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4 Relations and Functions

4.1 Relations

Definition 4.1. An ordered pair is an object of the form (x, y). Two ordered pairs (x, y) and
(a, b) are equal if x = a and y = b.

Definition 4.2. An n-tuple is object of the form (x1, x2, . . . , xn). Each xi is referred to as the ith
component.

Note that an ordered pair is just a 2-tuple.

Definition 4.3. If X and Y are sets, the Cartesian product of X and Y is defined by

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

That is, X × Y is the set of all ordered pairs where the first element is from X and the second
element is from Y . The set X ×X is sometimes denoted by X2. We similarly define the Cartesian
product of n sets, say X1, . . . , Xn, by

n∏
i=1

Xi = X1 × · · · ×Xn = {(x1, . . . , xn) : each xi ∈ Xi}.

Example 4.4. Let A = {a, b, c} and B = {,,/}. Then

A×B = {(a,,), (a,/), (b,,), (b,/), (c,,), (c,/)}.

Exercise 4.5. Using the sets A and B from the previous example, find B ×A.

Exercise 4.6. Using the set B from the previous examples, find B ×B.

Exercise 4.7. What general conclusion can you make about X × Y versus Y × X? When will
they be equal?

Exercise 4.8. If X and Y are both finite sets, then how many elements will X × Y have? Be as
specific as possible.

Exercise 4.9. Let A = {1, 2, 3}, B = {1, 2}, and C = {1, 3}. List the elements of the set A×B×C.

Exercise 4.10. Let A = N and B = R. Describe the elements of the set A×B.

Exercise 4.11. Let A be the set of all differentiable functions on the open interval (0, 1), and let
B equal the set of all derivatives of functions in A evaluated at x = 1

2 . Describe the elements of
the set A×B.

Exercise 4.12. Three space, R3, is a Cartesian product. Unpack the meaning of R3 using the
Cartesian product, and write the complete set notation version.

Exercise 4.13. Let X = [0, 1] and let Y = {1}. Describe geometrically what X × Y , Y × X,
X ×X, and Y × Y look like.

Definition 4.14. Let X and Y be sets. A relation from a set X to a set Y is a subset of X × Y .
A relation on X is a subset of X ×X.
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Example 4.15. You may not realize it, but you are familiar with many relations. For example, on
the real numbers, we have the relation ≤. We could say that (3, π) is in the relation since 3 ≤ π.
However, (1,−1) is not in the relation since 1 � −1. (Order matters!)

Remark 4.16. Different notations for relations are used in different contexts. When talking about
relations in the abstract, we indicate that a pair (a, b) is in the relation by some notation like a ∼ b,
which is read “a is related to b.”

Example 4.17. Let Pf denote the set of all people with accounts on Facebook. Define F via xFy
iff x is friends with y. Then F is a relation on Pf .

Remark 4.18. We can often represent relations using graphs or digraphs. Given a finite set X
and a relation ∼ on X, a digraph (short for directed graph) is a discrete graph having the members
of X as vertices and a directed edge from x to y iff x ∼ y.

Example 4.19. Let A = {a, b, c} and define ∼= {(a, a), (a, b), (b, c), (c, b), (c, a)}. The digraph for
∼ is a graph with vertices a, b, c and the following arrows: a to a, a to b, b to c, c to b, c to a.

Exercise 4.20. Let A = {1, 2, 3, 4, 5, 6} Define | on A via x|y iff x divides y. Draw the digraph for
| on A.

When X or Y is infinite, it is not practical to draw a digraph. However, you are familiar with
the graphs of some relations involving infinite sets.

Example 4.21. When we write x2 + y2 = 1, we are implicitly defining a relation. In particular,
the relation is the set of ordered pairs (x, y) satisfying x2 + y2 = 1. In set notation:

{(x, y) : x2 + y2 = 1}

The graph of this relation in R2 is the standard unit circle.

Exercise 4.22. Define ∼ on R via x ∼ y iff x ≤ y. Draw a picture of this relation in R2.

Definition 4.23. Let ∼ be a relation on a set A.

1. ∼ is reflexive if for all x ∈ A, x ∼ x (every element is related to itself).

2. ∼ is symmetric if for all x, y ∈ A, if x ∼ y, then y ∼ x.

3. ∼ is transitive if for all x, y, z ∈ A, if x ∼ y and y ∼ z, then x ∼ z.

Example 4.24.

1. ≤ on R is reflexive and transitive, but not symmetric. < on R is transitive, but not symmetric
and not reflexive.

2. If S is a set, then ⊆ on P(S) is reflexive and transitive, but not symmetric.

3. = on R is reflexive, symmetric, and transitive.

Exercise 4.25. Given a finite set A and a relation ∼, describe what each of reflexive, symmetric,
and transitive look like in terms of a digraph.

Exercise 4.26. Let P be the set of people at a party and define N via (x, y) ∈ N iff x knows the
name of y. Describe what it would mean for N to be reflexive, symmetric, and transitive.
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Exercise 4.27. Determine whether each of the following relations is reflexive, symmetric, or tran-
sitive.

1. Let Pf denote the set of all people with accounts on Facebook. Define F via xFy iff x is
friends with y.

2. Let P be the set of all people and define H via xHy iff x and y have the same height.

3. Let P be the set of all people and define T via xTy iff x is taller than y.

4. Consider the relation “divides” on N.

5. Let L be the set of lines and define || via l1||l2 iff l1 is parallel to l2.

6. Let C[0, 1] be the set of continuous functions on [0, 1]. Define f ∼ g iff∫ 1

0
|f(x)| dx =

∫ 1

0
|g(x)| dx.

7. Define ∼ on N via n ∼ m iff n+m is even.

8. Define D on R via (x, y) ∈ D iff x = 2y.
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