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1 Introduction to Mathematics

1.3 Negating Implications and Proof by Contradiction

So far we have discussed how to negate propositions of the form A, A∧B, and A∨B for propositions
A and B. However, we have yet to discuss how to negate propositions of the form A =⇒ B.

Theorem 1.43. Let A and B be propositions. Conjecture an equivalent way of expressing the
conditional proposition A =⇒ B as a proposition involving the disjunction symbol ∨ and possibly
the negation symbol ¬, but not the implication symbol =⇒ . Prove your conjecture using a truth
table.

Exercise 1.44. Let A and B be the propositions “Darth Vader is a hippie” and “Sarah Palin is a
liberal”, respectively. Using Theorem 1.43, express A =⇒ B as an English sentence involving the
disjunction “or.”

Theorem 1.45 (*). Let A and B be two propositions. Conjecture an equivalent way of expressing
the proposition ¬(A =⇒ B) as a proposition involving the conjunction symbol ∧ and possibly the
negation symbol ¬, but not the implication symbol =⇒ . Prove your conjecture using previous
results.

Exercise 1.46. Let A and B be the propositions in Exercise 1.44. Using Theorem 1.45, express
¬(A =⇒ B) as an English sentence involving the conjunction “and.”

Exercise 1.47. The following proposition is false. Negate this proposition to obtain a true state-
ment. Write your statement as a conjunction.

If .99 = 9
10 + 9

100 + 9
1000 + · · · , then .99 6= 1.

You do not need to prove your new statement.

Recall that a proposition is exclusively either true or false. That is, a proposition can never be
both true and false. This idea leads us to the next definition.

Definition 1.48. A compound proposition that is always false is called a contradiction. A
compound statement that is always true is called a tautology.

Theorem 1.49. Let A be a proposition. Then ¬A ∧A is a contradiction.

Exercise 1.50. Provide an example of a tautology.

Suppose that we want to prove some proposition P (which might be something like A =⇒ B
or possibly more complicated). One approach, called proof by contradiction, involves assuming
¬P and then logically deducing a contradiction of the form Q ∧ ¬Q, where Q is some proposition
(possibly equal to P ). Since this is absurd, it cannot be the case that ¬P is true, which implies
that P is true.

Among other situations, proof by contradiction can be useful for proving statements of the form
A =⇒ B, where B is worded negatively or ¬B is easier to “get your hands on.”

Question 1.51. Let A and B be propositions. Describe a general strategy for proving A =⇒ B
via proof by contradiction.

Prove the following theorem in two ways: (i) prove the contrapositive and (ii) use proof by
contradiction.
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Problem 1.52 (*). Assume that x ∈ Z. If x is odd, then 2 does not divide x.

Prove the following theorem by contradiction.

Theorem 1.53 (*). Assume that x, y ∈ N. If x divides y, then x ≤ y.

Question 1.54. What obstacles (if any) are there to proving the previous theorem directly without
using proof by contradiction.
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