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Coxeter groups

Definition

A Coxeter system is a pair (W ,S), where W is a group given by
the presentation

〈S | (si sj)
mij = 1〉,

where mij ∈ Z ∪ {∞} and we have mii = 1 and mij = mji .
(If mij =∞, we omit the corresponding relation.)

The group W above is known as a Coxeter group. It follows easily
from the definition that the generators s have order 2. It is also
true, but not obvious, that mij is the order of the product si sj .
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Examples of Coxeter groups

The symmetric group, W = Symn+1, is an example of a Coxeter
group, if we take S = {si : 1 ≤ i ≤ n} where si = (i , i + 1).

In this case, we have mij = 2 if |i − j | > 1, and mi ,i+1 = 3.
The group Symn+1 is the automorphism group of the regular
simplex in n dimensions.
The dihedral group of order 2m, W = D2m, is an example of a
Coxeter group, if we take S = {s, t}.
We then have

W = 〈s, t | s2 = t2 = 1, (st)m = 1〉.

The group W is the automorphism group of the regular m-gon in 2
dimensions.
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Examples of Coxeter groups (continued)

The hyperoctahedral group, W = W (Bn), is the Coxeter group
with generating set S = {s1, s2, . . . , sn}, where

mij =


2 if |i − j | > 1,

4 if {i , j} = {1, 2},
3 otherwise.

The group W (Bn) is isomorphic to the automorphism group of the
n-dimensional hypercube, Z2 o Sn, of order 2nn!.
If i > 1, we may identify the generator si with the transposition
(i − 1, i). The generator s1 acts by sign change on the leftmost
coordinate.
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Examples of Coxeter groups (continued)

The group W (Bn) has an interesting index 2 subgroup, generated
by the set {s2, s3, . . . , sn} together with s1′ := s1s2s1 in place of s1.

This subgroup is the main group of interest in this talk: the
Coxeter group W (Dn). In this case (for i 6= j) we have

mij =

{
3 if {i , j} = {1′, 3} or both i , j ≥ 2 and |i − j | > 1,

2 otherwise.

The group W (Dn) is the subgroup of Z2 o Sn of order 2n−1n! that
corresponds to signed permutations effecting an even number of
sign changes. The generator si (for i ≥ 2) corresponds to the
transposition (i − 1, i). The generator s1′ corresponds to the
transposition (1, 2) combined with a sign change in the first and
second positions.
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A good way to encode the information given in the presentation of
a Coxeter group is by means of a graph.

Definition

Let (W ,S) be a Coxeter system. The Coxeter graph, Γ, of (W ,S)
is a graph whose vertices are indexed by S . Two vertices si and sj
are connected by an edge if mij > 2. If we have mij > 3, then we
label the edge by the integer mij = mji .

A Coxeter group is finite if and only if the connected components
of its Coxeter graph are finite in number and appear in a well
known list (types An, Bn, Dn, E6, E7, E8, F4, H3, H4 and I2(m)).
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Reflection groups

A reflection is a linear transformation in Euclidean space Rn that
sends a nonzero vector α to −α and fixes the hyperplane Hα

orthogonal to α. A reflection group is a group generated by
reflections.

A fundamental result in the theory of Coxeter groups is the
following.

Theorem

Every finite reflection group is a finite Coxeter group, and vice
versa. Furthermore, the Coxeter presentation of the group and the
set of hyperplanes of the reflection group determine each other “up
to isomorphism”.
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Less vaguely: consider the group W (Dn), and the basis
ε1, ε2, . . . , εn for Rn.

The generators si (for i ≥ 2) act as reflections in the hyperplanes
orthogonal to the vectors αi = εi−1 − εi . This has the effect of
permuting the (i − 1)-st and i-th coordinates.
The generator s1′ acts as a reflection in the hyperplane normal to
the vector α1′ = ε1 + ε2. This has the effect of permuting the first
and second coordinates, and then changing the sign of both.
For example, note that the vector v = (+2,+2, . . . ,+2) is fixed by
all the generators si except for s1′ , which moves it to
(−2,−2,+2, . . . ,+2).
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The reflection action of a finite Coxeter group (W , S) on Rn can
be used to define a polytope by taking a vector v ∈ Rn and then
taking the convex hull, Π(v), of the finite set of points W .v.

