Classification of the T -avoiding permutations and generalizations to other Coxeter groups

J. Cormier, Z. Goldenberg, J. Kelly, C. Malbon Directed by D.C. Ernst

Plymouth State University Mathematics Department

2011 AMS Spring Eastern Sectional Meeting
Combinatorics of Coxeter Groups Special Session
College of the Holy Cross, April 9-10, 2011

The symmetric group

Definition

The symmetric group S_{n} is the collection of bijections from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$ where the operation is function composition (left \leftarrow right). Each element of S_{n} is called a permutation.

Comment

We can think of S_{n} as the group that acts by rearranging n coins.
One way of representing permutations is via cycle notation, which we will illustrate by way of example.

Example

Consider $\sigma=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)(46)$. This means $\sigma(1)=3, \sigma(3)=5, \sigma(5)=2, \sigma(2)=1$, $\sigma(4)=6$, and $\sigma(6)=4$.

String diagrams

A second way of representing permutations is via string diagrams, which we again introduce by way of example.

Example

Consider $\sigma=\left(\begin{array}{llll}1 & 3 & 5 & 2\end{array}\right)\binom{4}{4}$ from previous example.

Comment

Given a permutation σ, there are many ways to draw the associated string diagram. However, we adopt the following conventions:

1. no more than two strings cross each other at a given point,
2. strings are drawn so as to minimize crossings.

Generators and relations for S_{n}

S_{n} is generated by the adjacent 2-cycles:

$$
(12),(23), \ldots,(n-1 n) .
$$

That is, every element of S_{n} can be written as a product of the adjacent 2-cycles.

Define

$$
s_{i}=(i i+1)
$$

so that $s_{1}, s_{2}, \ldots, s_{n-1}$ generate S_{n}.

Comments

S_{n} satisfies the following relations:

1. $s_{i}^{2}=1$ for all i (2-cycles have order 2)
2. short braid relations: $s_{i} s_{j}=s_{j} s_{i}$, for $|i-j| \geq 2$ (disjoint cycles commute)
3. long braid relation: $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$, for $|i-j|=1$.

Reduced expressions \& Matsumoto's theorem

Definition

If $s_{x_{1}} s_{x_{2}} \cdots s_{x_{m}}$ is an expression for $\sigma \in S_{n}$ and m is minimal, then we say that the expression is reduced.

Example

Consider $\sigma=s_{2} s_{1} s_{2} s_{3} s_{1} s_{2} \in S_{4}$. We see that

```
s}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{3}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{3}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{3}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{1}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{1}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{3}{}\mp@subsup{s}{2}{}
```

So, the original expression was not reduced, but it turns out that the last expression on the right is reduced.

Theorem (Matsumoto)
Any two reduced expressions for $\sigma \in S_{n}$ differ by a sequence of braid relations.

Example (continued)

The only reduced expressions for σ are: $s_{1} s_{2} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{3}$, and $s_{3} s_{1} s_{2} s_{3}$.

Heaps

A third way of representing permutations is via heaps. Fix a reduced expression $s_{x_{1}} s_{x_{2}} \cdots s_{x_{m}}$ for $\sigma \in S_{n}$. Loosely speaking, the heap for this expression is a set of lattice points (called nodes), one for each $s_{x_{i}}$, embedded in $\mathbb{N} \times \mathbb{N}$ such that:

- The node corresponding to $s_{x_{i}}$ has vertical component equal to $n+1-x_{i}$ (smaller numbers at the top),
- If $i<j$ and $s_{x_{i}}$ does not commute with $s_{x_{j}}$, then $s_{x_{i}}$ occurs to the left of $s_{x_{j}}$.

Example

Consider $s_{1} s_{2} s_{3} s_{2}, s_{1} s_{3} s_{2} s_{3}$, and $s_{3} s_{1} s_{2} s_{3}$ from the previous example. It turns out, there are two distinct heaps.
S_{1}

and
S_{3}

Comment

If two reduced expressions for σ differ by a sequence of short braid relations, then they have the same heap. In particular, if no reduced expression contains an opportunity to provide a long braid relation, then σ has a unique heap.

