) = rel(𝑏) if and only if 𝑎 ∼ 𝑏.

Theorem 7.43. Suppose ∼ is an equivalence relation on a set 𝐴. Then
(a) ⋃

𝑎∈𝐴
rel(𝑎) = 𝐴, and

(b) For all 𝑎, 𝑏 ∈ 𝐴, either rel(𝑎) = rel(𝑏) or rel(𝑎) ∩ rel(𝑏) = ∅.

In light of Theorem 7.43, we have the following definition.

Definition 7.44. If ∼ is an equivalence relation on a set 𝐴, then for each 𝑎 ∈ 𝐴,
we refer to rel(𝑎) as the equivalence class of 𝑎.

When ∼ is an equivalence relation on a set 𝐴, it is common to write each
equivalence class rel(𝑎) as [𝑎] (or sometimes 𝑎). The element 𝑎 inside the
square brackets is called the representative of the equivalence class [𝑎]. The-
orem 7.42 implies that an equivalence class can be represented by any element
of the equivalence class. For example, in Problem 7.36, we have [1] = [6] since
1 and 6 are in the same equivalence class. The collection of equivalence classes
Rel(∼) is often denoted by 𝐴/∼ , which is read as “𝐴modulo ∼” or “𝐴mod ∼”.
The collection 𝐴/∼ is sometimes referred to as the quotient of 𝐴 by ∼.

Example 7.45. Let 𝑃 denote the residents of a particular town and define∼ on 𝑃
via 𝑎 ∼ 𝑏 if 𝑎 and 𝑏 have the same last name. It is easily seen that this relation is
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reflexive, symmetric, and transitive, and hence∼ is an equivalence relation on 𝑃.
The equivalence classes correspond to collections of individuals with the same
last name. For example, Maria Garcia, Anthony Garcia, and Ariana Garcia all
belong to the same equivalence class. Any Garcia can be used as a representative
for the corresponding equivalence class, so we can denote it as [Maria Garcia],
for example. The collection 𝑃/∼ consists of the various sets of people with the
same last name. In particular, [Maria Garcia] ∈ 𝑃/∼.

Example 7.46. The five distinct sets of relatives that you identified in Problem
7.22 are the equivalence classes for ≡5 on ℤ. These equivalence classes are often
called the congruence classes modulo 5.

The upshot of Theorem 7.43 is that given an equivalence relation, every ele-
ment lives in exactly one equivalence class. In the next section, we will see that
we can run this in reverse. That is, if we separate out the elements of a set so
that every element is an element of exactly one subset, then this determines an
equivalence relation.

Problem 7.47. If ∼ is an equivalence relation on a finite set 𝐴, describe 𝐴/∼ in
terms of the digraph corresponding to ∼.

Problem 7.48. For each of the equivalence relations you identified in Problem
7.39, succinctly describe the corresponding equivalence classes.

Problem 7.49. Suppose 𝑅 and 𝑆 are both equivalence relations on a set 𝐴. Is
𝑅 ∩ 𝑆 an equivalence relation on 𝐴? If so, prove it. Otherwise, provide a coun-
terexample.

Problem 7.50. Suppose 𝑅 and 𝑆 are both equivalence relations on a set 𝐴. Is
𝑅 ∪ 𝑆 an equivalence relation on 𝐴? If so, prove it. Otherwise, provide a coun-
terexample.

Mathematics has beauty and romance. It’s
not a boring place to be, the mathematical
world. It’s an extraordinary place; it’s worth
spending time there.

Marcus du Sautoy, mathematician

7.3 Partitions

Theorems 7.42 and 7.43 imply that if ∼ is an equivalence relation on a set 𝐴,
then ∼ breaks 𝐴 up into pairwise disjoint “chunks”, where each chunk is some
[𝑎] for 𝑎 ∈ 𝐴. As you have probably already noticed, equivalence relations are
intimately related to the following concept.



102 Chapter 7. Relations and Partitions

Definition 7.51. A collection Ω of subsets of a set 𝐴 is said to be a partition of
𝐴 if the elements of Ω satisfy:
(a) Each 𝑋 ∈ Ω is nonempty,

(b) For all 𝑋, 𝑌 ∈ Ω, 𝑋 ∩ 𝑌 = ∅ when 𝑋 ≠ 𝑌 , and

(c) ⋃
𝑋∈Ω

𝑋 = 𝐴.

That is, the elements ofΩ are pairwise disjoint nonempty sets and their union is
all of 𝐴. Each 𝑋 ∈ Ω is called a block of the partition.

Example 7.52. Consider the equivalence relation ∼ on the set 𝑃 described in
Example 7.45. Recall that the equivalence classes correspond to collections of
individuals with the same last name. Since each equivalence class is nonempty
and each resident of the town belongs to exactly one equivalence class, the col-
lection of equivalence classes forms a partition of 𝑃. That is, 𝑃/∼ is a partition of
𝑃, where the blocks of the partition correspond to sets of residents with the same
last name.

Example 7.53. Each of the following is an example of a partition of the set given
in parentheses.
(a) Democrat, Republican, Independent, Green Party, Libertarian, etc. (set of

registered voters)

(b) Freshman, sophomore, junior, senior (set of high school students)

(c) Evens, odds (set of integers)

(d) Rationals, irrationals (set of real numbers)

Example 7.54. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and Ω = {{𝑎}, {𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}}. Since the
elements of Ω are pairwise disjoint nonempty subsets of 𝐴 such that their union
is all of 𝐴, Ω is a partition of 𝐴 consisting of three blocks.

Problem 7.55. Consider the set 𝐴 from Example 7.54.
(a) Find a partition of 𝐴 consisting of four blocks.

(b) Find a collection of subsets of𝐴 that does not form a partition. See howmany
ways you can prevent your collection from being a partition.

Problem 7.56. For each of the following, find a partition of ℤ with the given
properties.
(a) A partition ofℤ that consists of finitelymany blocks, where each of the blocks

is infinite.
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(b) A partition of ℤ that consists of infinitely many blocks, where each of the
blocks is finite.

(c) A partition of ℤ that consists of infinitely many blocks, where each of the
blocks is infinite.

Problem 7.57. For each relation in Problem 7.34, determine whether the corre-
sponding collection of the sets of relatives forms a partition of the given set.

Problem 7.58. Can we partition the empty set? If so, describe a partition. If not,
explain why.

The next theorem spells out half of the close connection between partitions
and equivalence relations. Theorem 7.73 yields the other half.

Theorem 7.59. If ∼ is an equivalence relation on a nonempty set 𝐴, then 𝐴/∼
forms a partition of 𝐴.

Problem 7.60. In the previous theorem, why did we require 𝐴 to be nonempty?

Problem 7.61. Consider the equivalence relation
∼ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3),

(4, 4), (4, 5), (5, 4), (5, 5), (6, 6), (5, 6), (6, 5), (4, 6), (6, 4)}
on the set 𝐴 = {1, 2, 3, 4, 5, 6}. Find the partition determined by Rel(∼).

It turns out that we can reverse the situation, as well. That is, given a parti-
tion, we can form an equivalence relation such that the equivalence classes cor-
respond to the blocks of the partition. Before proving this, we need a definition.

Definition 7.62. Let 𝐴 be a set and Ω any collection of subsets of 𝐴 (not neces-
sarily a partition). Define the relation 𝑅Ω on 𝐴 via 𝑎𝑅Ω𝑏 if there exists 𝑋 ∈ Ω
that contains both 𝑎 and 𝑏. This relation is called the relation on 𝐴 associated
to Ω.

In other words, two elements are related exactly when they are in the same
subset.

Problem 7.63. Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and let Ω = {{𝑎, 𝑐}, {𝑏, 𝑐}, {𝑑, 𝑓}}. List the
ordered pairs in 𝑅Ω and draw the corresponding digraph.

Problem 7.64. Let 𝐴 and Ω be as in Example 7.54. List the ordered pairs in 𝑅Ω
and draw the corresponding digraph.
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Problem 7.65. Consider Problem 7.24. Find the relation on 𝐴 associated to
Rel(∼) and compare with what you obtained for 𝑅 in Problem 7.24.

Problem 7.66. Give an example of a set 𝐴 and a collection Ω from 𝒫(𝐴) such
that the relation 𝑅Ω is not reflexive.

Problem 7.67. Let 𝐴 = {1, 2, 3, 4, 5, 6} and Ω = {{1, 3, 4}, {2, 4}, {3, 4}, {6}}.
(a) Is Ω a partition of 𝐴?

(b) Find 𝑅Ω by listing ordered pairs or drawing a digraph.

(c) Is 𝑅Ω an equivalence relation?

(d) FindRel(𝑅Ω) (i.e., the collection of subsets of𝐴 determined by 𝑅Ω). How are
Ω and Rel(𝑅Ω) related?

Theorem 7.68. If Ω is a collection of subsets of a nonempty set 𝐴 (not necessarily
a partition) such that

⋃
𝑋∈Ω

𝑋 = 𝐴,

then 𝑅Ω is reflexive.

Problem 7.69. Is it necessary to require 𝐴 to be nonempty in Theorem 7.68?

Theorem 7.70. IfΩ is a collection of subsets of a set𝐴 (not necessarily a partition),
then 𝑅Ω is symmetric.

Theorem 7.71. IfΩ is a collection of subsets of a set𝐴 (not necessarily a partition)
such that the elements ofΩ are pairwise disjoint, then 𝑅Ω is transitive.

Problem 7.72. Why didn’t we require 𝐴 to be nonempty in Theorems 7.70 and
7.71?

Recall that Theorem 7.59 says that the equivalence classes for a relation on
a nonempty set 𝐴 determines a partition of 𝐴. The following theorem tells us
that every partition of a set yields an equivalence relation where the equivalence
classes correspond to the blocks of the partition. This result is a consequence of
Theorems 7.68, 7.70, and 7.71.

Theorem 7.73. IfΩ is a partition of a set 𝐴, then 𝑅Ω is an equivalence relation.

Together, Theorems 7.59 and 7.73 tell us that equivalence relations and par-
titions are two different ways of viewing the same thing.
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Corollary 7.74. If𝑅 is a relation on a nonempty set𝐴 such that the collection of the
set of relatives with respect to 𝑅 is a partition of𝐴, then 𝑅 is an equivalence relation.

Problem 7.75. Let 𝐴 = {∘, ▵, ▴, □, ■,★,,,/}. Make up a partition Ω on 𝐴 and
then draw the digraph corresponding to 𝑅Ω.

In the broad light of day mathematicians
check their equations and their proofs,
leaving no stone unturned in their search for
rigour. But, at night, under the full moon,
they dream, they float among the stars and
wonder at the miracle of the heavens. They
are inspired. Without dreams there is no art,
no mathematics, no life.

Michael Atiyah, mathematician

7.4 Modular Arithmetic

In this section, we look at a particular family of equivalence relations on the in-
tegers and explore the way in which arithmetic interacts with them.

Definition 7.76. For each 𝑛 ∈ ℕ, define 𝑛ℤ to be the set of all integers that are
divisible by 𝑛. In set-builder notation, we have

𝑛ℤ ≔ {𝑚 ∈ ℤ ∣ 𝑚 = 𝑛𝑘 for some 𝑘 ∈ ℤ} .

For example, 5ℤ = {. . . , −10, −5, 0, 5, 10, . . .} and 2ℤ is the set of even integers.

Problem 7.77. Consider the sets 3ℤ, 5ℤ, 15ℤ, and 20ℤ.
(a) List at least five elements in each of the above sets.

(b) Notice that 3ℤ ∩ 5ℤ = 𝑛ℤ for some 𝑛 ∈ ℕ. What is 𝑛? Describe 15ℤ ∩ 20ℤ in
a similar way.

(c) Draw a Venn diagram illustrating how the sets 3ℤ, 5ℤ, and 15ℤ intersect.

(d) Draw a Venn diagram illustrating how the sets 5ℤ, 15ℤ, and 20ℤ intersect.

Theorem 7.78. Let 𝑛 ∈ ℕ. If 𝑎, 𝑏 ∈ 𝑛ℤ, then −𝑎, 𝑎 + 𝑏, and 𝑎𝑏 are also in 𝑛ℤ.

Definition 7.79. For each 𝑛 ∈ ℕ, define the relation ≡𝑛 on ℤ via 𝑎 ≡𝑛 𝑏 if
𝑎 − 𝑏 ∈ 𝑛ℤ. We read 𝑎 ≡𝑛 𝑏 as “𝑎 is congruent to 𝑏modulo 𝑛.”
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Note that 𝑎−𝑏 ∈ 𝑛ℤ if and only if 𝑛 divides 𝑎−𝑏, which implies that 𝑎 ≡𝑛 𝑏
if and only if 𝑛 divides 𝑎 − 𝑏.

Example 7.80. We encountered ≡5 in Problem 7.22 and discovered that there
were five distinct sets of relatives. In particular, we have

rel(0) = {. . . , −10, −5, 0, 5, 10, . . .}
rel(1) = {. . . , −9, −4, 1, 6, 11, . . .}
rel(2) = {. . . , −8, −3, 2, 7, 12, . . .}
rel(3) = {. . . , −7, −2, 3, 8, 13, . . .}
rel(4) = {. . . , −6, −1, 4, 9, 14, . . .}.

Notice that this collection forms a partition of ℤ. By Corollary 7.74, the relation
≡5 must be an equivalence relation.

The previous example generalizes as expected. You can prove the following
theorem by either proving that ≡𝑛 is reflexive, symmetric, and transitive or by
utilizing Corollary 7.74.

Theorem 7.81. For 𝑛 ∈ ℕ, the relation ≡𝑛 is an equivalence relation on ℤ.

We have have special notation and terminology for the equivalence classes
that correspond to ≡𝑛.

Definition 7.82. For 𝑛 ∈ ℕ, let [𝑎]𝑛 denote the equivalence class of 𝑎 with
respect to ≡𝑛 (see Definitions 7.17 and 7.44). The equivalence class [𝑎]𝑛 is called
the congruence (or residue) class of 𝑎modulo 𝑛. The collection of all equiva-
lence classes determined by ≡𝑛 is denoted ℤ/𝑛ℤ , which is read “ℤmodulo 𝑛ℤ”.

Example 7.83. Let’s compute [2]7. Tracing back through the definitions, we see
that

𝑚 ∈ [2]7 ⟺𝑚≡7 2
⟺𝑚− 2 ∈ 7ℤ
⟺𝑚− 2 = 7𝑘 for some 𝑘 ∈ ℤ
⟺𝑚 = 7𝑘 + 2 for some 𝑘 ∈ ℤ.

Since the multiples of 7 are 7ℤ = {. . . , −14, −7, 0, 7, 14, . . .}, we can find [2]7 by
adding 2 to each element of 7ℤ to get [2]7 = {. . . , −12, −5, 2, 9, 16, . . .}.

Problem 7.84. For each of the following congruence classes, find five elements
in the set such that at least one is greater than 70 and one is less than 70.
(a) [4]7
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(b) [−3]7
(c) [7]7

Problem 7.85. Describe [0]3, [1]3, [2]3, [4]3, and [−2]3 as lists of elements as in
Example 7.83. Howmany distinct congruence classes are inℤ/3ℤ? Theorem 7.43
might be helpful.

Consider using Theorem 7.42 to prove the next theorem.

Theorem 7.86. For 𝑛 ∈ ℕ and 𝑎, 𝑏 ∈ ℤ, [𝑎]𝑛 = [𝑏]𝑛 if and only if 𝑛 divides 𝑎− 𝑏.

Corollary 7.87. For 𝑛 ∈ ℕ and 𝑎 ∈ ℤ, [𝑎]𝑛 = [0]𝑛 if and only if 𝑛 divides 𝑎.

The next result provides a useful characterization for when two congruence
classes are equal. The Division Algorithm will be useful when proving this theo-
rem.

Theorem 7.88. For 𝑛 ∈ ℕ and 𝑎, 𝑏 ∈ ℤ, [𝑎]𝑛 = [𝑏]𝑛 if and only if 𝑎 and 𝑏 have
the same remainder when divided by 𝑛.

When proving Part (a) of the next theorem, make use of Theorem 7.86. For
Part (b), note that 𝑎1𝑏1 − 𝑎2𝑏2 = 𝑎1𝑏1 − 𝑎2𝑏1 + 𝑎2𝑏1 − 𝑎2𝑏2.

Theorem 7.89. Let 𝑛 ∈ ℕ and let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℤ. If [𝑎1]𝑛 = [𝑎2]𝑛 and [𝑏1]𝑛 =
[𝑏2]𝑛, then
(a) [𝑎1 + 𝑏1]𝑛 = [𝑎2 + 𝑏2]𝑛, and
(b) [𝑎1 ⋅ 𝑏1]𝑛 = [𝑎2 ⋅ 𝑏2]𝑛.

The previous theorem allows us to define addition and multiplication in
ℤ/𝑛ℤ.

Definition 7.90. Let 𝑛 ∈ ℕ. We define the sum and product of congruence
classes in ℤ/𝑛ℤ via

[𝑎]𝑛 + [𝑏]𝑛 ≔ [𝑎 + 𝑏]𝑛 and [𝑎]𝑛 ⋅ [𝑏]𝑛 ≔ [𝑎 ⋅ 𝑏]𝑛.

Example 7.91. ByDefinition 7.90, [2]7+[6]7 = [2+6]7 = [8]7. By Theorem 7.86,
[8]7 = [1]7, and so [2]7+[6]7 = [1]7. Similarly, [2]7 ⋅[6]7 = [2⋅6]7 = [12]7 = [5]7.

