
Introduction to Linear Algebra, Spring 2007
MATH 3130, Section 001

SOLUTIONS TO PROJECT 1

1. Consider a system of m linear equations each in n variables.

(a) Prove that the 3 row operations preserve the solution set of the linear system. Note:
This proof is not difficult if you start off correctly. If you need help getting started,
ask for some guidance. The discussion of this fact in Section 1.1 of our text book is
not rigorous enough, so don’t copy that. [7 points]

Solution: Consider any 2 arbitrary rows of the system, say

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi

and
aj,1x1 + aj,2x2 + · · ·+ aj,nxn = bj.

Note that these correspond to the ith and jth rows of the augmented matrix. Now,
let s = (s1, s2, . . . , sn) be any solution to the system. Then s is a solution to every
linear equation in the system. In particular, s is a solution to the equations above.
Next, let c be any nonzero scalar. We need to show that if we apply a single row
operation, then s is still a solution to the system.

(i) Replacement: Replace the ith linear equation with c times the jth linear equation
plus the ith equation. We get the new equation:

c[aj,1x1 + aj,2x2 + · · ·+ aj,nxn] + [ai,1x1 + ai,2x2 + · · ·+ ai,nxn] = c[bj] + bi

This is the new ith row of the augmented matrix. Now, plug the coordinates for s
into the appropriate variables on the left hand side. We get

c[aj,1s1 + aj,2s2 + · · ·+ aj,nsn] + [ai,1s1 + ai,2s2 + · · ·+ ai,nsn].

But since s is a solution to the original ith and jth rows of the system, the above
expression is equal to

c[bj] + bi,

which shows that s is a solution the new ith equation.

(ii) Scaling: Replace the ith row with c times the ith row. We get the new equation:

c[ai,1x1 + ai,2x2 + · · ·+ ai,nxn] = c[bi]

This is the new ith row of the augmented matrix. Now, plug the coordinates for s
into the appropriate variables on the left hand side. We get

c[ai,1s1 + ai,2s2 + · · ·+ ai,nsn].

But since s is a solution to the original ith row of the system, the above
expression is equal to

c[bi],

which shows that s is a solution the new ith equation.
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(iii) Interchange: Swap the ith row of the system with the jth row of the system.
Since s is a solution to every equation in the system, s is certainly still a solution
to these rows interchanged.

Therefore, s is still a solution to the system, regardless which row operations are
applied. We have shown that if s is a solution to the original system, then s is a
solution to the system that results from applying row operations. What we haven’t
shown is that the new system doesn’t have any new solutions that it didn’t have
before applying row operations. This is also easy to show by reversing the row
operations. I didn’t take off any points for not showing this part.

(b) What geometric effect does each row operation have on the hyperplanes that
correspond to the linear equations in the system? Be as specific as possible and briefly
justify your answer. [3 points]

Solution: Since the solution set of a system of linear equations is equal to the points of
intersection of all the hyperplanes and the solution set is preserved under row operations,
the points of intersection of all the hyperplanes must be preserved. Here is what happens
geometrically.

(i) Replacement: This is the hard one. The points of intersection must stay fixed, but
the hyperplane that you are replacing with the sum of itself and the multiple of
another hyperplane can move. It gets sheared about the points of intersection (which
ends up looking like a rotation).

(ii) Scaling: If |c| > 1, then the hyperplane gets ”stretched” out. This doesn’t change the
points of intersection and doesn’t look like much because the hyperplanes are
extended infinitely far. If |c| < 1, then the hyperplane gets ”compressed”. Again, this
doesn’t change the points of intersection.

(iii) Interchange: This doesn’t do anything except give the hyperplanes new names. The
ith hyperplane is now called the jth hyperplane.

2. If k ≥ 1, then a k-dimensional linear subspace of Rn is equal to the span of some collection
of k linearly independent vectors from Rn. Geometrically, these are lines (1-dimensional),
planes (2-dimensional), etc. passing through the origin in Rn. The 0-dimensional linear
subspace of Rn is the zero-vector, 0. Let {v1, . . . ,vk} be a collection of linearly
independent vectors from Rn and let W = span{v1, . . .vk}, so that W is a k-dimensional
linear subspace of Rn. Note that 1 ≤ k ≤ n. Now, let T : Rn → Rm be a linear
transformation. Define T (W ) = {T (x) : x ∈ W}.

(a) Prove that T (W ) is a linear subspace of Rm. [7 points]

Solution: Let {v1, . . . ,vk} be a collection of linearly independent vectors from Rn

and let W = span{v1, . . .vk}, so that W is a k-dimensional linear subspace of Rn.
Note that 1 ≤ k ≤ n. Now, let T : Rn → Rm be a linear transformation. Define
T (W ) = {T (x) : x ∈ W}. We need to show that T (W ) is a linear subspace of Rm.
Note that T (W ) is the collection of all images of vectors from W . Let x ∈ W . Then
there exists scalars c1, . . . , ck such that

x = c1v1 + · · ·+ ckvk.
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Since T is a linear transformation, we see that

T (x) = T (c1v1 + · · ·+ ckvk) = c1T (v1) + · · ·+ ckT (vk).