The exact nature of the polytope Π(v) obtained depends on
(W ,S), and on the subset

I (v) := {s ∈ S : s(v) 6= v}.

(Note that in the above example, I (v) is a single element.)
In order to appreciate what is going on, it is helpful to review the
basics of the theory of polytopes.
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Polytopes

If V is a vector space over R and X ⊂ V , then the affine hull,
Aff(X ), of X in V is the set of affine combinations of finite
subsets of points in X ; that is, the set of all vectors{

k∑
i=1

λixi : xi ∈ X , λi ∈ R,
k∑

i=1

λi = 1, k ∈ N

}
.

The dimension of the affine hull of X is the dimension of the
vector space of all differences of vectors in X ; that is, the
dimension of the space{

k∑
i=1

λixi : xi ∈ X , λi ∈ R,
k∑

i=1

λi = 0, k ∈ N

}
.
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Theorem (Main theorem for polytopes)

A subset P ⊆ Rd is the convex hull of a finite set of points if and
only if it is a bounded intersection of finitely many closed half
spaces.

The part of a polytope that lies in one of the bounding
hyperplanes is known as a facet.
Starting with an n-dimensional polytope and iterating this
construction gives rise to a set of k-dimensional polytopes Πk

(called k-faces) for each 0 ≤ k ≤ n.
The k-faces of a polytope form a lattice under inclusion. The
elements of Π0 are called vertices and the elements of Π1 are
called edges. Sometimes it is convenient to invent a single element
of Π−1, which we identify with the empty set. It is considered to
have dimension −1.
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Theorem (Borel–Tits; Satake; Casselman)

Suppose that the Coxeter group (W , S) acts by reflections as
above, and that the subset I (v) = {s ∈ S : s(v) 6= v} consists of a
single vertex. Then the W -orbits of k-dimensional faces of Π(v)
are in bijection with the connected k-subsets of S containing I (v).

More precisely, if WI is the (parabolic) subgroup generated by the
corresponding k-subset, then the convex hull of WI .v is one of the
k-faces in the corresponding orbit.

The theorem is true more generally; the hypothesis that I (v) be a
singleton is equivalent to the automorphism group being transitive
on edges.
More is true: if in addition the Coxeter graph is a straight line and
I (v) is an endpoint, then the resulting polytope is regular. All
regular polytopes can be constructed in this way.
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Action on the half cube

Let us now return to the example of the Coxeter group
W = W (Dn) acting by reflections on Rn, and define
v = (2, 2, . . . , 2).

Dn · · ·

The vertex I (v) corresponds to the generator s1′ , shown in red.
One type of face corresponds to a connected subgraph including
s1′ but excluding the generator s2.
The orbit of v under the corresponding parabolic subgroup with
k = 3 generators consists of v itself, together with the k points
that differ from v only in coordinate positions 1 and k + 1, where
they have an entry of −2. The convex hull of these points is a
k-dimensional simplex.
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The other type of face corresponds to a connected subgraph
including both s1′ and s2.

Dn · · ·

The orbit of v under the corresponding parabolic subgroup with
k = 4 generators consists of v itself, together with the 2k−1 − 1
points that differ from v in an even number of places in some or all
of coordinate positions 1, . . . , k , where they have an entry of −2.
The convex hull of these points is a k-dimensional half cube.
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We can make topological sense of all this by using the notion of a
(regular) CW complex.

Roughly speaking, this is a collection of
faces of various dimensions that assemble together neatly. The
collection of faces of a polytope is a good example of a regular CW
complex, and in this context, the k-dimensional faces are known as
k-cells.
In order to compute the cellular (i.e., singular) homology of a CW
complex, one starts with a complex of free abelian groups Ck ,
known as chain groups. The k-cells are in natural bijection with a
basis for the chain group Ck .
In the half cube case, the chain groups Ck support natural linear
actions of the group W = W (Dn). The above classification of the
faces of the half cube gives rise to an explicit description of the
Coxeter group action on these chain groups, as follows.
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Recall that the canonical W -orbit representatives of the faces of
the half cube are in bijection with the connected subsets I of the
Coxeter graph that contain the vertex 1′.

