WORKSHEET 2

MATH 1300

Goal: To understand rational functions where both the numerator and denominator vanish.

The key to analyzing a rational function $f(x) = \frac{P(x)}{Q(x)}$ at, or near, x = a when P(a) = 0 and Q(a) = 0 is the following theorem from algebra:

The Factor Theorem. Suppose P(x) is a polynomial and a is a root of P(x). That is, P(a) = 0. Then P(x) factors as P(x) = (x - a)Q(x), where Q(x) is another polynomial.

For example, let $P(x) = x^3 + 8$. It's easy to see that P(-2) = 0, since

$$P(-2) = (-2)^3 + 8 = -8 + 8 = 0,$$

so by the above theorem, x - (-2) = x + 2 is a factor of P(x). Using long division we can EXPLIC-ITLY factor x + 2 out of P(x) to find that $x^3 + 8 = (x + 2)(x^2 - 2x + 4)$.

1. Use the Factor Theorem to simplify the rational function $f(x) = \frac{x^2 - x - 2}{x + 1}$ and discover that its graph is a line missing a single point.

2. Use the Factor Theorem to see how to algebraically simplify each of the following rational functions. Sketch the graph for each function.

a.
$$f(x) = \frac{x^3 + x^2}{x+1}$$

b.
$$g(x) = \frac{x^3 - 6x^2 + 12x - 8}{x - 2}$$

3. Use the graphs on the previous page to evaluate each of the following limits:

a.
$$\lim_{x \to -1} \frac{x^3 + x^2}{x + 1}$$

b.
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x - 2}$$

4. Explain how the Factor Theorem might be used to evaluate a limit $\lim_{x\to a} \frac{P(x)}{Q(x)}$, where P(a) = 0 and Q(a) = 0, without first graphing the function $f(x) = \frac{P(x)}{Q(x)}$

5. Use your observation in Problem 4 to evaluate the limit $\lim_{x \to 1} \frac{x^3 + x^2 + x - 3}{x^2 + x - 2}$.