Addition and multiplication for ℤ/𝑛ℤ has many familiar—and some not so
familiar—properties. For example, addition and multiplication of congruence
classes are both associative and commutative. However, it is possible for [𝑎]𝑛 ⋅
[𝑏]𝑛 = [0]𝑛 even when [𝑎]𝑛 ≠ [0]𝑛 and [𝑏]𝑛 ≠ [0]𝑛.
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Theorem 7.92. If 𝑛 ∈ ℕ, then addition in ℤ/𝑛ℤ is commutative and associative.
That is, for all [𝑎]𝑛, [𝑏]𝑛, [𝑐]𝑛 ∈ ℤ/𝑛ℤ, we have
(a) [𝑎]𝑛 + [𝑏]𝑛 = [𝑏]𝑛 + [𝑎]𝑛, and

(b) ([𝑎]𝑛 + [𝑏]𝑛) + [𝑐]𝑛 = [𝑎]𝑛 + ([𝑏]𝑛 + [𝑐]𝑛).

Theorem 7.93. If 𝑛 ∈ ℕ, then multiplication in ℤ/𝑛ℤ is commutative and asso-
ciative. That is, for all [𝑎]𝑛, [𝑏]𝑛, [𝑐]𝑛 ∈ ℤ/𝑛ℤ, we have
(a) [𝑎]𝑛 ⋅ [𝑏]𝑛 = [𝑏]𝑛 ⋅ [𝑎]𝑛, and

(b) ([𝑎]𝑛 ⋅ [𝑏]𝑛) ⋅ [𝑐]𝑛 = [𝑎]𝑛 ⋅ ([𝑏]𝑛 ⋅ [𝑐]𝑛).

One consequence of Theorems 7.92(b) and 7.93(b) is that parentheses are
not needed when adding or multiplying congruence classes. The next theorem
follows from Definition 7.90 together with Theorems 7.92(b) and 7.93(b) and in-
duction on 𝑘.

Theorem 7.94. Let 𝑛 ∈ ℕ. For all 𝑘 ∈ ℕ, if [𝑎1]𝑛, [𝑎2]𝑛, . . . , [𝑎𝑘]𝑛 ∈ ℤ/𝑛ℤ, then
(a) [𝑎1]𝑛 + [𝑎2]𝑛 +⋯+ [𝑎𝑘]𝑛 = [𝑎1 + 𝑎2 +⋯+ 𝑎𝑘]𝑛, and

(b) [𝑎1]𝑛[𝑎2]𝑛⋯[𝑎𝑘]𝑛 = [𝑎1𝑎2⋯𝑎𝑘]𝑛.

The next result is a special case of Theorem 7.94(b).

Corollary 7.95. Let 𝑛 ∈ ℕ. If 𝑎 ∈ ℤ and 𝑘 ∈ ℕ, then ([𝑎]𝑛)𝑘 = [𝑎𝑘]𝑛.

Example 7.96. Let’s compute [8179]7. We see that
[8179]7 = ([8]7)179 (Corollary 7.95)

= ([1]7)179 (Theorem 7.86)
= [1179]7 (Corollary 7.95)
= [1]7.

For Part (a) in the next problem, use the fact that [6]7 = [−1]7. For Part (b),
use the fact that [23]7 = [1]7.

Problem 7.97. For each of the following, find a number 𝑎 with 0 ≤ 𝑎 ≤ 6 such
that the given quantity is equal to [𝑎]7.
(a) [6179]7
(b) [2300]7
(c) [2301 + 5]7
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Problem 7.98. Find 𝑎 and 𝑏 such that [𝑎]6 ⋅ [𝑏]6 = [0]6 but [𝑎]6 ≠ [0]6 and
[𝑏]6 ≠ [0]6.

Theorem 7.99. If 𝑛 ∈ ℕ such that 𝑛 is not prime, then there exists [𝑎]𝑛, [𝑏]𝑛 ∈
ℤ/𝑛ℤ such that [𝑎]𝑛 ⋅ [𝑏]𝑛 = [0]𝑛 while [𝑎]𝑛 ≠ [0]𝑛 and [𝑏]𝑛 ≠ [0]𝑛.

Problem 7.100. Notice that 2𝑥 = 1 has no solution in ℤ. Show that [2]7[𝑥]7 =
[1]7 does have a solution with 𝑥 in ℤ. What about [14]7[𝑥]7 = [1]7?

Make use of Theorem 7.94, Corollary 7.95, and Theorem 7.86 to prove the
following theorem.

Theorem 7.101. If𝑚 ∈ ℕ such that
𝑚 = 𝑎𝑘10𝑘 + 𝑎𝑘−110𝑘−1 +⋯+ 𝑎110 + 𝑎0,

where 𝑎𝑘, 𝑎𝑘−1, . . . , 𝑎1, 𝑎0 ∈ {0, 1, . . . , 9} (i.e., 𝑎𝑘, 𝑎𝑘−1, . . . , 𝑎1, 𝑎0 are the digits of
𝑚), then

[𝑚]3 = [𝑎𝑘 + 𝑎𝑘−1 +⋯+ 𝑎1 + 𝑎0]3.

You likely recognize the next result. Its proof follows quickly from Corol-
lary 7.87 together with the previous theorem.

Theorem 7.102. An integer is divisible by 3 if and only if the sum of its digits is
divisible by 3.

Let’s revisit Theorem 4.21, which we originally proved by induction.

Problem 7.103. Use Corollary 7.87 to prove that for all integers 𝑛 ≥ 0, 32𝑛 −1 is
divisible by 8. You will need to handle the case involving 𝑛 = 0 separately.

We close this chapter with a fun problem.

Problem 7.104. Prove or provide a counterexample: No integer 𝑛 exists such
that 4𝑛 + 3 is a perfect square.

Without change something sleeps inside us,
and seldom awakens. The sleeper must
awaken.

Dune by Frank Herbert





I write one page of masterpiece to
ninety-one pages of shit.

Ernest Hemingway, novelist & journalist

8
Functions

In this chapter, we will introduce the concept of function as a special type of
relation. Our definition should agree with any previous definition of function
that you may have learned. We will also study various properties that a function
may or may not possess.

8.1 Introduction to Functions

Upuntil this point, youmayhave only encountered functions as an algebraic rule,
e.g., 𝑓(𝑥) = 𝑥2 − 1, for transforming one real number into another. However, we
can study functions in a much broader context. The basic building blocks of a
function are a first set and a second set, say 𝑋 and 𝑌 , and a “correspondence”
that assigns every element of 𝑋 to exactly one element of 𝑌 . Let’s take a look at
the actual definition.

Definition 8.1. Let𝑋 and𝑌 be two nonempty sets. A function 𝑓 from𝑋 to𝑌 is
a relation from 𝑋 to 𝑌 such that for every 𝑥 ∈ 𝑋 , there exists a unique 𝑦 ∈ 𝑌 such
that (𝑥, 𝑦) ∈ 𝑓. The set 𝑋 is called the domain of 𝑓 and is denoted by Dom(𝑓) .
The set 𝑌 is called the codomain of 𝑓 and is denoted by Codom(𝑓) while the
subset of the codomain defined via

Rng(𝑓) ≔ {𝑦 ∈ 𝑌 ∣ there exists 𝑥 such that (𝑥, 𝑦) ∈ 𝑓}
is called the range of 𝑓 or the image of 𝑋 under 𝑓.

There is a variety of notation and terminology associated to functions. We
will write 𝑓 ∶ 𝑋 → 𝑌 to indicate that 𝑓 is a function from 𝑋 to 𝑌 . We will make

111
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use of statements such as “Let 𝑓 ∶ 𝑋 → 𝑌 be the function defined via. . . ” or
“Define 𝑓 ∶ 𝑋 → 𝑌 via. . . ”, where 𝑓 is understood to be a function in the second
statement. Sometimes the wordmapping (ormap) is used in place of the word
function. If (𝑎, 𝑏) ∈ 𝑓 for a function 𝑓, we often write 𝑓(𝑎) = 𝑏 and say that “𝑓
maps 𝑎 to 𝑏” or “𝑓 of 𝑎 equals 𝑏”. In this case, 𝑎may be called an input of 𝑓 and
is the preimage of 𝑏 under 𝑓 while 𝑏 is called an output of 𝑓 and is the image
of 𝑎 under 𝑓. Note that the domain of a function is the set of inputs while the
range is the set of outputs for the function.

According to our definition, if 𝑓 ∶ 𝑋 → 𝑌 is a function, then every ele-
ment of the domain is utilized exactly once. However, there are no restrictions
on whether an element of the codomain ever appears in the second coordinate of
an ordered pair in the relation. Yet if an element of 𝑌 is in the range of 𝑓, it may
appear in more than one ordered pair in the relation.

It follows immediately from the definition of function that two functions are
equal if and only if they have the same domain, same codomain, and the same set
of ordered pairs in the relation. That is, functions 𝑓 and 𝑔 are equal if and only if
Dom(𝑓) = Dom(𝑔), Codom(𝑓) = Codom(𝑔), and 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋 .

Since functions are special types of relations, we can represent themusing di-
graphs and graphs when practical. Digraphs for functions are often called func-
tion (ormapping) diagrams. When drawing function diagrams, it is standard
practice to put the vertices for the domain on the left and the vertices for the
codomain on the right, so that all directed edges point from left to right. We may
also draw an additional arrow labeled by the name of the function from the do-
main to the codomain.

Example 8.2. Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} to 𝑌 = {1, 2, 3, 4} and define the relation 𝑓 from
𝑋 to 𝑌 via

𝑓 = {(𝑎, 2), (𝑏, 4), (𝑐, 4), (𝑑, 1)}.
Since each element 𝑋 appears exactly once as a first coordinate, 𝑓 is a function
with domain 𝑋 and codomain 𝑌 (i.e., 𝑓 ∶ 𝑋 → 𝑌 ). In this case, we see that
Rng(𝑓) = {1, 2, 4}. Moreover, we can write things like 𝑓(𝑎) = 2 and 𝑐 ↦ 4, and
say things like “𝑓 maps 𝑏 to 4” and “the image of 𝑑 is 1.” The function diagram
for 𝑓 is depicted in Figure 8.1.

Problem 8.3. Determine whether each of the relations defined in the following
examples and problems is a function.
(a) Example 7.3 (see Figure 7.1)

(b) Example 7.14 (see Figure 7.3)

(c) Problem 7.15

(d) Problem 7.21
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𝑎

𝑏

𝑐

𝑑

1

2

3

4

𝑋 𝑌

𝑓

Figure 8.1. Function diagram for a function from 𝑋 =
{𝑎, 𝑏, 𝑐, 𝑑, } to 𝑌 = {1, 2, 3, 4}.

Problem 8.4. Let 𝑋 = {∘,□,△,,} and 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. For each of the fol-
lowing relations, draw the corresponding digraph and determine whether the
relation represents a function from 𝑋 to 𝑌 , 𝑌 to 𝑋 , 𝑋 to 𝑋 , or does not represent
a function. If the relation is a function, determine the domain, codomain, and
range.
(a) 𝑓 = {(∘, 𝑎), (□, 𝑏), (△, 𝑐), (,, 𝑑)}
(b) 𝑔 = {(∘, 𝑎), (□, 𝑏), (△, 𝑐), (,, 𝑐)}
(c) ℎ = {(∘, 𝑎), (□, 𝑏), (△, 𝑐), (∘, 𝑑)}
(d) 𝑘 = {(∘, 𝑎), (□, 𝑏), (△, 𝑐), (,, 𝑑), (□, 𝑒)}
(e) 𝑙 = {(∘, 𝑒), (□, 𝑒), (△, 𝑒), (,, 𝑒)}
(f) 𝑚 = {(∘, 𝑎), (△, 𝑏), (,, 𝑐)}
(g) 𝑖 = {(∘, ∘), (□,□), (△,△), (,,,)}
(h) Define the relation happy from 𝑌 to 𝑋 via (𝑦,,) ∈ happy for all 𝑦 ∈ 𝑌 .
(i) nugget = {(∘, ∘), (□,□), (△,△), (,,□)}

The last two parts of the previous problem make it clear that functions may
have names consisting of more than one letter. The function names sin, cos, log,
and ln are instances of this that you have likely encountered in your previous ex-
perience in mathematics. One thing that you may have never noticed is the type



114 Chapter 8. Functions

of font that we use for function names. It is common to italicize generic func-
tion names like 𝑓 but not common function names like sin. However, we always
italicize the variables used to represent the input and output for a function. For
example, consider the font types used in the expressions sin(𝑥) and ln(𝑎).

Problem 8.5. What properties does the digraph for a relation from 𝑋 to 𝑌 need
to have in order for it to represent a function?

Problem 8.6. In high school you may have been told that a graph represents a
function if it passes the vertical line test. Carefully state what the vertical line
test says and then explain why it works.

Sometimes we can define a function using a formula. For example, we can
write 𝑓(𝑥) = 𝑥2 −1 to mean that each 𝑥 in the domain of 𝑓maps to 𝑥2 −1 in the
codomain. However, notice that providing only a formula is ambiguous! A func-
tion is determined by its domain, codomain, and the correspondence between
these two sets. If we only provide a description for the correspondence, it is not
clear what the domain and codomain are. Two functions that are defined by the
same formula, but have different domains or codomains are not equal.

Example 8.7. The function 𝑓 ∶ ℝ → ℝ defined via 𝑓(𝑥) = 𝑥2 − 1 is not equal to
the function 𝑔 ∶ ℕ → ℝ defined by 𝑔(𝑥) = 𝑥2 − 1 since the two functions do not
have the same domain.

Sometimes we rely on context to interpret the domain and codomain. For
example, in a calculus class, when we describe a function in terms of a formula,
we are implicitly assuming that the domain is the largest allowable subset ofℝ—
sometimes called the default domain—that makes sense for the given formula
while the codomain is ℝ.

Example 8.8. If we write 𝑓(𝑥) = 𝑥2 − 1, 𝑔(𝑥) = √𝑥, and ℎ(𝑥) = 1
𝑥
without

mentioning the domains, we would typically interpret these as the functions 𝑓 ∶
ℝ → ℝ, 𝑔 ∶ [0,∞) → ℝ, and ℎ ∶ ℝ ⧵ {0} → ℝ that are determined by their
respective formulas.

Problem 8.9. Provide an example of each of the following. You may draw a
function diagram, write down a list of ordered pairs, or write a formula as long
as the domain and codomain are clear.
(a) A function 𝑓 from a set with 4 elements to a set with 3 elements such that

Rng(𝑓) = Codom(𝑓).
(b) A function 𝑔 from a set with 4 elements to a set with 3 elements such that

Rng(𝑔) is strictly smaller than Codom(𝑔).
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Problem 8.10. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and suppose that 𝑋 and 𝑌 are
finite sets with 𝑛 and𝑚 elements, respectively, such that 𝑛 < 𝑚. Is it possible for
Rng(𝑓) = Codom(𝑓)? If so, provide an example. If this is not possible, explain
why.

There are a few special functions that we should know the names of.

Definition 8.11. If 𝑋 and 𝑌 are nonempty sets such that 𝑋 ⊆ 𝑌 , then the
function 𝜄 ∶ 𝑋 → 𝑌 defined via 𝜄(𝑥) = 𝑥 is called the inclusion map from
𝑋 into 𝑌 .

Note that “𝜄” is the Greek letter “iota”.

Problem 8.12. Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑}. Draw the function diagram
of the inclusion map from 𝑋 into 𝑌 .

If the domain and codomain are equal, the inclusionmap has a special name.

Definition 8.13. If 𝑋 is a nonempty set, then the function 𝑖𝑋 ∶ 𝑋 → 𝑋 defined
via 𝑖𝑋(𝑥) = 𝑥 is called the identity map (or identity function) on 𝑋 .

Example 8.14. The relation defined in Problem 8.4(g) is the identity map on
𝑋 = {∘,□,△,,}.
Problem 8.15. Draw a portion of the graph of the identity map on ℝ as a subset
of ℝ2.

Problem 8.16. Let 𝐴 be a nonempty set.

(a) Suppose 𝑅 is an equivalence relation on 𝐴. What conditions on 𝑅 must hold
in order for 𝑅 to be a function from 𝐴 to 𝐴?

(b) Suppose 𝑓 ∶ 𝐴 → 𝐴 is a function. Under what conditions is 𝑓 an equivalence
relation on 𝐴?

Definition 8.17. Any function 𝑓 ∶ 𝑋 → 𝑌 defined via 𝑓(𝑥) = 𝑐 for a fixed 𝑐 ∈ 𝑌
is called a constant function.

Example 8.18. The function defined in Problem 8.4(h) is an example of a con-
stant function. Notice that we can succinctly describe this function using the
formula happy(𝑦) = ,.
Definition 8.19. A piecewise-defined function (or piecewise function) is a
function defined by specifying its output on a partition of the domain.
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Note that “piecewise” is a way of expressing the function, rather than a prop-
erty of the function itself.

Example 8.20. Wecan express the function inProblem8.4(i) as a piecewise func-
tion using the formula

nugget(𝑥) = {𝑥, if 𝑥 is a geometric shape,
□, otherwise.

Example 8.21. The function 𝑓 ∶ ℝ → ℝ defined via

𝑓(𝑥) =
⎧
⎨
⎩

𝑥2 − 1, if 𝑥 ≥ 0,
17, if − 2 ≤ 𝑥 < 0,
−𝑥, if 𝑥 < −2

is an example of a piecewise-defined function.

Problem 8.22. Define 𝑓 ∶ ℝ ⧵ {0} → ℝ via 𝑓(𝑥) = |𝑥|
𝑥
. Express 𝑓 as a piecewise

function.

It is important to point out that not every function can be described using a
formula! Despite your prior experience, functions that can be represented suc-
cinctly using a formula are rare.

The next problem illustrates that some care must be taken when attempting
to define a function.

Problem 8.23. For each of the following, explain why the given description does
not define a function.

(a) Define 𝑓 ∶ {1, 2, 3} → {1, 2, 3} via 𝑓(𝑎) = 𝑎 − 1.

(b) Define 𝑔 ∶ ℕ → ℚ via 𝑔(𝑛) = 𝑛
𝑛−1

.