It turns out that the
set-stabilizer of such a canonical face is a standard parabolic
subgroup, WK , of W .
Consider the action of a Coxeter generator s on a face F that is
one of the canonical orbit representatives. If s ∈ J := K\I , then s
fixes the vertices of F pointwise and acts as the identity
transformation on F . However, if s ∈ I , then s acts as a reflection
on F . This corresponds to a 1-dimensional representation of the
stabilizer, WI∪J of F that sends the generators in I to −1 and the
generators in J to +1.
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Translating this result into topology, we find that the action of W
on Ck splits into submodules Ck,F , one for each type of face (i.e.,
half cube shaped or simplex shaped) corresponding to the orbit
representative F .

The representation of W on Ck,F is the one
obtained by inducing the aforementioned 1-dimensional
representation of WK to W .
The character theory of Coxeter groups of classical type (A, B, D)
is extremely well understood. It follows that, over C, one can
explicitly describe the characters of W acting on the chain groups
Ck .
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Homology representations

Recall that the half cube has a natural decomposition as a regular
CW complex.

If one removes from this CW complex the interiors
of all the half-cube shaped faces of dimension at least k , one
obtains a polytopal subcomplex Cn,k . For some reason, Cn,k has
interesting combinatorial, algebraic and topological properties. One
of these properties relates to the following

Cliché (Fundamental Cliché of Combinatorial Topology)

Everything is homotopic to a wedge of spheres, probably of the
same dimension.

Roughly speaking, this means that the space in question can be
continuously morphed into a collection of spheres of the same
dimension that are disjoint except that they have one point
common to all of them.
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The so-called Hawaiian earring shape shown below is reminiscent
of a wedge of 1-dimensional spheres.

(Photo stolen without permission from Matt Macauley’s Facebook
post of April 1.)
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The next result describes the topological structure of Cn,k .

Theorem (G)

The subcomplex Cn,k is homotopic to a wedge of spheres, all of
dimension k − 1. We define the number bn,k to be the number of
spheres in the wedge.

This result can be proved using the discrete Morse theory
developed by Forman, by first constructing a “complete acyclic
Morse matching” on the face lattice of the half cube.
It follows from this result that the homology of Cn,k is
concentrated in degrees 0 and k − 1, and the homology in degree 0
is 1-dimensional. The proof of the theorem gives a basis for the
homology if k > 3.
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The group W = W (Dn) acts on Cn,k , because the removed faces
constitute a union of W -orbits. Because W acts by continuous
transformations, there is an induced action on the (k − 1)-st
homology of Cn,k .

After tensoring over C, this representation can be explicitly
described, thanks to the Hopf trace formula. Basically, this result
says that the alternating sum of the characters on the chain groups
(which we know thanks to earlier results) is equal to the alternating
sum of the characters on the homology representations (which can
then be computed because only one of them is nontrivial). This
gives an explicit description of the algebraic properties of Cn,k .
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The combinatorial properties of Cn,k include some interesting
features of the Betti numbers bn,k (Sloane’s sequence A119258).

They can be defined recursively by the conditions

bn,0 = bn,n = 1

and, for 0 < k < n,

bn,k = 2bn−1,k + bn−1,k−1.
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This information can be displayed using a Pascal-type triangle, as
follows.

1
1 1

1 3 1
1 5 7 1

1 7 17 15 1
1 9 31 49 31 1

1 11 49 111 129 63 1

The numbers bn,k show up in the following contexts:
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(i) in the problem of finding, given n real numbers, a lower bound
for the complexity of determining whether some k of them are
equal;

(ii) as the (k − 2)-nd Betti numbers of the k-equal real
hyperplane arrangement in Rn;

(iii) as the ranks of A-groups appearing in combinatorial homotopy
theory;

(iv) as the number of nodes used by the
Kronrod–Patterson–Smolyak cubature formula in numerical
analysis; and

(v) (when k = 3) in engineering, as the number of
three-dimensional block structures associated to n joint
systems in the construction of stable underground structures.
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Although some of the phenomena above are mysterious, the
connection with the real hyperplane arrangement is more than
numerology: the homology modules (at least over C) are
isomorphic as representations for the symmetric group, not just as
vector spaces.

Together with my student Jacob Harper, we are also investigating
analogous properties of other highly symmetric nonregular
polytopes, such as the hypersimplex. (The latter corresponds to a
non-extremal vertex of the Coxeter graph of type An.)
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