Section 9.1: Arc Length Section 9.2: Area of a Surface of Revolution

Goal

In these two sections, we will learn how integrals can be used to find arc length and surface area.

Arc length

Suppose that f is a "smooth" function (i.e., f^{\prime} exists and is continuous, so that there are no sharp turns or vertical tangents on f) on a closed interval $[a, b]$.

How could we approximate the arc length using things we know how to do?
One possible answer is to partition $[a, b]$ into equal width subintervals (as we did when we approximated area). Between each pair of adjacent points, form a line segment.

Here's the picture:

In this case,
arc length \approx the sum of the lengths of the line segments $=\sum_{i=1}^{n} d\left(x_{i-1}, x_{i}\right)$.
But what is each $d\left(x_{i-1}, x_{i}\right)$ equal to?

$$
d\left(x_{i-1}, x_{i}\right)=
$$

We have just shown that

$$
\text { arc length } \approx \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(c_{i}\right)\right]^{2}} \Delta x
$$

Well, how do you think we can get the exact value of the arc length?

$$
s=\operatorname{arc} \text { length }=
$$

\qquad .
Therefore, the arc length of the smooth curve $y=f(x)$ over the interval $[a, b]$ is given by

$$
s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Sometimes $\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$ is denoted by $d s$, so that

$$
s=\int_{a}^{b} d s
$$

Examples

Let's do a couple of examples.
Example 1. Find the length of the curve $y=2 x^{3 / 2}$ over the interval $[0,1]$.

Example 2. Prove that the circumference of the unit circle is 2π.

Surface area

Again, suppose that f is a "smooth" function on the interval $[a, b]$. We want to be able to find the surface area of the solid of revolution obtained by revolving $y=f(x)$ around the x-axis or y-axis. As usual, we first approximate and then take the limit.

Here's the picture:

The surface area of one of the approximating "slices" is equal to $2 \pi r\left(c_{i}\right) \sqrt{1+\left[f\left(c_{i}\right)\right]^{2}} \Delta x$. Adding up all of the "slices" and then taking the limit, we obtain

$$
S=\text { surface area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi r\left(c_{i}\right) \sqrt{1+\left[f\left(c_{i}\right)\right]^{2}} \Delta x
$$

Therefore, the surface area of the solid of revolution obtained by revolving the smooth curve $y=f(x)$ over the interval $[a, b]$ about the x-axis (respectively, y-axis) is given by

$$
S=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

where $r(x)=f(x)$ (respectively, $r(x)=x)$.
Alternatively, we may write

$$
S=2 \pi \int_{a}^{b} r(x) d s
$$

More examples

Now, let's do a couple of surface area examples.

Example 3. Find surface area of the solid obtained by revolving the graph of $y=x^{3}$ on the interval $[0,2]$ about the x-axis.

Example 4. Find surface area of the solid obtained by revolving the graph of $f(x)=\frac{x^{5}}{5}+\frac{1}{12 x^{3}}$ on the interval $[1,2]$ about the y-axis.