(c) Let 𝐴1 = {1, 2, 3} and 𝐴2 = {3, 4, 5}. Define ℎ ∶ 𝐴1 ∪ 𝐴2 → {1, 2} via

ℎ(𝑥) = {1, if 𝑥 ∈ 𝐴1
2, if 𝑥 ∈ 𝐴2.

(d) Define 𝑠 ∶ ℚ → ℤ via 𝑠(𝑎/𝑏) = 𝑎 + 𝑏.

In mathematics, we say that an expression is well defined (or unambigu-
ous) if its definition yields a unique interpretation. Otherwise, we say that the
expression is not well defined (or is ambiguous). For example, if 𝑎, 𝑏, 𝑐 ∈ ℝ,
then the expression 𝑎𝑏𝑐 is well defined since it does not matter if we interpret
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this as (𝑎𝑏)𝑐 or 𝑎(𝑏𝑐) since the real numbers are associative under multiplica-
tion. This issue was lurking behind the scenes in the statement of Theorem 7.94.
In particular, the expressions

[𝑎1]𝑛 + [𝑎2]𝑛 +⋯+ [𝑎𝑘]𝑛
and

[𝑎1]𝑛[𝑎2]𝑛⋯[𝑎𝑘]𝑛
are well defined in ℤ/𝑛ℤ in light of Theorems 7.92(b) and 7.93(b).

When we attempt to define a function, it may not be clear without doing
some work that our definition really does yield a function. If there is some po-
tential ambiguity in the definition of a function that ends up not causing any
issues, we say that the function is well defined. However, this phrase is a bit of
misnomer since all functions arewell defined. The issue of whether a description
for a proposed function is well defined often arises when defining things in terms
of representatives of equivalence classes, or more generally in terms of how an
element of the domain is written. For example, the descriptions given in Parts (c)
and (d) of Problem 8.23 are not well defined. To show that a potentially ambigu-
ous description for a function 𝑓 ∶ 𝑋 → 𝑌 is well defined prove that if 𝑎 and 𝑏 are
two representations for the same element in 𝑋 , then 𝑓(𝑎) = 𝑓(𝑏).

Problem 8.24. For each of the following, determine whether the description
determines a well-defined function.

(a) Define 𝑓 ∶ ℤ/5ℤ → ℕ via

𝑓([𝑎]5) = {0, if 𝑎 is even
1, if 𝑎 is odd.

(b) Define 𝑔 ∶ ℤ/6ℤ → ℕ via

𝑔([𝑎]6) = {0, if 𝑎 is even
1, if 𝑎 is odd.

(c) Define𝑚 ∶ ℤ/8ℤ → ℤ/10ℤ via𝑚([𝑥]8) = [6𝑥]10.

(d) Define ℎ ∶ ℤ/10ℤ → ℤ/10ℤ via ℎ([𝑥]10) = [6𝑥]10.

(e) Define 𝑘 ∶ ℤ/43ℤ → ℤ/43ℤ via 𝑘([𝑥]43) = [11𝑥 − 5]43.

(f) Define ℓ ∶ ℤ/15ℤ → ℤ/15ℤ via ℓ([𝑥]15) = [5𝑥 − 11]15.

Problem 8.25. Let 𝑘, 𝑛 ∈ ℕ and 𝑚 ∈ ℤ. Under what conditions will 𝑓𝑚 ∶
ℤ/𝑛ℤ → ℤ/𝑘ℤ given by 𝑓𝑚([𝑥]𝑛) = [𝑚𝑥]𝑘 be a well-defined function? Prove
your claim.



118 Chapter 8. Functions

Don’t let anyone rob you of your
imagination, your creativity, or your
curiosity. It’s your place in the world; it’s
your life. Go on and do all you can with it,
and make it the life you want to live.

Mae Jemison, NASA astronaut

8.2 Injective and Surjective Functions

We now turn our attention to some important properties that a function may or
may not possess. Recall that if 𝑓 is a function, then every element in its domain is
mapped to a unique element in the range. However, there are no restrictions on
whether more than one element of the domain is mapped to the same element
in the range. If each element in the range has a unique element in the domain
mapping to it, then we say that the function is injective. Moreover, the range
of a function is not required to be all of the codomain. If every element of the
codomain has at least one element in the domain that maps to it, then we say
that the function is surjective. Let’s make these definitions a bit more precise.

Definition 8.26. Let 𝑓 ∶ 𝑋 → 𝑌 be a function.
(a) The function 𝑓 is said to be injective (or one-to-one) if for all 𝑦 ∈ Rng(𝑓),

there is a unique 𝑥 ∈ 𝑋 such that 𝑦 = 𝑓(𝑥).
(b) The function 𝑓 is said to be surjective (or onto) if for all 𝑦 ∈ 𝑌 , there exists

𝑥 ∈ 𝑋 such that 𝑦 = 𝑓(𝑥).
(c) If 𝑓 is both injective and surjective, we say that 𝑓 is bijective.

Problem 8.27. Compare and contrast the following statements. Do they mean
the same thing?
(a) For all 𝑥 ∈ 𝑋 , there exists a unique 𝑦 ∈ 𝑌 such that 𝑓(𝑥) = 𝑦.
(b) For all 𝑦 ∈ Rng(𝑓), there is a unique 𝑥 ∈ 𝑋 such that 𝑦 = 𝑓(𝑥).

Problem 8.28. Assume that 𝑋 and 𝑌 are finite sets. Provide an example of each
of the following. You may draw a function diagram, write down a list of ordered
pairs, or write a formula as long as the domain and codomain are clear.
(a) A function 𝑓 ∶ 𝑋 → 𝑌 that is injective but not surjective.
(b) A function 𝑓 ∶ 𝑋 → 𝑌 that is surjective but not injective.
(c) A function 𝑓 ∶ 𝑋 → 𝑌 that is a bijection.
(d) A function 𝑓 ∶ 𝑋 → 𝑌 that is neither injective nor surjective.
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Problem 8.29. Provide an example of each of the following. You may either
draw a graph or write down a formula. Make sure you have the correct domain.
(a) A function 𝑓 ∶ ℝ → ℝ that is injective but not surjective.

(b) A function 𝑓 ∶ ℝ → ℝ that is surjective but not injective.

(c) A function 𝑓 ∶ ℝ → ℝ that is a bijection.

(d) A function 𝑓 ∶ ℝ → ℝ that is neither injective nor surjective.

(e) A function 𝑓 ∶ ℕ × ℕ → ℕ that is injective.

Problem 8.30. Suppose 𝑋 ⊆ ℝ and 𝑓 ∶ 𝑋 → ℝ is a function. Fill in the blank
with the appropriate word.

The function 𝑓 ∶ 𝑋 → ℝ is if and only if every horizontal line
hits the graph of 𝑓 at most once.

This statement is often called the horizontal line test. Explain why the hori-
zontal line test is true.

Problem 8.31. Suppose 𝑋 ⊆ ℝ and 𝑓 ∶ 𝑋 → ℝ is a function. Fill in the blank
with the appropriate word.

The function 𝑓 ∶ 𝑋 → ℝ is if and only if every horizontal line
hits the graph of 𝑓 at least once.

Explain why this statement is true.

Problem 8.32. Suppose 𝑋 ⊆ ℝ and 𝑓 ∶ 𝑋 → ℝ is a function. Fill in the blank
with the appropriate word.

The function 𝑓 ∶ 𝑋 → ℝ is if and only if every horizontal line
hits the graph of 𝑓 exactly once.

Explain why this statement is true.

How do we prove that a function 𝑓 is injective? We would need to show that
every element in the range has a unique element from the domain that maps to
it. First, notice that each element in the range can be written as 𝑓(𝑥) for at least
one 𝑥 in the domain. To argue that each such element in domain is unique, we
can suppose 𝑓(𝑥1) = 𝑓(𝑥2) for arbitrary 𝑥1 and 𝑥2 in the domain and then work
to show that 𝑥1 = 𝑥2. It is important to point out that when we suppose 𝑓(𝑥1) =
𝑓(𝑥2) for some 𝑥1 and 𝑥2, we are not assuming that 𝑥1 and 𝑥2 are different. In
general, when we write “Let 𝑥1, 𝑥2 ∈ 𝑋 . . . ”, we are leaving open the possibility
that 𝑥1 and 𝑥2 are actually the same element. One could approach proving that
a function is injective by utilizing a proof by contradiction, but this is not usually
necessary.
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Skeleton Proof 8.33 (Proof that a function is injective). Here is the general
structure for proving that a function is injective.

Proof. Assume 𝑓 ∶ 𝑋 → 𝑌 is a function defined by (or satisfying). . . [Use
the given definition (or describe the given property) of 𝑓]. Let 𝑥1, 𝑥2 ∈ 𝑋 and
suppose 𝑓(𝑥1) = 𝑓(𝑥2).

. . . [Use the definition (or property) of 𝑓 to verify that 𝑥1 = 𝑥2] . . .
Therefore, the function 𝑓 is injective.

How do we prove that a function 𝑓 is surjective? We would need to argue
that every element in the codomain is also in the range. Sometimes, the proof
that a particular function is surjective is extremely short, so do not second guess
yourself if you find yourself in this situation.

Skeleton Proof 8.34 (Proof that a function is surjective). Here is the general
structure for proving that a function is surjective.

Proof. Assume 𝑓 ∶ 𝑋 → 𝑌 is a function defined by (or satisfying). . . [Use the
given definition (or describe the given property) of 𝑓]. Let 𝑦 ∈ 𝑌 .

. . . [Use the definition (or property) of 𝑓 to find some 𝑥 ∈ 𝑋
such that 𝑓(𝑥) = 𝑦] . . .

Therefore, the function 𝑓 is surjective.

Problem 8.35. Determine whether each of the following functions is injective,
surjective, both, or neither. In each case, you should provide a proof or a coun-
terexample as appropriate.

(a) Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2

(b) Define 𝑔 ∶ ℝ → [0,∞) via 𝑔(𝑥) = 𝑥2

(c) Define ℎ ∶ ℝ → ℝ via ℎ(𝑥) = 𝑥3

(d) Define 𝑘 ∶ ℝ → ℝ via 𝑘(𝑥) = 𝑥3 − 𝑥

(e) Define 𝑐 ∶ ℝ × ℝ → ℝ via 𝑐(𝑥, 𝑦) = 𝑥2 + 𝑦2

(f) Define 𝑓 ∶ ℕ → ℕ × ℕ via 𝑓(𝑛) = (𝑛, 𝑛)

(g) Define 𝑔 ∶ ℤ → ℤ via

𝑔(𝑛) = {
𝑛
2
, if 𝑛 is even

𝑛+1
2
, if 𝑛 is odd
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(h) Define ℓ ∶ ℤ → ℕ via

ℓ(𝑛) = {2𝑛 + 1, if 𝑛 ≥ 0
−2𝑛, if 𝑛 < 0

(i) The function ℎ defined in Problem 8.24(d)

(j) The function 𝑘 defined in Problem 8.24(e)

(k) The function ℓ defined in Problem 8.24(f)

Problem 8.36. Suppose 𝑋 and 𝑌 are nonempty sets with𝑚 and 𝑛 elements, re-
spectively, where𝑚 ≤ 𝑛. How many injections are there from 𝑋 to 𝑌?

Problem 8.37. Compare and contrast the definition of “function” with the def-
inition of “injective function”. Consider the vertical line test and horizontal line
test in your discussion. Moreover, attempt to capture what it means for a relation
to not be a function and for a function to not be an injection by drawing portions
of a digraph.

The next two theorems should not come as as surprise.

Theorem 8.38. The inclusion map 𝜄 ∶ 𝑋 → 𝑌 for 𝑋 ⊆ 𝑌 is an injection.

Theorem 8.39. The identity function 𝑖𝑋 ∶ 𝑋 → 𝑋 is a bijection.

Problem 8.40. Let 𝐴 and 𝐵 be nonempty sets and let 𝑆 be a nonempty subset of
𝐴 × 𝐵. Define 𝜋1 ∶ 𝑆 → 𝐴 and 𝜋2 ∶ 𝑆 → 𝐵 via 𝜋1(𝑎, 𝑏) = 𝑎 and 𝜋2(𝑎, 𝑏) = 𝑏. We
call 𝜋1 and 𝜋2 the projections of 𝑆 onto 𝐴 and 𝐵, respectively.
(a) Provide examples to show that 𝜋1 does not need to be injective nor surjective.
(b) Suppose that 𝑆 is also a function. Is 𝜋1 injective? Is 𝜋1 surjective?

How about 𝜋2?

The next theorem says that if we have an equivalence relation on a nonempty
set, the mapping that assigns each element to its respective equivalence class is a
surjective function.

Theorem 8.41. If∼ is an equivalence relation on a nonempty set𝐴, then the func-
tion 𝑓 ∶ 𝐴 → 𝐴/∼ defined via 𝑓(𝑥) = [𝑥] is a surjection.

The function from the previous theorem is sometimes called the canonical
projection map induced by ∼.

Problem 8.42. Under what circumstances would the function from the previous
theorem also be injective?
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Let’s explore whether we can weaken the hypotheses of Theorem 8.41.

Problem 8.43. Let 𝑅 be a relation on a nonempty set 𝐴.
(a) What conditions on 𝑅 must hold in order for 𝑓 ∶ 𝐴 → Rel(𝑅) defined via

𝑓(𝑎) = rel(𝑎) to be a function?
(b) What additional conditions, if any, must hold on 𝑅 in order for 𝑓 to be a

surjective function?

Given any function, we can define an equivalence relation on its domain,
where the equivalence classes correspond to the elements that map to the same
element of the range.

Theorem 8.44. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and define ∼ on 𝑋 via 𝑎 ∼ 𝑏 if
𝑓(𝑎) = 𝑓(𝑏). Then ∼ is an equivalence relation on 𝑋 .

It follows immediately from Theorem 7.59 that the equivalence classes in-
duced by the equivalence relation in Theorem 8.44 partition the domain of a
function.

Problem 8.45. For each of the following, identify the equivalence classes in-
duced by the relation from Theorem 8.44 for the given function.
(a) The function 𝑓 defined in Example 8.2.
(b) The function 𝑐 defined in Problem 8.35(e). Can you describe the equivalence

classes geometrically?

If 𝑓 is a function, the equivalence relation in Theorem 8.44 allows us to con-
struct a bijective function whose domain is the set of equivalence classes and
whose codomain coincides with the range of 𝑓. This is an important idea that
manifests itself in many areas of mathematics. One such instance is the First
Isomorphism Theorem for Groups, which is a fundamental theorem in a branch
of mathematics called group theory. When proving the following theorem, the
first thing you should do is verify that the description for 𝑓 is well defined.

Theorem8.46. Let𝑓 ∶ 𝑋 → 𝑌 be a functionanddefine∼ on𝑋 as inTheorem 8.44.
Then the function 𝑓 ∶ 𝑋/∼ → Rng(𝑓) defined via 𝑓([𝑎]) = 𝑓(𝑎) is a bijection.

Here is an analogy for helping understand the content of Theorem 8.46. Sup-
pose we have a collection airplanes filled with passengers and a collection of po-
tential destination cities such that at most one airplane may land at each city.
The function 𝑓 indicates which city each passenger lands at while the function
𝑓 indicates which city each airplane lands at. Moreover, the codomain for the
function 𝑓 consists only of the cities that an airplane lands at.
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Example 8.47. Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and 𝑌 = {1, 2, 3, 4, 5} and define 𝜑 ∶ 𝑋 →
𝑌 via

𝜑 = {(𝑎, 1), (𝑏, 1), (𝑐, 2), (𝑑, 4), (𝑒, 4), (𝑓, 4)}.
The function diagram for 𝜑 is given in Figure 8.2(a), where we have highlighted
the elements of the domain that map to the same element in the range by en-
closing them in additional boxes. We see that Rng(𝜑) = {1, 2, 4}. The function
diagram for the induced map 𝜑 that is depicted in Figure 8.2(b) makes it clear
that 𝜑 is a bijection. Note that since 𝜑(𝑎) = 𝜑(𝑏) and 𝜑(𝑑) = 𝜑(𝑒) = 𝜑(𝑓), it
must be the case that [𝑎] = [𝑏] and [𝑑] = [𝑒] = [𝑓] according to Theorem 7.42.
Thus, the vertices labeled as [𝑎] and [𝑑] in Figure 8.2(b) could have also been la-
beled as [𝑏] and [𝑐] or [𝑑], respectively. In terms of our passengers and airplanes
analogy, 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} is the set of passengers, 𝑌 = {1, 2, 3, 4, 5} is the set
of potential destination cities, 𝑋/∼ = {[𝑎], [𝑐], [𝑑]} is the set of airplanes, and
Rng(𝜑) = {1, 2, 4} is the set of cities that airplanes land at. The equivalence class
[𝑎] is the airplane containing the passenger 𝑎, and since 𝑎 and 𝑏 are on the same
plane, [𝑏] is also the plane containing the passenger 𝑎.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

1

2

3

4

5

𝑋

𝑌

𝜑

(a)

[𝑎]

[𝑐]

[𝑑]

1

2

4

𝑋/∼ Rng(𝜑)

𝜑

(b)

Figure 8.2. Example of a visual representation of Theorem 8.46.
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Problem 8.48. Consider the equivalence classes you identified in Parts (a) and
(b) of Problem 8.45.

(a) Draw the function diagram for the function 𝑓 as defined in Theorem 8.46,
where 𝑓 is the function defined in Example 8.2.

(b) Geometrically describe the function 𝑐 as defined in Theorem 8.46, where 𝑐 is
the function defined in Problem 8.35(e).

While perhaps not surprising, Problem 8.48(b) tells us that there is a one-to-
one correspondence between circles centered at the origin and real numbers.

