1. A lighthouse stands 100 yards offshore; on the shore at the spot closest to the lighthouse sits the notorious mermaid rock. Due north of mermaid rock is the exclusive That's-No-Mermaid-It's-A-Whale Motel. The lighthouse light rotates twice a minute. If the beam of light from the lighthouse takes 5 seconds to travel along the shore from mermaid rock to the motel, how far is the motel from the rock?

The light volates 720° /minute, so in 5 seconds it volates $720 = 60^{\circ}$. Therefore $\Theta = 60^{\circ}$.

As tan 60° = 13 = d we have

d = 100 N3 y ds.

Lighthouse

2. A 15-foot long ladder is leaning against a wall with its base 2 feet from the wall. What can you say about the angle the ladder makes with the floor? (If you cannot calculate the angle at least describe it using mathematical terms.)

O is the angle having

In other words (symbols) $\Theta = \cos^{-1}\left(\frac{2}{is}\right)$

 $\theta = \arccos\left(\frac{2}{15}\right)$

- 3. The bottom of the ladder in problem 2 starts to slide away from the wall at the constant rate of 1 foot per second.
- a. When will the ladder make a 60° angle with the ground?

$$\Theta = 60^{\circ}$$
 when $\cos \Theta = \frac{1}{1}$.

a. When will the ladder make a 45° angle with the ground?

$$\theta = 45^{\circ}$$
 when $\cos \theta = \frac{\sqrt{2}}{2}$