Combining string diagrams and heaps

The points at which two strings cross correspond to nodes in the heap. Hence, we may overlay strings on top of a heap by drawing the strings from right to left so that they cross at each entry in the heap where they meet and bounce at each lattice point not in the heap.

Conversely, each string diagram corresponds to a heap by taking all of the points where the strings cross as the nodes of the heap.

Example

Property T

Definition

We say that a permutation σ has Property T iff there exists i such that either
2. $\sigma(i+2)<\sigma(i), \sigma(i+1)$.

Example

Consider the following permutation $\sigma=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)(46)$.

We see that σ and σ^{-1} each have Property T in two spots.

T-avoiding

Definition

We say that a permutation σ is T-avoiding iff neither σ or σ^{-1} has Property T.

Theorem (CEGKM)

A permutation σ is T-avoiding iff σ is a product of disjoint adjacent 2-cycles.

Example

The permutation $\sigma=(23)(56)$ is T-avoiding.

Sketch of proof

Fix a reduced expression for σ, say $s_{x_{1}} s_{x_{2}} \cdots s_{x_{m}}$, and consider the heap for this reduced expression. The reverse implication of the theorem is trivial. For the forward direction, consider the contrapositive:

If σ is not a product of disjoint adjacent 2-cycles, then σ or σ^{-1} has Property \mathbf{T}.

The easy case

The easy case occurs when a node in the second column on either side is "blocked" by at most one node in the first column.

1. σ has the property:

2. σ^{-1} has the property:

or

The hard case

Theorem

By applying a sequence of long braid relations, you can convert a heap in the hard case to a heap in the easy case.

The previous theorem provides the necessary motivation for generalizing the definition of Property T in other Coxeter groups.

Coxeter groups

Definition

A Coxeter group consists of a group W together with a generating set S consisting of elements of order 2 with presentation

$$
W=\left\langle S: s^{2}=1,(s t)^{m(s, t)}=1\right\rangle
$$

where $m(s, t) \geq 2$ for $s \neq t$.

Comment

Since s and t are elements of order 2 , the relation $(s t)^{m(s, t)}=1$ can be rewritten as

$$
\begin{array}{lll}
m(s, t)=2 & \Longrightarrow & s t=t s \\
m(s, t)=3 & \Longrightarrow & s t s=t s t \\
m(s, t)=4 & \Longrightarrow & \text { short braid relations } \\
& \\
\\
& & \\
\text { long braid relations }
\end{array}
$$

We can uniquely encode the generators and relations using a Coxeter graph.

Types A and B

Example (Type A)

The symmetric group S_{n+1} with the adjacent 2-cycles as a generating set is a Coxeter group of type A_{n}.

Example (Type B)

Coxeter groups of type $B_{n}(n \geq 2)$ are defined by:

$W\left(B_{n}\right)$ is generated by $S\left(B_{n}\right)=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ and is subject to

1. $s_{i}^{2}=1$ for all i,
2. $s_{i} s_{j}=s_{j} s_{i}$ if $|i-j|>1$,
3. $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ if $|i-j|=1$ and $1<i, j \leq n$,
4. $s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1}$.

Generalization of T-avoiding

Definition

Let (W, S) be a Coxeter group and let $w \in W$. Then w has Property T iff w has a reduced expression of the form stu or $u t s$, where $m(s, t) \geq 3$ and $u \in W$.

Theorem (CEGKM)
In type A and $B, w \in W$ is T-avoiding iff w is a product of commuting generators.

Comment

The answer isn't so simple in other Coxeter groups.

- We have also classified the T-avoiding elements in type affine C, which consists of more than just products of commuting generators.
- Similarly, Tyson Gern has recently classified the T-avoiding elements in type D, and again, the classification is more complicated than just products of commuting generators.