Problem 8.49. Let 𝑌 = {0, 1, 2, 3} and define the function 𝑓 ∶ ℤ → 𝑌 such that
𝑓(𝑛) equals the unique remainder obtained after dividing 𝑛 by 4. For example,
𝑓(11) = 3 since 11 = 4⋅2+3 according to the Division Algorithm (Theorem 6.7).
This function is sometimes written as 𝑓(𝑛) = 𝑛 (mod 4), where it is understood
that we restrict the output to {0, 1, 2, 3}. It is clear that 𝑓 is surjective since 0, 1,
2, and 3 are mapped to 0, 1, 2, and 3, respectively. Figure 8.3 depicts a portion of
the function diagram for 𝑓, where we have drawn the diagram from the top down
instead of left to right.

(a) Describe the equivalence classes induced by the relation given in Theorem
8.44.

(b) What familiar set is ℤ/∼ equal to?

(c) Draw the function diagram for the function 𝑓 as defined in Theorem 8.46.

(d) The function diagram in Figure 8.3 is a bit hard to interpret due to the order-
ing of the elements in the domain. Can you find a better way to lay out the
vertices in the domain that makes the function 𝑓 easier to interpret?

Problem 8.50. Consider the function ℎ defined in Problem 8.24(d).

(a) Draw the function diagram for ℎ.

(b) Identify the equivalence classes induced by the relation given in Theorem
8.44.

(c) Draw the function diagram for the function ℎ as defined in Theorem 8.46.
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43210−1−2−3⋯ ⋯

0 1 2 3

ℤ

𝑌

𝑓

Figure 8.3. Function diagram for the function described in
Problem 8.49.

It is not the critic who counts; not the man who points out how the
strong man stumbles, or where the doer of deeds could have done
them better. The credit belongs to the man who is actually in the
arena, whose face is marred by dust and sweat and blood; who strives
valiantly; who errs, who comes short again and again, because there is
no effort without error and shortcoming; but who does actually strive
to do the deeds; who knows great enthusiasms, the great devotions;
who spends himself in a worthy cause; who at the best knows in the
end the triumph of high achievement, and who at the worst, if he fails,
at least fails while daring greatly, so that his place shall never be with
those cold and timid souls who neither know victory nor defeat.

Theodore Roosevelt, statesman & conservationist

8.3 Compositions and Inverse Functions

We begin this section with a method for combining two functions together that
have compatible domains and codomains.

Definition 8.51. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are functions, we define 𝑔 ∘ 𝑓 ∶
𝑋 → 𝑍 via (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) . The function 𝑔 ∘ 𝑓 is called the composition
of 𝑓 and 𝑔.

It is important to notice that the function on the right is the one that “goes
first.” Moreover, we cannot compose any two random functions since the co-
domain of the first function must agree with the domain of the second function.
In particular, 𝑓∘𝑔maynot be a sensible function evenwhen 𝑔∘𝑓 exists. Figure 8.4
provides a visual representation of function composition in terms of function di-
agrams.
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𝑥 𝑓(𝑥) 𝑔(𝑓(𝑥))

𝑋 𝑌 𝑍

𝑓 𝑔

𝑔 ∘ 𝑓

Figure 8.4. Visual representation of function composition.

Problem 8.52. Let 𝑋 = {1, 2, 3, 4} and define 𝑓 ∶ 𝑋 → 𝑋 and 𝑔 ∶ 𝑋 → 𝑋 via
𝑓 = {(1, 1), (2, 3), (3, 3), (4, 4)}

and
𝑔 = {(1, 1), (2, 2), (3, 1), (4, 1)}.

For each of the following functions, draw the corresponding function diagram in
the spirit of Figure 8.4 and identify the range.

(a) 𝑔 ∘ 𝑓

(b) 𝑓 ∘ 𝑔

The previous problem illustrates that 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 need not be equal even
when both composite functions exist.

Example 8.53. Consider the inclusion map 𝜄 ∶ 𝑋 → 𝑌 such that 𝑋 is a proper
subset of 𝑌 and suppose 𝑓 ∶ 𝑌 → 𝑍 is a function. Then the composite function
𝑓 ∘ 𝜄 ∶ 𝑋 → 𝑍 is given by

𝑓 ∘ 𝜄(𝑥) = 𝑓(𝜄(𝑥)) = 𝑓(𝑥)
for all 𝑥 ∈ 𝑋 . Notice that 𝑓∘ 𝜄 is simply the function 𝑓 but with a smaller domain.
In this case, we say that 𝑓 ∘ 𝜄 is the restriction of 𝑓 to 𝑋 , which is often denoted
by 𝑓|𝑋 .

Problem 8.54. Define 𝑓 ∶ ℝ → ℝ and 𝑔 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) =
3𝑥 − 5, respectively. Determine formulas for the composite functions 𝑓 ∘ 𝑔 and
𝑔 ∘ 𝑓.



8.3. Compositions and Inverse Functions 127

Problem 8.55. Define 𝑓 ∶ ℝ → ℝ and 𝑔 ∶ ℝ → ℝ via

𝑓(𝑥) = {5𝑥 + 7, if 𝑥 < 0
2𝑥 + 1, if 𝑥 ≥ 0

and 𝑔(𝑥) = 7𝑥−11, respectively. Find a formula for the composite function 𝑔∘𝑓.

Problem 8.56. Define 𝑓 ∶ ℤ/15ℤ → ℤ/23ℤ and 𝑔 ∶ ℤ/23ℤ → ℤ/32ℤ via
𝑓([𝑥]15) = [3𝑥 + 5]23 and 𝑔([𝑥]23) = [2𝑥 + 1]32, respectively. Find a formula
for the composite function 𝑔 ∘ 𝑓.

The following result provides some insight into where the identity map got
its name.

Theorem 8.57. If 𝑓 ∶ 𝑋 → 𝑌 is a function, then 𝑓 ∘ 𝑖𝑋 = 𝑓 = 𝑖𝑌 ∘𝑓, where 𝑖𝑋 and
𝑖𝑌 are the identity maps on 𝑋 and 𝑌 , respectively.

The next theorem tells us that function composition is associative.

Theorem 8.58. If 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍, and ℎ ∶ 𝑍 → 𝑊 are functions, then
(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓).

Problem 8.59. In each case, give examples of finite sets 𝑋 , 𝑌 , and 𝑍, and func-
tions 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 that satisfy the given conditions. Drawing a
function diagram is sufficient.

(a) 𝑓 is surjective, but 𝑔 ∘ 𝑓 is not surjective.

(b) 𝑔 is surjective, but 𝑔 ∘ 𝑓 is not surjective.

(c) 𝑓 is injective, but 𝑔 ∘ 𝑓 is not injective.

(d) 𝑔 is injective, but 𝑔 ∘ 𝑓 is not injective.

Theorem 8.60. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are both surjective functions, then
𝑔 ∘ 𝑓 is also surjective.

Theorem 8.61. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are both injective functions, then
𝑔 ∘ 𝑓 is also injective.

Corollary 8.62. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are both bijections, then 𝑔∘𝑓 is also
a bijection.
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Problem 8.63. Assume that 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are both functions. De-
termine whether each of the following statements is true or false. If a statement
is true, prove it. Otherwise, provide a counterexample.

(a) If 𝑔 ∘ 𝑓 is injective, then 𝑓 is injective.

(b) If 𝑔 ∘ 𝑓 is injective, then 𝑔 is injective.

(c) If 𝑔 ∘ 𝑓 is surjective, then 𝑓 is surjective.

(d) If 𝑔 ∘ 𝑓 is surjective, then 𝑔 is surjective.

Theorem 8.64. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Then 𝑓 is injective if and only if
there exists a function 𝑔 ∶ 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 = 𝑖𝑋 , where 𝑖𝑋 is the identity map
on 𝑋 .

The function 𝑔 in the previous theorem is often called a left inverse of 𝑓.

Theorem 8.65. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Then 𝑓 is surjective if and only if
there exists a function 𝑔 ∶ 𝑌 → 𝑋 such that 𝑓 ∘ 𝑔 = 𝑖𝑌 , where 𝑖𝑌 is the identity map
on 𝑌 .

The function 𝑔 in the previous theorem is often called a right inverse of 𝑓.

Problem 8.66. Let 𝑋 = {𝑎, 𝑏} and 𝑌 = {1, 2}.
(a) Provide an example of a function that has a left inverse but does not have a

right inverse. Find the left inverse of your proposed function.

(b) Provide an example of a function that has a right inverse but does not have a
left inverse. Find the right inverse of your proposed function.

Problem 8.67. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2. Explain why 𝑓 does not have a
left inverse nor a right inverse.

Problem 8.68. Define 𝑓 ∶ ℝ → [0,∞) via 𝑓(𝑥) = 𝑥2 and 𝑔 ∶ [0,∞) → ℝ via
𝑔(𝑥) = √𝑥.
(a) Explain why 𝑓 does not have a left inverse.

(b) Verify that 𝑔 is the right inverse of 𝑓 by computing 𝑓 ∘ 𝑔(𝑥).

Corollary 8.69. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 are functions satisfying 𝑔 ∘ 𝑓 = 𝑖𝑋
and 𝑓 ∘ 𝑔 = 𝑖𝑌 , then 𝑓 is a bijection.

In the previous result, the functions 𝑓 and 𝑔 “cancel” each other out. In this
case, we say that 𝑔 is a two-sided inverse of 𝑓.
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Definition 8.70. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. The relation 𝑓−1 from 𝑌 to 𝑋 ,
called 𝑓 inverse, is defined via

𝑓−1 = {(𝑓(𝑥), 𝑥) ∈ 𝑌 × 𝑋 ∣ 𝑥 ∈ 𝑋} .

Notice that we called 𝑓−1 a relation and not a function. In some circum-
stances 𝑓−1 will be a function and sometimes it will not be. Given a function 𝑓,
the inverse relation is simply the set of ordered pairs that results from reversing
the ordered pairs in 𝑓. It is worth pointing out that we have only defined inverse
relations for functions. However, one can easily adapt our definition to handle
arbitrary relations.

Problem 8.71. Consider the function 𝑓 given in Example 8.2 (see Figure 8.1).
List the ordered pairs in the relation 𝑓−1 and draw the corresponding digraph. Is
𝑓−1 a function?

Problem 8.72. Provide an example of a function 𝑓 ∶ 𝑋 → 𝑌 such that 𝑓−1 is a
function. Drawing a function diagram is sufficient.

Problem 8.73. Suppose 𝑋 ⊆ ℝ and 𝑓 ∶ 𝑋 → ℝ is a function. What is the
relationship between the graph of the function 𝑓 and the graph of the inverse
relation 𝑓−1?

Theorem 8.74. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Then 𝑓−1 ∶ 𝑌 → 𝑋 is a function if
and only if 𝑓 is a bijection.

Problem 8.75. Suppose 𝑓 ∶ ℝ → ℝ is a function. Fill in the blank with the
appropriate phrase.

The relation 𝑓−1 is a function if and only if every horizontal line hits the
graph of 𝑓 .

Explain why this statement is true.

Theorem 8.76. If 𝑓 ∶ 𝑋 → 𝑌 is a bijection, then

(a) 𝑓−1 ∘ 𝑓 = 𝑖𝑋 , and

(b) 𝑓 ∘ 𝑓−1 = 𝑖𝑌 .

Theorem 8.77. If 𝑓 ∶ 𝑋 → 𝑌 is a bijection, then 𝑓−1 ∶ 𝑌 → 𝑋 is also a bijection.

Theorem 8.78. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 are functions such that 𝑔 ∘ 𝑓 = 𝑖𝑋
and 𝑓 ∘ 𝑔 = 𝑖𝑌 , then 𝑓−1 is a function and 𝑔 = 𝑓−1.
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The upshot of Theorems 8.76 and 8.78 is that if 𝑓−1 is a function, then it is
the only one satisfying the two-sided inverse property exhibited in Corollary 8.69
and Theorem 8.76. That is, inverse functions are unique when they exist. When
the relation 𝑓−1 is a function, we call it the inverse function of 𝑓.

Problem 8.79. Let 𝑋 ⊆ ℝ and suppose 𝑓 ∶ 𝑋 → ℝ is a function. Explain the
difference between 𝑓−1(𝑥) and [𝑓(𝑥)]−1. When does each exist?

Problem 8.80. Let𝑋, 𝑌 ⊆ ℝ and define 𝑓 ∶ 𝑋 → 𝑌 via 𝑓(𝑥) = 𝑒𝑥 and 𝑔 ∶ 𝑌 → 𝑋
via 𝑔(𝑥) = ln(𝑥). Identify the largest possible choices for 𝑋 and 𝑌 so that 𝑓 and
𝑔 are inverses of each other.

Theorem 8.81. If 𝑓 ∶ 𝑋 → 𝑌 is a bijection, then (𝑓−1)−1 = 𝑓.

In the previous theorem, we restricted our attention to bijections so that 𝑓−1
would be a function, thus making (𝑓−1)−1 a sensible inverse relation in light of
Definition 8.70. If we had defined inverses for arbitrary relations, then we would
not have needed to require the function in Theorem 8.81 to be a bijection. In
fact, we do not even need to require the relation to be a function. That is, if 𝑅 is
a relation from 𝑋 to 𝑌 , then (𝑅−1)−1 = 𝑅, as expected. Similarly, the next result
generalizes to arbitrary relations.

Theorem 8.82. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are both bijections, then (𝑔 ∘ 𝑓)−1 =
𝑓−1 ∘ 𝑔−1.

The previous theorem is sometimes referred to as the “socks and shoes the-
orem”. Do you see how it got this name?

The most difficult thing is the decision to
act. The rest is merely tenacity.

Amelia Earhart, aviation pioneer

8.4 Images and Preimages of Functions

There are two important types of sets related to functions.

Definition 8.83. Let 𝑓 ∶ 𝑋 → 𝑌 be a function.
(a) If 𝑆 ⊆ 𝑋 , the image of 𝑆 under 𝑓 is defined via

𝑓(𝑆) ≔ {𝑓(𝑥) ∣ 𝑥 ∈ 𝑆} .

(b) If 𝑇 ⊆ 𝑌 , the preimage (or inverse image) of 𝑇 under 𝑓 is defined via

𝑓−1(𝑇) ≔ {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝑇} .
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The image of a subset 𝑆 of the domain is simply the subset of the codomain
we obtain by mapping the elements of 𝑆. It is important to emphasize that the
function 𝑓maps elements of 𝑋 to elements of 𝑌 , but we can apply 𝑓 to a subset of
𝑋 to yield a subset of 𝑌 . That is, if 𝑆 ⊆ 𝑋 , then 𝑓(𝑆) ⊆ 𝑌 . Note that the image of
the domain is the same as the range of the function. That is, 𝑓(𝑋) = Rng(𝑓).

When it comes to preimages, there is a real opportunity for confusion. In
Section 8.3, we introduced the inverse relation 𝑓−1 of a function 𝑓 (see Defin-
tion 8.70) and proved that this relation is a function exactly when 𝑓 is a bijec-
tion (see Theorem 8.74). If 𝑓−1 ∶ 𝑌 → 𝑋 is a function, then it is sensible to
write 𝑓−1(𝑦) for 𝑦 ∈ 𝑌 . Notice that we defined the preimage of a subset of the
codomain regardless of whether 𝑓−1 is a function or not. In particular, for 𝑇 ⊆ 𝑌 ,
𝑓−1(𝑇) is the set of elements in the domain that map to elements in 𝑇. As a spe-
cial case, 𝑓−1({𝑦}) is the set of elements in the domain that map to 𝑦 ∈ 𝑌 . If
𝑦 ∉ Rng(𝑓), then 𝑓−1({𝑦}) = ∅. Notice that if 𝑦 ∈ 𝑌 , 𝑓−1({𝑦}) is always a sensible
thing to write while 𝑓−1(𝑦) only makes sense if 𝑓−1 is a function. Also, note that
the preimage of the codomain is the domain. That is, 𝑓−1(𝑌) = 𝑋 .

Problem 8.84. Define 𝑓 ∶ ℤ → ℤ via 𝑓(𝑥) = 𝑥2. List elements in each of the
following sets.

(a) 𝑓({0, 1, 2})

(b) 𝑓−1({0, 1, 4})

Problem 8.85. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 3𝑥2−4. Find each of the following
sets.

(a) 𝑓({−1, 1})

(b) 𝑓([−2, 4])

(c) 𝑓((−2, 4))

(d) 𝑓−1([−10, 1])

(e) 𝑓−1((−3, 3))

(f) 𝑓(∅)

(g) 𝑓(ℝ)

(h) 𝑓−1({−1})

(i) 𝑓−1(∅)

(j) 𝑓−1(ℝ)
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Problem 8.86. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2.
(a) Find two nonempty subsets 𝐴 and 𝐵 of ℝ such that 𝐴 ∩ 𝐵 = ∅ but 𝑓−1(𝐴) =

𝑓−1(𝐵).

(b) Find twononempty subsets𝐴 and𝐵 ofℝ such that𝐴∩𝐵 = ∅ but𝑓(𝐴) = 𝑓(𝐵).

Problem 8.87. Suppose 𝑓 ∶ 𝑋 → 𝑌 is an injection and 𝐴 and 𝐵 are disjoint
subsets of 𝑋 . Are 𝑓(𝐴) and 𝑓(𝐵) necessarily disjoint subsets of 𝑌? If so, prove it.
Otherwise, provide a counterexample.

Problem 8.88. Find examples of functions 𝑓 and 𝑔 together with sets 𝑆 and 𝑇
such that 𝑓(𝑓−1(𝑇)) ≠ 𝑇 and 𝑔−1(𝑔(𝑆)) ≠ 𝑆.

Problem8.89. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and suppose𝐴, 𝐵 ⊆ 𝑋 and𝐶,𝐷 ⊆ 𝑌 .
Determine whether each of the following statements is true or false. If a state-
ment is true, prove it. Otherwise, provide a counterexample.

(a) If 𝐴 ⊆ 𝐵, then 𝑓(𝐴) ⊆ 𝑓(𝐵).

(b) If 𝐶 ⊆ 𝐷, then 𝑓−1(𝐶) ⊆ 𝑓−1(𝐷).