This shows that T (W ) is equal to the span of {T (v1), . . . , T (vk)} in Rm. If
{T (v1), . . . , T (vk)} in Rm is linearly independent (which can only happen if k ≤ m),
then T (W ) is clearly a k-dimensional linear subspace of Rm by definition. Assume
that {T (v1), . . . , T (vk)} in Rm is linearly dependent. One possibility is that T (vi) = 0
for all i, in which case, T (W ) is only the zero-vector in Rm. If there exists at least one
T (vi) 6= 0, then by Theorem 1.7, we can find the largest collection of linearly
independent vectors from {T (v1), . . . , T (vk)}. This shows that T (W ) is a
r-dimensional linear subspace where 0 < r < k.

(b) What are the possible dimensions of T (W )? [3 points].

Solution: By the discussion above, T (W ) is an l-dimensional linear subspace where
0 ≤ l ≤ k.

3. Read Section 1.6 and complete Exercise 12. [10 points]

Solution:

(a) By looking at the graph, we see that we have the following relationships.

Intersection Flow in Flow out
A x1 = 40 + x3 + x4

B 200 = x1 + x2

C x2 + x3 = 100 + x5

D x4 + x5 = 60

If we rewrite each equation so that the variables are on the left and the constants are
on the right, then we can put the system into a 4× 6 augmented matrix. Then row
reduce the matrix to reduced echelon form.

1 0 −1 −1 0 40
1 1 0 0 0 200
0 1 1 0 −1 100
0 0 0 1 1 60

 → · · · →


1 0 −1 0 1 100
0 1 1 0 −1 100
0 0 0 1 1 60
0 0 0 0 0 0


Then the general traffic pattern for the network is described by

x =


x1

x2

x3

x4

x5

 =


100 + x3 − x5

100− x3 + x5

x3

60− x5

x5

 ,

where x3 and x5 are free.

(b) If x4 is closed, we can substitute 0 for x4. Again, put the system in an augmented
matrix and row reduce to reduced echelon form. Then the general traffic pattern for
the network is described by
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x =


x1

x2

x3

x4

x5

 =


40 + x3

160− x3

x3

0
60

 ,

where x3 is free.

(c) If x4 = 0, then the total flow at intersection A is given by x1 = x3 + 40 (from part
(b)). The smallest that the free variable x3 can be is 0. This implies that the smallest
that x1 can be is 40.

4. Let T1 : Rn → Rm and T2 : Rm → Rk be linear transformations. Define S : Rn → Rk via
S(x) = T2 (T1(x)).

(a) Prove that S is a linear transformation. [7 points]

Solution: Let u,v ∈ Rn and let c be a scalar. Then

S(u + v) = T2 (T1(u + v))

= T2 (T1(u) + T1(v)) (since T1 linear)

= T2 (T1(u)) + T2 (T1(v)) (since T2 linear)

= S(u) + S(v)

and

S(cu) = T2 (T1(cu))

= T2 (cT1(u)) (since T1 linear)

= cT2 (T1(u)) (since T1 linear)

= cS(u).

Therefore, S is a linear transformation.

(b) When will S be one-to-one and onto? Justify your answer. [3 points]

Solution: There are many correct answers to this question. Here is one possible
answer. If either of T1 or T2 is not one-to-one, then S is not one-to-one (think about
the definition or think about Theorem 1.11). So, we need both of T1 and T2 to be
one-to-one in order for S to be one-to-one. A sufficient condition for S to be onto is if
both T1 and T2 are onto. But this is stronger than we need for S to be onto. All we
need is to be able to find a y in the range of T1 for each b ∈ Rk such that T2(y) = b.
If T1 and T2 are one-to-one, then we must have n ≤ m ≤ k, otherwise there isn’t
enough ”room” for S(e1), . . . , S(en). If S is onto, then we must have n ≥ k. So, a
necessary condition for S to be one-to-one and onto is for n = m and n ≤ k.

5. Suppose AB = In (the n× n identity matrix).
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(a) Prove that Ax = b is consistent for all b ∈ Rn. [7 points]

Solution: We don’t know that A and B are square matrices, which implies that we
don’t know whether A or B is invertible. So, we can’t use any facts about invertible
matrices. Let b ∈ Rn. Multiplying both sides of AB = In on the right by b, we obtain

(AB)b = Inb,

which we can rewrite as

A(Bb) = b.

Now, notice that Bb is a solution to Ax = b. This shows that Ax = b is consistent
for all b if we have AB = In.

(b) Prove that A must have at least as many columns as rows. [3 points]

Solution: In order for Ax = b to be consistent, A must have a pivot in every row
(Theorem 1.4). This forces A to have at least as many columns as rows.
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