WORKSHEET 1 MATH 1300 JANUARY 17, 2008

Goal: To understand the relationship between the functions f(z) and f~!(z) both graphically and,
for some functions, algorithmically.

1. Sometimes a function can be described by a simple algorithm.

(a)

Consider the following algorithm:

Step 0 Take any real number z
Step 1 Add 1 to x

Step 2 Square the result of Step 1
Step 3 Add 2 to the result of Step 2

Let y denote the result of the above algorithm. Express y as a function of .
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Consider the two algorithms:
Algorithm 1:

Step 0 Take a real number z
Step 1 Square z
Step 2 Add 1 to the result of Step 1

Algorithm 2:
Step 0 Take any real number z

Step 1 Subtract 1 from z 7
Step 2 Take the positive square root of the result of Step 1

Check whether these two algorithms are inverses of one another. That is, does Algorithm 1
followed by Algorithm 2 (and Algorithm 2 followed by Algorithm 1) undo each other? (Make
a flow chart.)

Algorithm 1 followed by Algorithm 2:
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Algorithm 2 followed by Algorithm 1:
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(ii) Express Algorithm 1 as a function of the form y
form y = g(z), and graph them.
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(x) and Algorithm 2 as a function of the

(iii) Are f and g inverses of each other? If yes, explain why. If no, can either of their domains be
restricted so that they are inverses of each other? ‘
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2. For a function g(z) we let ['(g) denote the graph of g(x). That ‘is,

I'(g) = the collection of all points on the graph of g(z)
= the collection of all pairs of numbers (z,y) where y = g(x)

= {(z,y) 1y = g(2)}



(a) Suppose f is a function with an inverse function f~'. Let P = (a,b) be a point of I'(f).
Explain why P’ = (b,a) is a point on I'(f™1).
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(b) What does the result of part (a) tell us about the relationship between I'(f) and T'(f~")? Hint:
What is the relationship between (a,b) and (b, a) in the coordinate plane?
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3. (This is an extension of Problem 2) Suppose that P = (z1,11) and @ = (x2,%2) are two points
on I'(f), and let L denote the line through P and Q. (L is called a secant line or a chord to I'(f),
or simply to f.) We saw in Problem 2 that P’ = (y;, 1) and Q" = (y2, z2) lie on T(f™1). Let L’ be
the secant line to I'(f~!) through P’ and @'. What, if any, is the relationship between the slope of
L and the slope of L'?
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