(c) 𝑓(𝐴 ∪ 𝐵) ⊆ 𝑓(𝐴) ∪ 𝑓(𝐵).

(d) 𝑓(𝐴 ∪ 𝐵) ⊇ 𝑓(𝐴) ∪ 𝑓(𝐵).

(e) 𝑓(𝐴 ∩ 𝐵) ⊆ 𝑓(𝐴) ∩ 𝑓(𝐵).

(f) 𝑓(𝐴 ∩ 𝐵) ⊇ 𝑓(𝐴) ∩ 𝑓(𝐵).

(g) 𝑓−1(𝐶 ∪ 𝐷) ⊆ 𝑓−1(𝐶) ∪ 𝑓−1(𝐷).

(h) 𝑓−1(𝐶 ∪ 𝐷) ⊇ 𝑓−1(𝐶) ∪ 𝑓−1(𝐷).

(i) 𝑓−1(𝐶 ∩ 𝐷) ⊆ 𝑓−1(𝐶) ∩ 𝑓−1(𝐷).

(j) 𝑓−1(𝐶 ∩ 𝐷) ⊇ 𝑓−1(𝐶) ∩ 𝑓−1(𝐷).

(k) 𝐴 ⊆ 𝑓−1(𝑓(𝐴)).

(l) 𝐴 ⊇ 𝑓−1(𝑓(𝐴)).

(m) 𝑓(𝑓−1(𝐶)) ⊆ 𝐶.

(n) 𝑓(𝑓−1(𝐶)) ⊇ 𝐶.

Problem 8.90. For each of the statements in the previous problem that were
false, determine conditions, if any, on the corresponding sets that would make
the statement true.
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We can generalize the results above to handle arbitrary collections of sets.

Theorem 8.91. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and suppose {𝐴𝛼}𝛼∈∆ is a collection
of subsets of 𝑋 .

(a) 𝑓 (⋃
𝛼∈∆

𝐴𝛼) = ⋃
𝛼∈∆

𝑓 (𝐴𝛼).

(b) 𝑓 (⋂
𝛼∈∆

𝐴𝛼) ⊆ ⋂
𝛼∈∆

𝑓 (𝐴𝛼).

Theorem 8.92. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and suppose {𝐶𝛼}𝛼∈∆ is a collection
of subsets of 𝑌 .

(a) 𝑓−1 (⋃
𝛼∈∆

𝐶𝛼) = ⋃
𝛼∈∆

𝑓−1 (𝐶𝛼).

(b) 𝑓−1 (⋂
𝛼∈∆

𝐶𝛼) = ⋂
𝛼∈∆

𝑓−1 (𝐶𝛼).

Problem 8.93. Consider the equivalence relation given in Theorem 8.44. Ex-
plain why each equivalence class [𝑎] is equal to 𝑓−1({𝑓(𝑎)}).

Problem 8.94. Suppose that 𝑓 ∶ ℝ → ℝ is a function satisfying 𝑓(𝑥 + 𝑦) =
𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ ℝ.
(a) Prove that 𝑓(0) = 0.
(b) Prove that 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ ℝ.
(c) Prove that 𝑓 is injective if and only if 𝑓−1({0}) = {0}.
(d) Certainly every function given by 𝑓(𝑥) = 𝑚𝑥 for 𝑚 ∈ ℝ satisfies the initial

hypothesis. Can you provide an example of a function that satisfies𝑓(𝑥+𝑦) =
𝑓(𝑥) + 𝑓(𝑦) that is not of the form 𝑓(𝑥) = 𝑚𝑥?

The obstacle is the path.

Zen saying, Author Unknown

8.5 Continuous Real Functions

In this section, we will explore the concept of continuity, which you likely en-
countered in high school.
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Definition 8.95. A real function is any function 𝑓 ∶ 𝐴 → ℝ such that 𝐴 is a
nonempty subset of ℝ.

There are several equivalent definitions of continuity for real functions. The
following characterization is typically referred to as the epsilon-delta defini-
tion of continuity. Our definition mimics the definition of continuity used in
metric spaces, which ℝ equipped with absolute value happens to be an example
of. Recall that |𝑎 − 𝑏| < 𝑟means that the distance between 𝑎 and 𝑏 is less than 𝑟
(see discussion below Corollary 5.31).

Definition 8.96. Suppose 𝑓 is a real function such that 𝑎 ∈ Dom(𝑓). We say
that 𝑓 is continuous at 𝑎 if for every 𝜀 > 0, there exists 𝛿 > 0 such that if
𝑥 ∈ Dom(𝑓) and |𝑥 − 𝑎| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀. If 𝑓 is continuous at every
point in 𝐵 ⊆ Dom(𝑓), then we say that 𝑓 is continuous on 𝐵. If 𝑓 is continuous
on its entire domain, we simply say that 𝑓 is continuous.

Loosely speaking, a real function 𝑓 is continuous at the point 𝑎 ∈ Dom(𝑓)
if we can get 𝑓(𝑥) arbitrarily close to 𝑓(𝑎) by considering all 𝑥 ∈ Dom(𝑓) suf-
ficiently close to 𝑎. The value 𝜀 is indicating how close to 𝑓(𝑎) we need to be
while the value 𝛿 is providing the “window” around 𝑎 needed to guarantee that
all points in the window (and in the domain) yield outputs within 𝜀 of 𝑓(𝑎). Fig-
ure 8.5 illustrates our definition of continuity. Note that in the figure, the point
𝑎 is fixed while we need to consider all 𝑥 ∈ Dom(𝑓) such that |𝑥 − 𝑎| < 𝛿. The
dashed box in the figure has dimensions 2𝛿 by 2𝜀 and is centered at the point
(𝑎, 𝑓(𝑎)). Intuitively, the function is continuous at 𝑎 since given 𝜀 > 0, we could
find 𝛿 > 0 so that the graph of the function never exits the top or bottom of the
dashed box.

Perhaps you have encountered the phrase “a function is continuous if you
can draw its graph without lifting your pencil.” While this description provides
some intuition about what continuity of a function means, it is neither accurate
nor precise enough to capture the meaning of continuity.

When proving that a function is continuous at a point, the choice of 𝛿 de-
pends on both the point in question and the value of 𝜀. An example should be
helpful.

Example 8.97. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 3𝑥 + 2. Let’s prove that 𝑓 is
continuous (at every point in the domain). Let 𝑎 ∈ ℝ and let 𝜀 > 0. Choose
𝛿 = 𝜀/3. We will see in a moment why this is a good choice for 𝛿. Suppose 𝑥 ∈ ℝ
such that |𝑥 − 𝑎| < 𝛿. We see that
|𝑓(𝑥) − 𝑓(𝑎)| = |(3𝑥 + 2)− (3𝑎+ 2)| = |3𝑥 − 3𝑎| = 3 ⋅ |𝑥 − 𝑎| < 3 ⋅ 𝛿 = 3 ⋅ 𝜀/3 = 𝜀.
We have shown that 𝑓 is continuous at 𝑎, and since 𝑎 was arbitrary, 𝑓 is contin-
uous.
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𝑎 𝑥

𝑓(𝑎)

𝑓(𝑥)
𝑓

( )

(
)

𝛿 𝛿

𝜀

𝜀

Figure 8.5. Visual representation of continuity of 𝑓 at 𝑎.

Problem 8.98. Prove that each of the following real functions is continuous us-
ing Definition 8.96.
(a) 𝑓 ∶ ℝ → ℝ defined via 𝑓(𝑥) = 𝑥.
(b) 𝑔 ∶ ℝ → ℝ defined via 𝑔(𝑥) = 𝑥 + 42.
(c) ℎ ∶ ℝ → ℝ defined via ℎ(𝑥) = 5𝑥.

The next result tells us that every linear real function is continuous. Do not
forget to handle the case when 𝑚 = 0 in your proof. Note that the case when
𝑚 = 0 proves that every constant function is continuous.

Theorem 8.99. If 𝑓 ∶ ℝ → ℝ is defined via 𝑓(𝑥) = 𝑚𝑥 + 𝑏 for𝑚, 𝑏 ∈ ℝ, then 𝑓
is continuous.

The second part of the next problem is much harder than you might expect.

Problem 8.100. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2.
(a) Prove that 𝑓 is continuous at 0.
(b) Prove that 𝑓 is continuous at 1.

Problem 8.101. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = √𝑥. Prove that 𝑓 is continuous
at 0.
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Problem 8.102. Suppose 𝑓 is a real function. Write a precise statement for what
it means for 𝑓 to not be continuous at 𝑎 ∈ Dom(𝑓).

Problem 8.103. Define 𝑓 ∶ ℝ → ℝ via

𝑓(𝑥) = {1, if 𝑥 = 0
𝑥, otherwise.

Determine where 𝑓 is continuous and justify your assertion.

Problem 8.104. Define 𝑓 ∶ ℝ → ℝ via

𝑓(𝑥) = {1, if 𝑥 ∈ ℚ
0, otherwise.

Determine where 𝑓 is continuous and justify your assertion.

After completing the next problem, reflect on the statement “a function is
continuous if you can draw its graph without lifting your pencil.”

Problem 8.105. Define 𝑓 ∶ ℕ → ℝ via 𝑓(𝑥) = 1. Notice the domain! Determine
where 𝑓 is continuous and justify your assertion.

Theorem 8.106. Suppose 𝑓 is a real function. Then 𝑓 is continuous if and only if
the preimage 𝑓−1(𝑈) of every open set𝑈 is an open set intersected with the domain
of 𝑓.

The previous characterization of continuity is often referred to as the “open
set definition of continuity,” although for us it is a theorem instead of a defini-
tion. This is the definition used in topology. Another notion of continuity, called
“sequential continuity”, makes use of convergent sequences. All of these charac-
terizations of continuity are equivalent for the real numbers (using the standard
definition of an open set). However, there are contexts inmathematics where the
epsilon-delta definition of continuity is undefined (because there is not a notion
of distance in either the domain or codomain) and others where continuity and
sequential continuity are not equivalent.

Since every open set is the union of bounded open intervals (Definition 5.53),
the union of open sets is open (Theorem 5.58), and preimages respect unions
(Theorem 8.92), we can strengthen Theorem 8.106 into a slightly more useful
result.
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Theorem 8.107. Suppose 𝑓 is a real function. Then 𝑓 is continuous if and only if
the preimage 𝑓−1(𝐼) of every bounded open interval 𝐼 is an open set intersected with
the domain of 𝑓.

Now that we have two methods for verifying continuity (Definition 8.96 and
Theorem 8.106/8.107), you can use either one when approaching the remaining
problems in this section. Sometimes it does not matter which approach you take
and other times one method might be better suited to the task.

Problem 8.108. Define 𝑓 ∶ ℝ → ℝ via 𝑓(𝑥) = 𝑥2. Prove that 𝑓 is continuous.

Problem 8.109. Define 𝑓 ∶ ℝ ⧵ {0} → ℝ via 𝑓(𝑥) = 1
𝑥
. Determine where 𝑓 is

continuous and justify your assertion.

The previous problems once again calls into question the phrase “a function
is continuous if you can draw its graph without lifting your pencil.”

Problem 8.110. Find a continuous real function 𝑓 and an open interval 𝐼 such
that the preimage 𝑓−1(𝐼) is not an open interval.

For the next few problems, if you attempt to construct counterexamples, you
may rely on your previous knowledge about various functions that you encoun-
tered in high school and calculus.

Problem 8.111. Suppose 𝑓 is a continuous real function. If 𝑈 is an open set
contained in Dom(𝑓), is the image 𝑓(𝑈) always open? If so, prove it. Otherwise,
provide a counterexample.

Problem 8.112. Suppose 𝑓 is a continuous real function. If 𝐶 is a closed set, is
the preimage 𝑓−1(𝐶) always a closed set? If so, prove it. Otherwise, provide a
counterexample.

Problem 8.113. Suppose 𝑓 is a continuous real function. If [𝑎, 𝑏] is a closed
interval contained in Dom(𝑓), is the image 𝑓([𝑎, 𝑏]) always a closed interval? If
so, prove it. Otherwise, provide a counterexample.

Problem 8.114. Suppose 𝑓 is a continuous real function. If 𝐶 is a closed set
contained in Dom(𝑓), is the image 𝑓(𝐶) always a closed set? If so, prove it. Oth-
erwise, provide a counterexample.



138 Chapter 8. Functions

Problem 8.115. Suppose 𝑓 is a continuous real function. If 𝐵 is bounded set
contained in Dom(𝑓), is the image 𝑓(𝐵) always a bounded set? If so, prove it.
Otherwise, provide a counterexample.

Problem 8.116. Suppose 𝑓 is a continuous real function. If 𝐵 is a bounded set,
is the preimage 𝑓−1(𝐵) always a bounded set? If so, prove it. Otherwise, provide
a counterexample.

Problem 8.117. Suppose 𝑓 is a continuous real function. If 𝐾 is a compact set,
is the preimage 𝑓−1(𝐵) always a compact set? If so, prove it. Otherwise, provide
a counterexample.

Problem 8.118. Suppose 𝑓 is a continuous real function. If 𝐶 is a connected
set contained in Dom(𝑓), is the image 𝑓(𝐶) always connected? If so, prove it.
Otherwise, provide a counterexample.

Problem 8.119. Suppose 𝑓 is a continuous real function. If 𝐶 is a connected set,
is the preimage 𝑓−1(𝐶) always a connected set? If so, prove it. Otherwise, provide
a counterexample.

Perhaps you noticed the absence of one natural question in the previous se-
quence of problems. If 𝑓 is a continuous real function and 𝐾 is a subset of the
domain of 𝑓, is the image 𝑓(𝐾) a compact set? It turns out that the answer is
“yes”, but proving this fact is beyond the scope of this book. This theorem is of-
ten proved in a real analysis course and is then used to prove the Extreme Value
Theorem, which you may have encountered in your calculus course.

Thenext result is a special case of thewell-known IntermediateValueThe-
orem, which states that if 𝑓 is a continuous real functionwhose domain contains
the interval [𝑎, 𝑏], then 𝑓 attains every value between 𝑓(𝑎) and 𝑓(𝑏) at some point
within the interval [𝑎, 𝑏]. To prove the special case, utilize Theorem 5.87 and
Problem 8.118 together with a proof by contradiction.

Theorem 8.120. Suppose 𝑓 is a real function. If 𝑓 is continuous on [𝑎, 𝑏] such that
𝑓(𝑎) < 0 < 𝑓(𝑏) or 𝑓(𝑎) > 0 > 𝑓(𝑏), then there exists 𝑟 ∈ [𝑎, 𝑏] such that 𝑓(𝑟) = 0.

If we generalize the previous result, we obtain the Intermediate Value The-
orem.

Theorem 8.121 (Intermediate Value Theorem). Suppose 𝑓 is a real function. If
𝑓 is continuous on [𝑎, 𝑏] such that 𝑓(𝑎) < 𝑐 < 𝑓(𝑏) or 𝑓(𝑎) > 𝑐 > 𝑓(𝑏) for some
𝑐 ∈ ℝ, then there exists 𝑟 ∈ [𝑎, 𝑏] such that 𝑓(𝑟) = 𝑐.
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Problem 8.122. Is the converse of the Intermediate Value Theorem true? If so,
prove it. Otherwise, provide a counterexample.

The miracle of the appropriateness of the
language of mathematics for the
formulation of the laws of physics is a
wonderful gift which we neither understand
nor deserve. We should be grateful for it and
hope that it will remain valid in future
research and that it will extend, for better or
for worse, to our pleasure, even though
perhaps also to our bafflement, to wide
branches of learning.

Eugene Paul Wigner, theoretical physicist





I counted everything. I counted the steps to
the road, the steps up to church, the number
of dishes and silverware I washed . . .
anything that could be counted, I did.

Katherine Johnson, mathematician9
Cardinality

In this chapter, we will explore the notion of cardinality, which formalizes what
it means for two sets to be the same “size”.

9.1 Introduction to Cardinality

What does it mean for two sets to have the same “size”? If the sets are finite,
this is easy: just count how many elements are in each set. Another approach
would be to pair up the elements in each set and see if there are any left over. In
other words, check to see if there is a one-to-one correspondence (i.e., bijection)
between the two sets.

But what if the sets are infinite? For example, consider the set of natural
numbers ℕ and the set of even natural numbers 2ℕ ≔ {2𝑛 ∣ 𝑛 ∈ ℕ}. Clearly, 2ℕ
is a proper subset ofℕ. Moreover, both sets are infinite. In this case, youmight be
thinking that ℕ is “larger than” 2ℕ. However, it turns out that there is a one-to-
one correspondence between these two sets. In particular, consider the function
𝑓 ∶ ℕ → 2ℕ defined via 𝑓(𝑛) = 2𝑛. It is easily verified that 𝑓 is both injective and
surjective. In this case, mathematics has determined that the right viewpoint is
that ℕ and 2ℕ do have the same “size”. However, it is clear that “size” is a bit too
imprecise when it comes to infinite sets. We need something more rigorous.

Definition 9.1. Let 𝐴 and 𝐵 be sets. We say that 𝐴 and 𝐵 have the same
cardinality if there exists a bijection between 𝐴 and 𝐵. In this case, we write
card(𝐴) = card(𝐵) .

Note that we have not defined card(𝐴) by itself. Doing so would not be too
difficult for finite sets, but making such a notation precise in general is tricky

141
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business. When we write card(𝐴) = card(𝐵) (and later card(𝐴) ≤ card(𝐵) and
card(𝐴) < card(𝐵)), we are asserting the existence of a certain type of function
from 𝐴 to 𝐵.

If 𝑓 is a bijection from 𝐴 to 𝐵, then by Theorem 8.77, 𝑓−1 is a bijection from
𝐵 to 𝐴. Either one of these functions can be utilized to prove that card(𝐴) =
card(𝐵). This idea is worth keeping in mind as you tackle problems in this chap-
ter. In particular, you might have an easier time creating a bijection between two
sets in one direction over the other. This is often a limitation of the human mind
as to opposed to some fundamental mathematical difficulty.

