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Geometry and combinatorics of finite reflection groups

VR : real vector space of finite dimension.

W : a finite reflection group of GL(VR), i.e. finite subgroup generated
by reflections ( structure of a finite Coxeter group).

We will consider W acting on the complex vector space
V := VR ⊗ C.
Results remain valid for more general groups (well-
generated complex reflection groups).

Invariant theory of
W (geometry of the
discriminant ∆W )

↔
Combinatorics of the noncrossing
partition lattice of W (factorizations
of a Coxeter element)
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The noncrossing partition lattice of type W

Define R := {all reflections of W}.

 reflection length (or absolute length) `R. (NOT the usual
length `S !)
Absolute order 4R :

u 4R v if and only if `R(u) + `R(u−1v) = `R(v) .

Fix c : a Coxeter element in W (particular conjugacy class of
elements of length n = rk(W )).

Definition (Noncrossing partition lattice of type W )

NC(W , c) := {w ∈W | w 4R c}

N.B. : the structure doesn’t depend on the choice of the Coxeter
element (conjugacy) write NC(W ).
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Coxeter-Catalan combinatorics

Number of multichains in NC(W )

Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of multichains w1 4R w2 4R . . . 4R wp 4R c is the
Fuß-Catalan number of type W

Cat(p)(W ) =
n∏

i=1

di + ph
di

where d1, . . . ,dn = h are the invariant degrees of W .

p = 1 : we get |NC(W )| =
n∏

i=1

di + h
di

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using the
classification of reflection groups.

 how to understand this formula uniformly ?
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Let’s see the multichains in another way

Definition (Block factorizations of c)
(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.
`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

“Factorizations↔ chains”.
Problem : 4R vs ≺R ? Use classical conversion formulas.
Bad news : we obtain much more complicated formulas.
Good news : we can interpret some of them (and even refine
them) geometrically ; in particular for p = n or n − 1.
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Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
| FACTn(c)| = n! hn / |W | , where h is the order of c.

[Deligne, Bessis-Corran] (case-by-case proof).
What about FACTn−1(c) ?

Theorem (R.)
Let Λ be a conjugacy class of elements of length 2 of NC(W ). Call
submaximal factorizations of c of type Λ the block factorizations
containing n − 2 reflections and one element (of length 2) in the
conjugacy class Λ. Then, their number is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ ,

where DΛ is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.
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Intersection lattice and parabolic subgroups

A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :=
{⋂

H∈B H | B ⊆ A
}

∼−→ PSG(W ) (parabolic subgps of W )
L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) ← c0 parabolic Coxeter element
codim(L0) = rk(W0) = `R(c0)
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A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) ← c0 parabolic Coxeter element

codim(L0) = rk(W0) = `R(c0)
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Vivien Ripoll (LaCIM–UQÀM) Factorisations of a Coxeter element 2011 Spring Eastern Sectional Meeting



The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theorem
There exist invariant polynomials f1, . . . , fn, homogeneous and
algebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)
do not depend on the choices of the fundamental invariants.

 isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).
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Discriminant hypersurface and strata

For H in A, denote by αH a linear form of kernel H.

∆W :=

∏
H∈A

αH

2

∈ C[V ]

W = C[f1, . . . , fn] (discriminant of W )

equation of
⋃

H∈AH.

where p : V � V/W .
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∆W :=
∏

H∈A
αH

2 ∈ C[V ]W = C[f1, . . . , fn] (discriminant of W )

equation of p(
⋃

H∈AH) = H , where p : V � V/W .
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Example W = A3: discriminant (“swallowtail”)⋃
H∈A

H ⊆ V
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Example W = A3: discriminant (“swallowtail”)

/W

⋃
H∈A

H ⊆ V

hypersurface H (discriminant) ⊆W\V ' C3
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Discriminant hypersurface and strata

For H in A, denote by αH a linear form of kernel H.

∆W :=
∏

H∈A
α2

H ∈ C[V ]W = C[f1, . . . , fn] (discriminant of W )

equation of p(
⋃

H∈AH) = H ,where p : V � V/W .

