Weekly Homework 1: Review of Calculus I

Names:

Goal

The goal of this assignment is to review some of the main topics from Calculus I and to get your brain thinking about calculus again. Don't panic if there are a couple questions that you don't remember how to do. However, if you find yourself struggling significantly, then we should talk.

Directions

In groups of 2-4 (I do not want anyone working alone), answer each of the following questions in the space provided. You only need to turn in one lab per group (make sure you put everyone's name on this sheet). Feel free to consult your notes and textbook. This assignment is due by 5PM on Thursday, February 2 and is worth 10 points.

Exercises

For you those of you that had me last semester, you should recognize most of the following problems from your final exam.

1. Consider the following function.

$$
f(x)= \begin{cases}\cos x, & x>0 \\ e^{x+1}, & x \leq 0\end{cases}
$$

For (a)-(d), evaluate the given expression. If an expression does not exist, specify whether it equals $\infty,-\infty$, or simply does not exist (in which case, write DNE). You do not need to justify your answers.
(a) $\lim _{x \rightarrow 0^{-}} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 0} f(x)=$ \qquad
(d) $f(0)=$ \qquad
2. Evaluate each of the following limits. If a limit does not exist, write DNE. Sufficient work must be shown and proper notation should be used. In particular, you should write limits where appropriate and if you make use of L'Hospital's Rule, you should make it explicit where you are doing so. Give exact answers.
(a) $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}-4}$
(b) $\lim _{x \rightarrow 0^{+}} x \ln x$
3. Consider the following graphs for functions f and g. Assume that the graph of f is symmetric about the origin. Using the graphs, evaluate each of the following expressions. If an expression does not exist, write DNE. You do not need to justify your answer.

Graph of f

Graph of g
(a) $g(1)=$ \qquad .
(b) $g^{\prime}(1)=$ \qquad .
(c) $g^{\prime}(-1)=$ \qquad .
(d) $f^{\prime}(0)$ is (i) positive, (ii) negative, or (iii) 0 . (Circle the correct answer.)
(e) Suppose $H(x)=f(g(x))$. Then $H^{\prime}(1)$ is (i) positive, (ii) negative, or (iii) 0 . (Circle the correct answer.)
(f) $\int_{-2}^{2} f(x) d x$ is (i) positive, (ii) negative, or (iii) 0 . (Circle the correct answer.)
(g) $\int_{-3}^{3} g(x) d x$ is (i) positive, (ii) negative, or (iii) 0 . (Circle the correct answer.)
4. Differentiate each of the following functions. You do not need to simplify your answers, but sufficient work must be shown to receive full credit. If you make a mistake in an intermediate step while simplifying, it will count against you.
(a) $y=\frac{3 x^{2}-x+4}{1-x^{2}}$
(b) $A(x)=\int_{0}^{x^{2}} \sqrt{1+\ln t} d t$
5. Find an equation of the tangent line to the graph of $f(x)=\sin x$ at $x=\pi / 4$. It does not matter what form your equation takes, but you should use exact values for coefficients and constants.
6. Let f be a differentiable function. Suppose that the following graph is the graph of the derivative of f (i.e., the graph of f^{\prime}). You do not need to justify your answers.

(a) Find the x-coordinates of all points on the graph of f where the tangent line is horizontal.
(b) Find the (open) intervals, if any, on which f is increasing.
(c) Find the (open) intervals, if any, on which f is decreasing.
7. Use appropriate calculus techniques to find the absolute maximum and absolute minimum values of the function $f(x)=x e^{-x}$ on the interval $[0,2]$. Sufficient work must be shown.
8. The shock-waves from an earthquake on the ocean floor radiate out in the form of a circle on the surface of the ocean from its epicenter. If the radius of the shock-waves is increasing at a rate of 3 miles per second, what is the rate of change of the area enclosed by the radiating shock-waves when the radius is 2 miles? Give an exact answer. Your answer should be labeled with appropriate units.
9. The U.S. Postal Service will accept a box for shipping nuggets only if the sum of its length and girth (distance around) does not exceed 108 inches. What dimensions (length and width) will give a box with a square end the largest possible volume? (Hint: volume is maximized when length plus girth is equal to 108.)

(a) Let V represent the volume of the box (with a square end). Find an equation for V that involves only a single variable.
(b) Find the dimensions that will maximize the volume of the box.
10. At this time, we do not know how to evaluate the following definite integral.

$$
\int_{0}^{\pi} \sin ^{2} x d x
$$

However, we can approximate this integral. Approximate the above integral using 4 equal width rectangles and right endpoints. (You should give an exact answer for your approximation.)
11. Evaluate the following definite integral using a limit of Riemann sums and right endpoints. No credit will be given for evaluating the integral using a different technique.

$$
\int_{0}^{1} x^{2}+x d x
$$

12. Evaluate each of the following integrals. Sufficient work must be shown. In the case of a definite integral, you should give an exact answer.
(a) $\int \frac{x}{x^{2}+1} d x$
(b) $\int_{1}^{e} \frac{x^{2}+1}{x} d x$
(c) $\int_{0}^{1} \frac{1}{x^{2}+1} d x$
13. Let $A(x)=\int_{0}^{x} \sin ^{2} t d t$. Determine where A attains a maximum value on the interval $[0, \pi]$. Justify your answer. Arguing using an appropriate picture is sufficient, but not mandatory.
14. Prove that

$$
\frac{d}{d x}[\arcsin x]=\frac{1}{\sqrt{1-x^{2}}} .
$$

(Hint: If $y=\arcsin x$, then $x=\sin y$. Now, use implicit differentiation to find $d y / d x$ and then use your knowledge of trig.)