Example 9.2. Let 𝐴 = {1, 2, 3, 4, 5} and 𝐵 = {apple, banana, cherry, dragon fruit,
elderberry}. The function 𝑓 ∶ 𝐴 → 𝐵 given by

𝑓 = {(1, apple), (2, banana), (3, cherry), (4, dragon fruit), (5, elderberry)}
is a bijection from 𝐴 to 𝐵, and hence card(𝐴) = card(𝐵). Note that this is not the
only bijection from 𝐴 to 𝐵. In fact, there are 5!= 120 bijections from 𝐴 to 𝐵, one
of which is the function 𝑓 we defined above. The inverse of each bijection from
𝐴 to 𝐵 is a bijection from 𝐵 to 𝐴. We could also use any of of these bijections to
verify that card(𝐴) = card(𝐵).

Example 9.3. Define 𝑓 ∶ ℤ → 6ℤ via 𝑓(𝑛) = 6𝑛. It is easily verified that 𝑓
is both injective and surjective, and hence card(ℤ) = card(6ℤ). We could also
utilize the inverse function 𝑓−1 ∶ 6ℤ → ℤ given by 𝑓−1(𝑛) = 1

6
𝑛 to show that ℤ

and 6ℤ have the same cardinality.

Example 9.4. Letℝ+ denote the set of positive real numbers and define 𝑓 ∶ ℝ →
ℝ+ via 𝑓(𝑥) = 𝑒𝑥. As you are likely familiar with, this exponential function is a
bijection, and so card(ℝ) = card(ℝ+). Similar to the previous example, we could
also use the inverse function 𝑓−1 ∶ ℝ+ → ℝ given by 𝑓−1(𝑥) = ln(𝑥) to show
that these two sets have the same cardinality.

The previous two examples illustrate an important distinction between finite
sets and infinite sets, namely infinite sets can be in bijection with proper subsets
of themselves! Theorems 9.23 and 9.31 will make this idea explicit.

Example 9.5. Let𝑚, 𝑛 ∈ ℕ∪{0}. A North-East lattice path from (0, 0) to (𝑚, 𝑛) is
path in the plane from (0, 0) to (𝑚, 𝑛) consisting only steps either one unit North
or one unit East. Note that every lattice path from (0, 0) to (𝑚, 𝑛) consists of a
total of𝑚+𝑛 steps. Figure 9.1 shows aNorth-East lattice path from (0, 0) to (4, 3).
Let ℒ𝑚,𝑛 denote the set of North-East paths from (0, 0) to (𝑚, 𝑛). For example,
the North-East lattice path given in Figure 9.1 is an element of ℒ4,3. A binary
string of length 𝑘 is an ordered list of consisting of 𝑘 entries where each entry is
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either 0 or 1. For example, 0101100 and 0101001 are two different binary strings
of length 7. Let 𝒮𝑘 denote the set of binary strings of length 𝑘. For example,
𝒮3 = {000, 100, 010, 001, 110, 101, 011, 111}. We claim that there is a bijection
between ℒ𝑚,𝑛 and 𝒮𝑚+𝑛. One such bijection is given by mapping a lattice path
to the string that results by assigning each East step to 0 and each North step to
1 as we travel the path from (0, 0) to (𝑚, 𝑛). Using this construction, the lattice
path in Figure 9.1 would get mapped to the binary string 0101100. Since no two
lattice paths will map to the same string, our mapping is injective. Given a string
in 𝒮𝑚+𝑛, it is easy to find the lattice path in ℒ𝑚,𝑛 that maps to it, and so our
function is also surjective. Thus, our mapping is a bijection between ℒ𝑚,𝑛 and
𝒮𝑚+𝑛. We have shown that card(ℒ𝑚,𝑛) = card(𝒮𝑚+𝑛).

(0, 0)

(4, 3)

Figure 9.1. A North-East lattice path from (0, 0) to (4, 3).

When approaching Part (d) of the next problem, try creating a linear function
𝑓 ∶ (𝑎, 𝑏) → (𝑐, 𝑑). Drawing a picture should help.

Problem 9.6. Prove each of the following. In each case, you should create a
bijection between the two sets. Briefly justify that your functions are in fact bi-
jections.
(a) card({𝑎, 𝑏, 𝑐}) = card({𝑥, 𝑦, 𝑧})

(b) card(ℕ) = card({2𝑛 + 1 ∣ 𝑛 ∈ ℕ})

(c) card(ℕ) = card(ℤ)

(d) card((𝑎, 𝑏)) = card((𝑐, 𝑑)) (where (𝑎, 𝑏) and (𝑐, 𝑑) are intervals)

(e) card(ℕ) = card ({ 1
2𝑛

∣ 𝑛 ∈ ℕ})

Problem 9.7. If 𝐴 is a set, do 𝐴 and 𝐴 × {𝑥} have the same cardinality? Justify
your answer.
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Problem 9.8. Let𝒟𝑛 denote the collection of North-East lattice paths from (0, 0)
to (𝑛, 𝑛) that never drop below the line 𝑦 = 𝑥. These types of lattice paths are
often called Dyck paths after the German mathematician Walther Franz An-
ton von Dyck (1856–1934). A sequence of parentheses is balanced if it can be
parsed syntactically. In other words, there should be the same number of open
parentheses “(” and closed parentheses “)”, and when reading from left to right
there should never be more closed parentheses than open. For example, ()()()
and ()(()) are balanced parenthesizations consisting of three pairs of parenthe-
ses while ())(() and ()(()( are not balanced. Let ℬ𝑛 denote the collection of bal-
anced parenthesizations consisting of 𝑛 pairs of parentheses. For example,ℬ3 =
{()()(), ()(()), (()()), (())(), ((()))}.
(a) Find all Dyck paths in𝒟3.

(b) Prove that card(𝒟𝑛) = card(ℬ𝑛).

For Part (b) of the next problem, start by defining 𝜑 ∶ ℱ → 𝒫(ℕ) so that 𝜑(𝑓)
yields a subset of ℕ determined by when 𝑓 outputs a 1.

Problem 9.9. Let ℱ denote the set of functions from ℕ to {0, 1}.
(a) Describe at least three functions in ℱ.

(b) Prove that ℱ and 𝒫(ℕ) have the same cardinality.

Our first theorem concerning cardinality will likely not come as a surprise.

Theorem 9.10. Let 𝐴, 𝐵, and 𝐶 be sets.

(a) card(𝐴) = card(𝐴).

(b) If card(𝐴) = card(𝐵), then card(𝐵) = card(𝐴).

(c) If card(𝐴) = card(𝐵) and card(𝐵) = card(𝐶), then card(𝐴) = card(𝐶).

In light of the previous theorem, the next result should not be surprising.

Corollary 9.11. If 𝑋 is a set, then “has the same cardinality as” is an equivalence
relation on 𝒫(𝑋).

Theorem 9.12. Let 𝐴, 𝐵, 𝐶, and 𝐷 be sets such that card(𝐴) = card(𝐶) and
card(𝐵) = card(𝐷).
(a) If𝐴and𝐵 are disjoint and𝐶 and𝐷 are disjoint, then card(𝐴∪𝐵) = card(𝐶∪𝐷).

(b) card(𝐴 × 𝐵) = card(𝐶 × 𝐷).
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Given two finite sets, it makes sense to say that one set is “larger than” an-
other provided one set contains more elements than the other. We would like to
generalize this idea to handle both finite and infinite sets.

Definition 9.13. Let𝐴 and 𝐵 be sets. If there is an injective function from𝐴 to 𝐵,
then we say that the cardinality of 𝐴 is less than or equal to the cardinality
of 𝐵. In this case, we write card(𝐴) ≤ card(𝐵) .

Theorem 9.14. Let 𝐴, 𝐵, and 𝐶 be sets.
(a) If 𝐴 ⊆ 𝐵, then card(𝐴) ≤ card(𝐵).
(b) If card(𝐴) ≤ card(𝐵) and card(𝐵) ≤ card(𝐶), then card(𝐴) ≤ card(𝐶).
(c) If 𝐶 ⊆ 𝐴 while card(𝐵) = card(𝐶), then card(𝐵) ≤ card(𝐴).

It might be tempting to think that the existence of injective function from a
set 𝐴 to a set 𝐵 that is not surjective would verify that card(𝐴) ≤ card(𝐵) and
card(𝐴) ≠ card(𝐵). While this is true for finite sets, it is not true for infinite sets
as the next problem asks you to verify.

Problem 9.15. Provide an example of sets 𝐴 and 𝐵 such that card(𝐴) = card(𝐵)
despite the fact that there exists an injective function from 𝐴 to 𝐵 that is not sur-
jective.

Definition 9.16. Let𝐴 and 𝐵 be sets. We write card(𝐴) < card(𝐵) if card(𝐴) ≤
card(𝐵) and card(𝐴) ≠ card(𝐵).

As a reminder, the statements card(𝐴) = card(𝐵) and card(𝐴) ≤ card(𝐵) are
symbolic ways of asserting the existence of certain types of functions from 𝐴 to
𝐵. When we write card(𝐴) < card(𝐵), we are saying something much stronger
than “There exists a function 𝑓 ∶ 𝐴 → 𝐵 that is injective but not surjective.” The
statement card(𝐴) < card(𝐵) is asserting that every injective function from 𝐴 to
𝐵 is not surjective. In general, it is difficult to prove statements like card(𝐴) ≠
card(𝐵) or card(𝐴) < card(𝐵).

You will become clever through your
mistakes.

German Proverb

9.2 Finite Sets

In the previous section, we used the phrase “finite set” without formally defining
it. Let’s be a bit more precise. The following shorthand comes in handy.
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Definition 9.17. For each 𝑛 ∈ ℕ, define [𝑛] ≔ {1, 2, . . . , 𝑛} .

For example, [5] = {1, 2, 3, 4, 5}. Notice that our notation looks just like the
notation we used for equivalence classes. However, despite the similar nota-
tion, these concepts are unrelated. We will have to rely on context to keep them
straight.

The next definition should coincide with your intuition about what it means
for a set to be finite.

Definition 9.18. A set 𝐴 is finite if 𝐴 = ∅ or card(𝐴) = card([𝑛]) for some
𝑛 ∈ ℕ. If𝐴 = ∅, thenwe say that𝐴 has cardinality 0 and if card(𝐴) = card([𝑛]),
then we say that 𝐴 has cardinality 𝑛.

Let’s prove a few results about finite sets. When proving the following theo-
rems, do not forget to consider the empty set.

Theorem 9.19. If 𝐴 is finite and card(𝐴) = card(𝐵), then 𝐵 is finite.

Theorem 9.20. If 𝐴 has cardinality 𝑛 ∈ ℕ ∪ {0} and 𝑥 ∉ 𝐴, then 𝐴 ∪ {𝑥} is finite
and has cardinality 𝑛 + 1.

Consider using induction when proving the next theorem.

Theorem 9.21. For every 𝑛 ∈ ℕ, every subset of [𝑛] is finite.

Theorem 9.20 shows that adding a single element to a finite set increases the
cardinality by 1. As you would expect, removing one element from a finite set
decreases the cardinality by 1.

Theorem 9.22. If 𝐴 has cardinality 𝑛 ∈ ℕ, then for all 𝑥 ∈ 𝐴, 𝐴⧵ {𝑥} is finite and
has cardinality 𝑛 − 1.

The next result tells us that the cardinality of a proper subset of a finite set is
never the same as the cardinality of the original set. It turns out that this theorem
does not hold for infinite sets.

Theorem 9.23. Every subset of a finite set is finite. In particular, if 𝐴 is a finite set,
then card(𝐵) < card(𝐴) for all proper subsets 𝐵 of 𝐴.

Induction is a sensible approach to proving the next two theorems.

Theorem 9.24. If 𝐴1, 𝐴2, . . . , 𝐴𝑘 is a finite collection of finite sets, then
𝑘

⋃
𝑖=1

𝐴𝑖 is

finite.
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The next theorem, called the Pigeonhole Principle, is surprisingly useful.
It puts restrictions on when we may have an injective function. The name of the
theorem is inspired by the following idea: If 𝑛 pigeons wish to roost in a house
with 𝑘 pigeonholes and 𝑛 > 𝑘, then it must be the case that at least one hole
contains more than one pigeon. Note that 2 is the smallest value of 𝑛 that makes
sense in the hypothesis below.

Theorem 9.25 (Pigeonhole Principle). If 𝑛, 𝑘 ∈ ℕ and 𝑓 ∶ [𝑛] → [𝑘] with 𝑛 > 𝑘,
then 𝑓 is not injective.

God created infinity, and man, unable to
understand infinity, had to invent finite sets.

Gian-Carlo Rota, mathematician &
philosopher

9.3 Infinite Sets

In the previous section, we explored finite sets. Now, let’s tinker with infinite
sets.

Definition 9.26. A set 𝐴 is infinite if 𝐴 is not finite.

Let’s see if we can utilize this definition to prove that the set of natural num-
bers is infinite. For sake of a contradiction, assume otherwise. Then there exists
𝑛 ∈ ℕ such that card([𝑛]) = card(ℕ), which implies that there exists a bijection
𝑓 ∶ [𝑛] → ℕ. What can you say about the number

𝑚 ≔ max(𝑓(1), 𝑓(2), . . . , 𝑓(𝑛)) + 1?

Theorem 9.27. The set ℕ of natural numbers is infinite.

Thenext theorem is analogous to Theorem9.19, but for infinite sets. To prove
this theorem, try a proof by contradiction. You should end up composing two
bijections, say 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → [𝑛] for some 𝑛 ∈ ℕ. As we shall see later,
the converse of this theorem is not true in general.

Theorem 9.28. If 𝐴 is infinite and card(𝐴) = card(𝐵), then 𝐵 is infinite.

Problem 9.29. Quickly verify that the following sets are infinite by appealing to
Theorem 9.27, Theorem 9.28, or Problem 9.6.

(a) The set of odd natural numbers
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(b) The set of even natural numbers

(c) ℤ

(d) 𝑅 = { 1
2𝑛

∣ 𝑛 ∈ ℕ}

(e) ℕ × {𝑎}

Notice that Definition 9.26 tells us what infinite sets are not, but it doesn’t
really tell us what they are. In light of Theorem 9.27, one way of thinking about
infinite sets is as follows. Suppose 𝐴 is some nonempty set. Let’s select a random
element from 𝐴 and set it aside. We will call this element the “first” element.
Then we select one of the remaining elements and set is aside, as well. This is
the “second” element. Imagine we continue this way, choosing a “third” ele-
ment, and “fourth” element, etc. If the set is infinite, we should never run out
of elements to select. Otherwise, we would create a bijection with [𝑛] for some
𝑛 ∈ ℕ.

The next problem, sometimes referred to as the Hilbert Hotel, named after
the German mathematician David Hilbert (1862–1942), illustrates another way
of thinking about infinite sets.

Problem 9.30. The Infinite Hotel has rooms numbered 1, 2, 3, 4, . . .. Every room
in the Infinite Hotel is currently occupied.

(i) Is it possible to make room for one more guest (assuming they want a room
all to themselves)?

(ii) An infinite number of new guests, say 𝑔1, 𝑔2, 𝑔3, . . ., show up in the lobby and
each demands a room. Is it possible tomake room for all the new guests even
if the hotel is already full?

The previous problem verifies that there exists a proper subset of the natu-
ral numbers that is in bijection with the natural numbers themselves. We also
witnessed this in Parts (a) and (b) of Problem 9.29. Notice that Theorem 9.23
forbids this type of behavior for finite sets. It turns out that this phenomenon
is true for all infinite sets. The next theorem verifies that that the two view-
points of infinite sets discussed above are valid. To prove this theorem, we need
to prove that the three statements are equivalent. One possible approach is to
prove (i) if and only if (ii) and (ii) if and only if (iii). For (i) implies (ii), construct
𝑓 recursively. For (ii) implies (i), try a proof by contradiction. For (ii) implies
(iii), let 𝐵 = 𝐴 ⧵ {𝑓(1), 𝑓(2), . . .} and show that 𝐴 can be put in bijection with
𝐵 ∪ {𝑓(2), 𝑓(3), . . .}. Lastly, for (iii) implies (ii), suppose 𝑔 ∶ 𝐴 → 𝐶 is a bijection
for some proper subset𝐶 of𝐴. Let 𝑎 ∈ 𝐴⧵𝐶. Define 𝑓 ∶ ℕ → 𝐴 via 𝑓(𝑛) = 𝑔𝑛(𝑎),
where 𝑔𝑛 means compose 𝑔 with itself 𝑛 times.

https://en.wikipedia.org/wiki/David_Hilbert
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Theorem 9.31. The following statements are equivalent.
(i) The set 𝐴 is infinite.

(ii) There exists an injective function 𝑓 ∶ ℕ → 𝐴.

(iii) The set 𝐴 can be put in bijection with a proper subset of 𝐴 (i.e., there exists a
proper subset 𝐵 of 𝐴 such that card(𝐵) = card(𝐴)).

It is worth mentioning that for the previous theorem, (iii) implies (i) follows
immediately from the contrapositive of Theorem 9.23. When proving (i) implies
(ii) in the previous theorem, did you apply the Axiom of Choice? If so, where?

Corollary 9.32. A set is infinite if and only if it has an infinite subset.

Corollary 9.33. If 𝐴 is an infinite set, then card(ℕ) ≤ card(𝐴).

Problem 9.34. Find a new proof of Theorem 9.27 that uses (iii) implies (i) from
Theorem 9.31.

Problem 9.35. Quickly verify that the following sets are infinite by appealing to
either Theorem 9.31 (use (ii) implies (i)) or Corollary 9.32.