Construct a stratification of V/W , image of the stratification L:
L̄ = W\L = (p(L))L∈L = (W · L)L∈L.

Proposition
The set L̄ is in canonical bijection with:

the set of conjugacy classes of parabolic subgroups of W;
the set of conjugacy classes of parabolic Coxeter elements;
the set of conjugacy classes of elements of NC(W ).
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Example of W = A3: stratification of the discriminant⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

t us

Vivien Ripoll (LaCIM–UQÀM) Factorisations of a Coxeter element 2011 Spring Eastern Sectional Meeting



Example of W = A3: stratification of the discriminant⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 (s)

t us
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Example of W = A3: stratification of the discriminant⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)
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Example of W = A3: stratification of the discriminant⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)

A3 (stu)
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the
discriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial in
fn, has generically n roots...
... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

Definition
The bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}
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Example of A3: bifurcation locus K

H ⊆W\V ' C3
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Example of A3: bifurcation locus K

H ⊆W\V ' C3

Y

fn

ϕ projection
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Example of A3: bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y
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Example of A3: bifurcation locus K

ϕ

Y

fn

yy ′

y ′′

0
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Example of A3: bifurcation locus K

ϕ

Y

fn

K
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Example of A3: bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

ϕ(Λ1)
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Example of A3: bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

Λ2

ϕ(Λ2)

ϕ(Λ1)
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Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W )}

Proposition
The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem (R.)
For Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ
(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .

Corollary Proof End
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Submaximal factorizations of a Coxeter element

How to compute uniformly
∑

Λ∈L̄2
deg DΛ ?

Recall that DW =
∏

Λ∈L̄2
DrΛ

Λ .

We found an interpretation of
∏

Λ∈L̄2
DrΛ−1

Λ , as the Jacobian J of
an algebraic morphism.
Compute deg J, and then

∑
deg DΛ = deg DW − deg J.

Corollary
The number of block factorisations of a Coxeter element c in n − 1
factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
,

where d1, . . . ,dn = h are the invariant degrees of W.
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Compute deg J, and then

∑
deg DΛ = deg DW − deg J.

Corollary
The number of block factorisations of a Coxeter element c in n − 1
factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
,

where d1, . . . ,dn = h are the invariant degrees of W.
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Conclusion

We discovered an new manifestation of the deep connections
between the geometry of W and the combinatorics of NC(W ).

The proof is a bit more satisfactory than the usual ones.
We recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial proofs
[Krattenthaler].
To obtain more we should study further the geometrical setting
(Lyashko-Looijenga morphism and its ramification).

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal
factorisations of a Coxeter element, arXiv:1012.3825.
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Vivien Ripoll (LaCIM–UQÀM) Factorisations of a Coxeter element 2011 Spring Eastern Sectional Meeting



Conclusion

We discovered an new manifestation of the deep connections
between the geometry of W and the combinatorics of NC(W ).
The proof is a bit more satisfactory than the usual ones.
We recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial proofs
[Krattenthaler].
To obtain more we should study further the geometrical setting
(Lyashko-Looijenga morphism and its ramification).

Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal
factorisations of a Coxeter element, arXiv:1012.3825.
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Lyashko-Looijenga morphism and topological
factorisations More details Return to thm End

LL

facto

{x1, . . . , xn} ∈ En

(w1, . . . ,wp) ∈ FACT(c)
ϕ

Y

fn

y y ∈ Y

ϕ−1(y) ' C
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Some ingredients of the proof
See picture End

Lyashko-Looijenga morphism LL:

y ∈ Y = SpecC[f1, . . . , fn−1] 7→ multiset of roots of ∆W (y , fn).

Construction of topological factorisations: [Bessis, R.]

facto : Y → FACT(c) .

Fundamental property that the product map:

Y
LL× facto−−−−−−→ En × FACT(c)

is injective, and its image is the set of “compatible” pairs.
In other words, the map facto induces a bijection between any
fiber LL−1(ω) and the set of factorisations of same “composition”
as ω.
Consequently, we can use some algebraic properties of LL to
obtain cardinalities of certain fibers, and deduce enumeration of
certain factorisations.
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