(a) Set of odd natural numbers

(b) Set of even natural numbers

(c) ℤ

(d) ℕ × ℕ

(e) ℚ

(f) ℝ

(g) Set of perfect squares in ℕ

(h) (0, 1)

(i) ℂ ≔ {𝑎 + 𝑏𝑖 ∣ 𝑎, 𝑏 ∈ ℝ}

An ounce of practice is worth more than
tons of preaching.

Mahatma Gandhi, political activist
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9.4 Countable Sets

Recall that if 𝐴 = ∅, then we say that 𝐴 has cardinality 0. Also, if card(𝐴) =
card([𝑛]) for 𝑛 ∈ ℕ, then we say that 𝐴 has cardinality 𝑛. We have a special way
of describing sets that are in bijection with the natural numbers.

Definition 9.36. If 𝐴 is a set such that card(𝐴) = card(ℕ), then we say that 𝐴 is
denumerable and has cardinality ℵ𝟎 (read “aleph naught”).

Notice if a set 𝐴 has cardinality 1, 2, . . ., or ℵ0, we can label the elements in
𝐴 as “first”, “second”, and so on. That is, we can “count” the elements in these
situations. Certainly, if a set has cardinality 0, counting is not an issue. This idea
leads to the following definition.

Definition 9.37. A set 𝐴 is called countable if 𝐴 is finite or denumerable. A set
is called uncountable if it is not countable.

Problem 9.38. Quickly justify that each of the following sets is countable. Feel
free to appeal to previous problems. Which sets are denumerable?

(a) {𝑎, 𝑏, 𝑐}

(b) Set of odd natural numbers

(c) Set of even natural numbers

(d) { 1
2𝑛

∣ 𝑛 ∈ ℕ}

(e) Set of perfect squares in ℕ

(f) ℤ

(g) ℕ × {𝑎}

Utilize Theorem 9.31 or Corollary 9.33 when proving the next result.

Theorem 9.39. Every infinite set contains a denumerable subset.

Theorem 9.40. Let 𝐴 and 𝐵 be sets such that 𝐴 is countable. If 𝑓 ∶ 𝐴 → 𝐵 is a
bijection, then 𝐵 is countable.

For the next proof, consider the cases when 𝐴 is finite versus infinite. The
contrapositive of Corollary 9.32 should be useful for the case when 𝐴 is finite.

Theorem 9.41. Every subset of a countable set is countable.
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Theorem 9.42. A set is countable if and only if it has the same cardinality of some
subset of the natural numbers.

Theorem 9.43. If 𝑓 ∶ ℕ → 𝐴 is a surjective function, then 𝐴 is countable.

Loosely speaking, the next theorem tells us that we can arrange all of the ra-
tional numbers then count them “first”, “second”, “third”, etc. Given the fact that
between any two distinct rational numbers on the number line, there are an infi-
nite number of other rational numbers (justified by taking repeated midpoints),
this may seem counterintuitive.

Here is one possible approach for proving the next theorem. Make a table
with column headings 0, 1, −1, 2, −2, . . . and row headings 1, 2, 3, 4, 5, . . .. If a col-
umn has heading 𝑚 and a row has heading 𝑛, then the entry in the table corre-
sponds to the fraction𝑚/𝑛. Find a way to zig-zag through the table making sure
to hit every entry in the table (not including column and row headings) exactly
once. This justifies that there is a bijection betweenℕ and the entries in the table.
Do you see why? But now notice that every rational number appears an infinite
number of times in the table. Resolve this by appealing to Theorem 9.41.

Theorem 9.44. The set of rational numbers ℚ is countable.

Theorem 9.45. If 𝐴 and 𝐵 are countable sets, then 𝐴 ∪ 𝐵 is countable.

We would like to prove a stronger result than the previous theorem. To do
so, we need an intermediate result.

Theorem 9.46. Let {𝐴𝑛}∞𝑛=1 be a collection of sets. Define 𝐵1 ≔ 𝐴1 and for each
natural number 𝑛 > 1, define

𝐵𝑛 ≔ 𝐴𝑛 ⧵
𝑛−1

⋃
𝑖=1

𝐴𝑖.

Then we we have the following:

(a) The collection {𝐵𝑛}∞𝑛=1 is pairwise disjoint.

(b)
∞

⋃
𝑛=1

𝐴𝑛 =
∞

⋃
𝑛=1

𝐵𝑛.

The next theorem states that the union of a countable collection of countable
sets is countable. To prove this, consider two cases:

(1) The collection of sets is finite.

(2) The collection of sets is infinite.
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To handle the first case, use induction together with Theorem 9.45. The second
case is substantiallymore challenging. First, use Theorem 9.46 to construct a col-
lection {𝐵𝑛} of pairwise disjoint setswhose union is equal to the union of the origi-
nal collection. Since each 𝐵𝑛 is a subset of one of the sets in the original collection
and each of these sets is countable, each 𝐵𝑛 is also countable by Theorem 9.41.
This implies that for each 𝑛, we can write 𝐵𝑛 = {𝑏𝑛,1, 𝑏𝑛,2, 𝑏𝑛,3, . . .}, where the
set may be finite or infinite. From here, we outline two different approaches for
continuing. One approach is to construct a bijection fromℕ to⋃∞

𝑛=1 𝐵𝑛 using Fig-
ure 9.2 as inspiration. One thing youwill need to address is what to do when a set
in the collection {𝐵𝑛} is finite. For the second approach, define 𝑓 ∶ ⋃

∞
𝑛=1 𝐵𝑛 → ℕ

via 𝑓(𝑏𝑛,𝑚) = 2𝑛3𝑚, verify that this function is injective, and then appeal to The-
orem 9.41. Try using both of these approaches when tackling the proof of the
following theorem.

𝑏1,1 𝑏1,2 𝑏1,3 𝑏1,4 𝑏1,5

𝑏2,1 𝑏2,2 𝑏2,3 𝑏2,4

𝑏3,1 𝑏3,2 𝑏3,3

𝑏4,1 𝑏4,2

𝑏5,1

⋯

⋯

⋯

⋯

⋯

Figure 9.2. Inspiration for one possible approach to proving
Theorem 9.47.

Theorem 9.47. Let Δ be equal to either ℕ or [𝑘] for some 𝑘 ∈ ℕ. If {𝐴𝑛}𝑛∈∆ is a
countable collection of sets such that each 𝐴𝑛 is countable, then⋃𝑛∈∆ 𝐴𝑛 is count-
able.

Did you use the Axiom of Choice when proving the previous theorem? If so,
where?

Theorem 9.48. If 𝐴 and 𝐵 are countable sets, then 𝐴 × 𝐵 is countable.

Theorem 9.49. The set of all finite sequences of 0’s and 1’s (e.g., 0110010 is a finite
sequence consisting of 0’s and 1’) is countable.

Theorem 9.50. The collection of all finite subsets of a countable set is countable.
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Vulnerability is not winning or losing; it’s
having the courage to show up and be seen
when we have no control over the outcome.

Brené Brown, storyteller & author

9.5 Uncountable Sets

Recall fromDefinition 9.37 that a set𝐴 is uncountable if𝐴 is not countable. Since
all finite sets are countable, the only way a set could be uncountable is if it is infi-
nite. It follows that a set 𝐴 is uncountable if and only if there is never a bijection
betweenℕ and𝐴. It is not clear that uncountable sets even exist! It turns out that
uncountable sets do exist and in this section, we will discover a few of them.

Our first task is to prove that the interval (0, 1) is uncountable. By Prob-
lem 9.35(h), we know that (0, 1) is an infinite set, so it is at least plausible that
(0, 1) is uncountable. The following problem outlines the proof of Theorem 9.52.
Our approach is often referred to as Cantor’s Diagonalization Argument,
named after German mathematician Georg Cantor (1845–1918).

Before we get started, recall that every number in (0, 1) can be written in
decimal form. However, theremay bemore than oneway towrite a given number
in decimal form. For example, 0.2 equals 0.199. A number 0.𝑎1𝑎2𝑎3 . . . in (0, 1) is
said to be in standarddecimal form if there is no 𝑘 such that for all 𝑖 > 𝑘, 𝑎𝑖 = 9.
That is, a number is in standard decimal form if and only if its decimal expansion
does not end with a repeating sequence of 9’s. For example, 0.2 is in standard
decimal form while 0.199 is not, even though both represent the same number.
It turns out that every real number can be expressed uniquely in standard decimal
form. We will take this fact for granted.

Problem 9.51. For sake of a contradiction, assume the interval (0, 1) is count-
able. Then there exists a bijection 𝑓 ∶ ℕ → (0, 1). For each 𝑛 ∈ ℕ, its image
under 𝑓 is some number in (0, 1). Write 𝑓(𝑛) = 0.𝑎1𝑛𝑎2𝑛𝑎3𝑛 . . ., where 𝑎1𝑛 is
the first digit in the standard decimal form for the image of 𝑛, 𝑎2𝑛 is the second
digit, and so on. If 𝑓(𝑛) terminates after 𝑘 digits, then our convention will be to
continue the decimal expansion with 0’s. Now, define 𝑏 = 0.𝑏1𝑏2𝑏3 . . ., where

𝑏𝑖 = {2, if 𝑎𝑖𝑖 ≠ 2
3, if 𝑎𝑖𝑖 = 2.

(a) Prove that the decimal expansion that defines 𝑏 above is in standard decimal
form.

(b) Prove that for all 𝑛 ∈ ℕ, 𝑓(𝑛) ≠ 𝑏.
(c) Explain why 𝑓 cannot be surjective and why this is a contradiction.

https://en.wikipedia.org/wiki/Georg_Cantor
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You just proved that the interval (0, 1) cannot be countable!

The previous problem proves following theorem.

Theorem 9.52. The open interval (0, 1) is uncountable.

Loosely speaking, what Theorem 9.52 says is that the open interval (0, 1) is
“bigger” in terms of the number of elements it contains than the natural numbers
and even the rational numbers. This shows that there are infinite sets of different
sizes! We now know there is at least one uncountable set, namely the interval
(0, 1). The next three results are useful for finding other uncountable sets. For
the first theorem, try a proof by contradiction and take a look at Theorem 9.41.

Theorem 9.53. If 𝐴 and 𝐵 are sets such that 𝐴 ⊆ 𝐵 and 𝐴 is uncountable, then 𝐵
is uncountable.

Corollary 9.54. If 𝐴 and 𝐵 are sets such that 𝐴 is uncountable and 𝐵 is countable,
then 𝐴 ⧵ 𝐵 is uncountable.

Theorem 9.55. If 𝑓 ∶ 𝐴 → 𝐵 is an injective function and 𝐴 is uncountable, then
𝐵 is uncountable.

Since the interval (0, 1) is uncountable and (0, 1) ⊆ ℝ, it follows immediately
from Theorem 9.53 that ℝ is also uncountable. The next theorem tells that (0, 1)
and ℝ actually have the same cardinality! To prove this, consider the function
𝑓 ∶ (0, 1) → ℝ defined via 𝑓(𝑥) = tan(𝜋𝑥 − 𝜋

2
).

Theorem 9.56. The real numbers are uncountable. In particular, card((0, 1)) =
card(ℝ).

The continuum hypothesis—originally proposed by Cantor in 1878—
states that there is no set whose cardinality is strictly between that of the natural
numbers and the real numbers. Cantor unsuccessfully attempted to prove the
continuum hypothesis for several years. It follows from the work of Paul Cohen
(1934–2007) and Kurt Gödel (1906–1978) that the continuum hypothesis and its
negation are independent of the Zermelo-Fraenkel axioms of set theory (briefly
discussed at the end of Section 3.2). That is, either the continuum hypothesis or
its negation can be added as an axiom to ZFC set theory, with the resulting the-
ory being consistent if and only if ZFC is consistent (i.e., no contradictions are
produced). Nowadays, most set theorists believe that the continuum hypothesis
should be false.

Theorem 9.57. If 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏, then (𝑎, 𝑏), [𝑎, 𝑏], (𝑎, 𝑏], and [𝑎, 𝑏) are all
uncountable.

https://en.wikipedia.org/wiki/Paul_Cohen
https://en.wikipedia.org/wiki/Kurt_Godel


9.5. Uncountable Sets 155

Theorem 9.58. The set of irrational numbers is uncountable.

Theorem 9.59. The set ℂ of complex numbers is uncountable.

Problem 9.60. Determine whether each of the following statements is true or
false. If a statement is true, prove it. Otherwise, provide a counterexample.

(a) If 𝐴 and 𝐵 are sets such that 𝐴 is uncountable, then 𝐴 ∪ 𝐵 is uncountable.

(b) If 𝐴 and 𝐵 are sets such that 𝐴 is uncountable, then 𝐴 ∩ 𝐵 is uncountable.

(c) If 𝐴 and 𝐵 are sets such that 𝐴 is uncountable, then 𝐴 × 𝐵 is uncountable.

(d) If 𝐴 and 𝐵 are sets such that 𝐴 is uncountable, then 𝐴 ⧵ 𝐵 is uncountable.

An approach similar to Cantor’s Diagonalization Argument will be helpful
when approaching the next problem.

Problem 9.61. Let 𝑆 be the set of infinite sequences of 0’s and 1’s. Determine
whether 𝑆 is countable or uncountable and prove that your answer is correct.

Theorem 9.62. If 𝑆 is the set from Problem 9.61, then card(𝒫(ℕ)) = card(𝑆).

Corollary 9.63. The power set of the natural numbers is uncountable.

Notice that ℕ is countable while 𝒫(ℕ) is uncountable. That is, the power set
of the natural numbers has cardinality strictly larger than the natural numbers.
We generalize this phenomenon in the next theorem.

According toTheorem9.56 andCorollary 9.63,ℝ and𝒫(ℕ) are bothuncount-
able. In fact, card(𝒫(ℕ)) = card(ℝ), which we state without proof. However, it
turns out that the two uncountable sets may or may not have the same cardi-
nality. Perhaps surprisingly, there are sets that are even “bigger” than the set of
real numbers. The next theorem is named after Georg Cantor, who first stated
and proved it at the end of the 19th century. The theorem states that given any
set, we can always increase the cardinality by considering its power set. That
is, if 𝐴 is a set, 𝒫(𝐴) has strictly greater cardinality than 𝐴 itself. For finite sets,
Cantor’s theorem follows from Theorems 4.11 and 4.12 (both of which we proved
via induction). Perhaps much more surprising is that Cantor discovered an ele-
gant argument that is applicable to any set, whether finite or infinite. To prove
Cantor’s Theorem, first exhibit an injective function from 𝐴 to 𝒫(𝐴). This proves
that card(𝐴) ≤ card(𝒫(𝐴)). To show that card(𝐴) < card(𝒫(𝐴)), try a proof by
contradiction. That is, assume there exists a bijective function 𝑓 ∶ 𝐴 → 𝒫(𝐴)).
Derive a contradiction by considering the set 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝑥 ∉ 𝑓(𝑥)}.
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Theorem 9.64 (Cantor’s Theorem). If 𝐴 is a set, then card(𝐴) < card(𝒫(𝐴)).

Recall that cardinality provides a way for talking about “how big” a set is.
The fact that the natural numbers and the real numbers have different cardinal-
ity (one countable, the other uncountable), tells us that there are at least two
different “sizes of infinity”. By iteratively taking the power set of an infinite set
and applying Cantor’s Theorem we obtain an endless hierarchy of cardinalities,
each strictly larger than the one before it. Colloquially, this implies that there are
“infinitely many sizes of infinity” and there is “no largest infinity”.

If you want to sharpen a sword, you have to
remove a little metal.

Author Unknown



AppendixA
Elements of Style for Proofs

Mathematics is about discovering proofs and writing them clearly and compel-
lingly. The following guidelines apply whenever you write a proof. Keep these
guidelines handy so that you may refer to them as you write your proofs.

(1) The burden of communication lies on you, not on your reader. It is
your job to explain your thoughts; it is not your reader’s job to guess them
from a few hints. You are trying to convince a skeptical reader who does
not believe you, so you need to argue with airtight logic in crystal clear
language; otherwise the reader will continue to doubt. If you did not write
something on the paper, then (a) you did not communicate it,(b) the reader
did not learn it, and (c) the grader has to assume you did not know it in the
first place.

(2) Tell the reader what you are proving or citing. The reader does not
necessarily know or remember what “Theorem 2.13” is. Even a professor
grading a stack of papers might lose track from time to time. Therefore, the
statement you are proving should be on the same page as the beginning of
your proof.
Inmost proofs you will want to refer to an earlier definition, problem, theo-
rem, or corollary. In this case, you should reference the statement by num-
ber, but it is also helpful to the reader to summarize the statement you are
citing. For example, you might write something like, “By Theorem 2.3, the
sum of two consecutive integers is odd, and so. . . .”

(3) Use English words. Although there will usually be equations or mathe-
matical statements in your proofs, use English sentences to connect them
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and display their logical relationships. If you at proofs in textbooks and
research papers, you will see that they consist mostly of English words.

(4) Use complete sentences. If you wrote a history essay in sentence frag-
ments, the readerwould not understandwhat youmeant; likewise inmath-
ematics you must use complete sentences, with verbs, to convey your logi-
cal train of thought.
Some complete sentences can be written purely in mathematical symbols,
such as equations (e.g., 𝑎3 = 𝑏−1), inequalities (e.g., 𝑥 < 5), and other
relations (like 5||10 or 7 ∈ ℤ). These statements usually express a relation-
ship between twomathematical objects, like numbers or sets. However, it is
considered bad style to begin a sentence with symbols. A common phrase
to use to avoid starting a sentence with mathematical symbols is “We see
that. . . ”.

(5) Show the logical connections among your sentences. Use phrases like
“Therefore”, “Thus”, “Hence”, “Then”, “since”, “because”, “if. . . , then. . . ”, or
“if and only if” to connect your sentences.

(6) Know the difference between statements and objects. A mathemati-
cal object is a thing, a noun, such as a set, an element, a number, an ordered
pair, a vector space, etc. Objects either exist or do not exist. Statements, on
the other hand, are mathematical sentences: they are either true or false.
When you see orwrite a cluster ofmath symbols, be sure you knowwhether
it is an object (e.g., “𝑥2 +3”) or a statement (e.g., “𝑥2 +3 < 7”). One way to
tell is that every mathematical statement includes a verb, such as =, ≤, ∈,
“divides”, etc.

(7) The symbol “=” means “equals”. Do not write 𝐴 = 𝐵 unless you mean
that 𝐴 actually equals 𝐵. This guideline seems obvious, but there is a great
temptation to be sloppy. In calculus, for example, some people might write
𝑓(𝑥) = 𝑥2 = 2𝑥 (which is false), when they really mean that “if 𝑓(𝑥) = 𝑥2,
then 𝑓′(𝑥) = 2𝑥.”

(8) Do not interchange = and⟹. The equals sign connects two objects, as
in “𝑥2 = 𝑏”; the symbol “⟹” is an abbreviation for “implies” and connects
two statements, as in “𝑎+𝑏 = 𝑎⟹ 𝑏 = 0.” You should avoid using⟹ in
formal write-ups of proofs.

(9) Avoid logical symbols in your proofs. Similar to⟹, you should avoid
using the logical symbols∀, ∃, ∨, ∧, and⟺ in your formalwrite-ups. These
symbols are useful for abbreviating in your scratch work.
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(10) Say exactlywhat youmean. Just as= is sometimes abused, so too people
sometimes write 𝐴 ∈ 𝐵 when they mean 𝐴 ⊆ 𝐵, or write 𝑎𝑖𝑗 ∈ 𝐴 when
they mean that 𝑎𝑖𝑗 is an entry in matrix 𝐴. Mathematics is a very precise
language, and there is a way to say exactly what you mean; find it and use
it.

(11) Donotutilize anythingunproven. Every statement in your proof should
be something you know to be true. The reader expects your proof to be a
series of statements, each proven by the statements that came before it. If
you ever need to write something you do not yet know is true, you must
preface it withwords like “assume,” “suppose,” or “if” if you are temporarily
assuming it, or with words like “we need to show that” or “we claim that”
if it is your goal. Otherwise, the reader will think they have missed part of
your proof.

(12) Write strings of equalities (or inequalities) in the proper order.
When your reader sees something like

𝐴 = 𝐵 ≤ 𝐶 = 𝐷,

they expect to understand easily why 𝐴 = 𝐵, why 𝐵 ≤ 𝐶, and why 𝐶 = 𝐷,
and they expect the point of the entire line to be the more complicated fact
that 𝐴 ≤ 𝐷. For example, if you were computing the distance 𝑑 of the point
(12, 5) from the origin, you could write

𝑑 = √122 + 52 = 13.

In this string of equalities, the first equals sign is true by the Pythagorean
theorem, the second is just arithmetic, and the conclusion is that the first
item equals the last item: 𝑑 = 13.
A common error is to write strings of equations in the wrong order. For
example, if you were to write “√122 + 52 = 13 = 𝑑”, your reader would
understand the first equals sign, would be baffled as to how we know 𝑑 =
13, and would be utterly perplexed as to why you wanted or needed to go
through 13 to prove that√122 + 52 = 𝑑.

(13) Avoid circularity. Be sure that no step in your proof makes use of the
conclusion!

(14) Do not write the proof backwards. Beginning students often attempt
to write “proofs” like the following, which attempts to prove that
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tan2(𝑥) = sec2(𝑥) − 1:

tan2(𝑥) = sec2(𝑥) − 1

( sin(𝑥)cos(𝑥))
2
= 1
cos2(𝑥) − 1

sin2(𝑥)
cos2(𝑥) =

1 − cos2(𝑥)
cos2(𝑥)

sin2(𝑥) = 1 − cos2(𝑥)
sin2(𝑥) + cos2(𝑥) = 1

1 = 1

Notice what has happened here: the student started with the conclusion,
and deduced the true statement “1 = 1.” In other words, they have proved
“If tan2(𝑥) = sec2(𝑥)−1, then 1 = 1,” which is true but highly uninteresting.
Now this is not a bad way of finding a proof. Working backwards from your
goal often is a good strategy on your scratch paper, but when it is time to
write your proof, you have to start with the hypotheses and work to the
conclusion.

Here is an example of a suitable proof for the desired result, where each
expression follows from the one immediately proceeding it:

sec2(𝑥) − 1 = 1
cos2(𝑥) − 1

= 1 − cos2(𝑥)
cos2(𝑥)

= sin2(𝑥)
cos2(𝑥)

= ( sin(𝑥)cos(𝑥))
2

= (tan(𝑥))2

= tan2(𝑥).

(15) Be concise. Many beginning proof writers err by writing their proofs too
short, so that the reader cannot understand their logic. It is nevertheless
quite possible to be too wordy, and if you find yourself writing a full-page
essay, it is possible that you do not really have a proof, but just some intu-
ition. When you find a way to turn that intuition into a formal proof, it will
be much shorter.
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(16) Introduce every symbol you use. If you use the letter “𝑘,” the reader
should know exactly what 𝑘 is. Good phrases for introducing symbols in-
clude “Let 𝑛 ∈ ℕ,” “Let 𝑘 be the least integer such that. . . ,” “For every real
number 𝑎. . . ,” and “Suppose 𝐴 ⊆ ℝ . . .”.

(17) Use appropriate quantifiers (once). When you introduce a variable 𝑥 ∈
𝑆, it must be clear to your reader whether you mean “for all 𝑥 ∈ 𝑆” or just
“for some 𝑥 ∈ 𝑆.” If you just say something like “𝑦 = 𝑥2 where 𝑥 ∈ 𝑆,” the
word “where” does not indicate whether you mean “for all” or “some”.
Phrases indicating the quantifier “for all” include “Let 𝑥 ∈ 𝑆”; “for all
𝑥 ∈ 𝑆”; “for every 𝑥 ∈ 𝑆”; “for each 𝑥 ∈ 𝑆”; etc. Phrases indicating the
quantifier “some” or “there exists”) include “for some 𝑥 ∈ 𝑆”; “there exists
an 𝑥 ∈ 𝑆”; “for a suitable choice of 𝑥 ∈ 𝑆”; etc.
Once you have said “Let 𝑥 ∈ 𝑆,” the letter 𝑥 has its meaning defined. You
do not need to say “for all 𝑥 ∈ 𝑆” again, and you definitely should not say
“let 𝑥 ∈ 𝑆” again.

(18) Use a symbol tomean only one thing. Once you use the letter 𝑥 once, its
meaning is fixed for the duration of your proof. You cannot use 𝑥 to mean
anything else. There is an exception to this guideline. Sometimes a proof
will include multiple subproofs that are distinct from each other. In this
case, you can reuse a variable or symbol as long as it is clear to the reader
that you have concluded with the previous subproof and have moved onto
a new subproof.

(19) Do not “prove by example.” Most problems ask you to prove that some-
thing is true “for all”—You cannot prove this by giving a single example, or
even a hundred. Your proof will need to be a logical argument that holds
for every example there possibly could be.
On the other hand, if the claim that you are trying to prove involves the ex-
istence of a mathematical object with a particular property, then providing
a specific example is sufficient.

(20) Write “Let 𝑥 = . . . ,” not “Let⋯ = 𝑥.” When you have an existing expres-
sion, say 𝑎2, and you want to give it a new, simpler name like 𝑏, you should
write “Let 𝑏 = 𝑎2,” which means, “Let the new symbol 𝑏 mean 𝑎2.” This
convention makes it clear to the reader that 𝑏 is the brand-new symbol and
𝑎2 is the old expression he/she already understands.
If you were to write it backwards, saying “Let 𝑎2 = 𝑏,” then your startled
reader would ask, “What if 𝑎2 ≠ 𝑏?”

(21) Make your counterexamples concrete and specific. Proofs need to be
entirely general, but counterexamples should be concrete. When you pro-
vide an example or counterexample, make it as specific as possible. For a
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set, for example, youmust specify its elements, and for a function youmust
specify the corresponding relation (possibly an algebraic rule) and its do-
main and codomain. Do not say things like “𝑓 could be one-to-one but not
onto”; instead, provide an actual function 𝑓 that is one-to-one but not onto.

(22) Do not include examples in proofs. Including an example very rarely
adds anything to your proof. If your logic is sound, then it does not need
an example to back it up. If your logic is bad, a dozen examples will not
help it (see Guideline 19). There are only two valid reasons to include an
example in a proof: if it is a counterexample disproving something, or if
you are performing complicated manipulations in a general setting and the
example is just to help the reader understand what you are saying.

(23) Use scratch paper. Finding your proof will be a long, potentially messy
process, full of false starts and dead ends. Do all that on scratch paper until
you find a real proof, and only then break out your clean paper towrite your
final proof carefully.
Only sentences that actually contribute to your proof should be part of the
proof. Do not just perform a “brain dump,” throwing everything you know
onto the paper before showing the logical steps that prove the conclusion.
That is what scratch paper is for.
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Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter through-
out mathematics.

(1) Definition—a precise and unambiguous description of the meaning of a
mathematical term. It characterizes themeaning of a word by giving all the
properties and only those properties that must be true.

(2) Theorem—amathematical statement that is proved using rigorous math-
ematical reasoning. In a mathematical paper, the term theorem is often
reserved for the most important results.

(3) Proposition—a proved and often interesting result, but generally less im-
portant than a theorem.

(4) Lemma—a minor result whose sole purpose is to help in proving a theo-
rem. It is a stepping stone on the path to proving a theorem. Occasionally
lemmas can take on a life of their own (Zorn’s Lemma, Urysohn’s Lemma,
Burnside’s Lemma, Sperner’s Lemma).

(5) Corollary—a result in which the (usually short) proof relies heavily on a
given theorem (we often say that “this is a corollary of Theorem A”).

(6) Conjecture—a statement that is unproved, but is believed to be true (Col-
latz Conjecture, Goldbach Conjecture, Twin prime Conjecture).

(7) Claim—an assertion that is then proved. It is often used like an informal
lemma.

(8) Counterexample—a specific example showing that a statement is false.

163



164 Appendix B. Fancy Mathematical Terms

(9) Axiom/Postulate—a statement that is assumed to be true without proof.
These are the basic building blocks from which all theorems are proved
(Euclid’s five postulates, axioms of ZFC, Peano axioms).

(10) Identity—amathematical expression giving the equality of two (often vari-
able) quantities (trigonometric identities, Euler’s identity).

(11) Paradox—a statement that can be shown, using a given set of axioms and
definitions, to be both true and false. Paradoxes are often used to show the
inconsistencies in a flawed axiomatic theory (e.g., Russell’s Paradox). The
term paradox is also used informally to describe a surprising or counterin-
tuitive result that follows from a given set of rules (Banach-Tarski Paradox,
Alabama Paradox, Gabriel’s Horn).



AppendixC
Paradoxes

A paradox is a statement that can be shown, using a given set of axioms and
definitions, to be both true and false. Recall that an axiom is a statement that is
assumed to be truewithout proof. These are the basic building blocks fromwhich
all theorems are proved. Paradoxes are often used to show the inconsistencies in
a flawed axiomatic theory. The term paradox is also used informally to describe
a surprising or counterintuitive result that follows from a given set of rules. In
Section 3.2, we encountered two paradoxes:

• The Barber of Seville (Problem 3.24)

• Russell’s Paradox (Problem 3.26)

Below are several additional paradoxes that are worth exploring.

(1) Librarian’s Paradox. A librarian is given the unenviable task of creating
two new books for the library. Book A contains the names of all books in the
library that reference themselves and Book B contains the names of all books
in the library that do not reference themselves. But the librarian just created
two new books for the library, so their titles must be in either Book A or Book
B. Clearly Book A can be listed in Book B, but where should the librarian list
Book B?

(2) Liar’s Paradox. Consider the statement: this sentence is false. Is it true or
false?

(3) Berry Paradox. Consider the claim: every natural number can be unam-
biguously described in fourteen words or less. It seems clear that this state-
ment is false, but if that is so, then there is some smallest natural number
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which cannot be unambiguously described in fourteen words or less. Let’s
call it 𝑛. But now 𝑛 is “the smallest natural number that cannot be unam-
biguously described in fourteen words or less.” This is a complete and unam-
biguous description of 𝑛 in fourteen words, contradicting the fact that 𝑛 was
supposed not to have such a description. Therefore, all natural numbers can
be unambiguously described in fourteen words or less!

(4) The Naming Numbers Paradox. Consider the claim: every natural num-
ber can be unambiguously described using no more than 50 characters
(where a character is a–z, 0–9, and a “space”). For example, we can describe
9 as “9” or “nine” or “the square of the second prime number.” There are
only 37 characters, so we can describe at most 3750 numbers, which is very
large, but not infinite. So the statement is false. However, here is a “proof”
that it is true. Let 𝑆 be the set of natural numbers that can be unambiguously
described using no more than 50 characters. For the sake of contradiction,
suppose it is not all of ℕ. Then there is a smallest number 𝑡 ∈ ℕ ⧵ 𝑆. We can
describe 𝑡 as: the smallest natural number not in 𝑆. Thus 𝑡 can be described
using no more than 50 characters. So 𝑡 ∈ 𝑆, a contradiction.

(5) Euathlus and Protagoras. Euathlus wanted to become a lawyer but could
not pay Protagoras. Protagoras agreed to teach him under the condition that
if Euathluswonhis first case, hewould pay Protagoras, otherwise not. Euath-
lus finished his course of study and did nothing. Protagoras sued for his fee.
He argued:

If Euathlus loses this case, then he must pay (by the judgment of the court).
If Euathlus wins this case, then he must pay (by the terms of the contract).
He must either win or lose this case.
Therefore Euathlus must pay me.

But Euathlus had learned well the art of rhetoric. He responded:

If I win this case, I do not have to pay (by the judgment of the court).
If I lose this case, I do not have to pay (by the contract).
I must either win or lose the case.
Therefore, I do not have to pay Protagoras.



AppendixD
Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Defini-
tions play a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the
rarely-used word rodomontade. According to the Oxford English Dictionary1
(OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bom-
bastic speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper.
Ten minutes later ask her to define rodomontade. Most likely she will be able
to give a reasonably accurate definition. Maybe she’d say something like, “It is a
speech or act or piece of writing created by a pompous or egotistical person who
wants to show off how great they are.” It is unlikely that she will have quoted the
OEDword-for-word. In everyday English that is fine—youwould probably agree
that your friend knows the meaning of the rodomontade. This is because most
definitions are descriptive. They describe the common usage of a word.

Let us take a mathematical example. The OED2 gives this definition of con-
tinuous.

Characterized by continuity; extending in space without interruption of
substance; having no interstices or breaks; having its parts in immediate
connection; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one
whose graph can be drawn “without picking up the pencil.” This definition is
1http://www.oed.com/view/Entry/166837
2http://www.oed.com/view/Entry/40280
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descriptive. However, as we learned in calculus, the picking-up-the-pencil de-
scription is not a perfect description of continuous functions. This is not a math-
ematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the
exact and correct meaning of a word. Contrast the OED’s descriptive definition
of continuous with the definition of continuous found in a real analysis textbook.

A function 𝑓 ∶ 𝐴 → ℝ is continuous at a point 𝑐 ∈ 𝐴 if, for all 𝜀 > 0,
there exists 𝛿 > 0 such that whenever |𝑥 − 𝑐| < 𝛿 (and 𝑥 ∈ 𝐴) it follows
that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀. If 𝑓 is continuous at every point in the domain 𝐴,
then we say that 𝑓 is continuous on 𝐴.3

In mathematics there is very little freedom in definitions. Mathematics is a de-
ductive theory; it is impossible to state and prove theorems without clear defini-
tions of the mathematical terms. The definition of a termmust completely, accu-
rately, and unambiguously describe the term. Each word is chosen very carefully
and the order of the words is critical. In the definition of continuity changing
“there exists” to “for all,” changing the orders of quantifiers, changing < to ≤ or
>, or changing ℝ to ℤ would completely change the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at
this stage you memorize the definitions word-for-word. It is the safest way to
guarantee that you have it correct. As you gain confidence and familiarity with
the subject you may be ready to modify the wording. You may want to change
“for all” to “given any” or you may want to change |𝑥 − 𝑐| < 𝛿 to −𝛿 < 𝑥 − 𝑐 < 𝛿
or to “the distance between 𝑥 and 𝑐 is less than 𝛿.”

Of course, memorization is not enough; you must have a conceptual under-
standing of the term, you must see how the formal definition matches up with
your conceptual understanding, and you must know how to work with the defi-
nition. It is perhaps with the first of these that descriptive definitions are use-
ful. They are useful for building intuition and for painting the “big picture.”
Only after days (weeks, months, years?) of experience does one get an intuitive
feel for the epsilon-delta definition of continuity; most mathematicians have the
“picking-up-the-pencil” definitions in their head. This is fine as long as we know
that it is imperfect, and thatwhenwe prove theorems about continuous functions
in mathematics we use the mathematical definition.

We end this discussionwith an amusing real-life example inwhich a descrip-
tive definition was not sufficient. In 2003 the German version of the game show
Who wants to be a millionaire? contained the following question: “Every rectan-
gle is: (a) a rhombus, (b) a trapezoid, (c) a square, (d) a parallelogram.”

The confused contestant decided to skip the question and left with €4000.
Afterward the show received letters from irate viewers. Why were the contestant
3This definition is taken frompage 109 of StephenAbbott’sUnderstandingAnalysis, but the definition
would be essentially the same in any modern real analysis textbook.
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and the viewers upset with this problem? Clearly a rectangle is a parallelogram,
so (d) is the answer. But what about (b)? Is a rectangle a trapezoid? We would
describe a trapezoid as a quadrilateral with a pair of parallel sides. But this leaves
open the question: can a trapezoid have two pairs of parallel sides or must there
only be one pair? The viewers said two pairs is allowed, the producers of the
television show said it is not. This is a case inwhich a clear, precise, mathematical
definition is required.
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