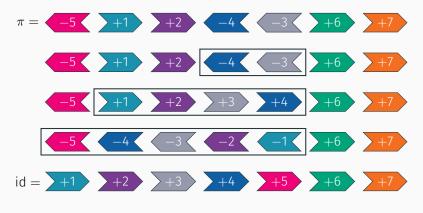
Computing maximal reversal distance of signed permutations

Joint Mathematics Meetings 2018


Tanner Rosenberg Northern Arizona University January 10, 2018

Joint work with Dana C. Ernst

- DNA: Double helix of nucleotides, complementary pairs A–T, G–C.
- Gene: Sequence of nucleotides, codes a specific protein.
- Chromosome: Ordered set of genes.
- Genome: Set of ordered sequences of conserved blocks of genes, each gene having orientation given by location on DNA.
- Mutations: Deletions, translocations, duplications, fusions, fissions, *reversals*.

Biology to Mathematics

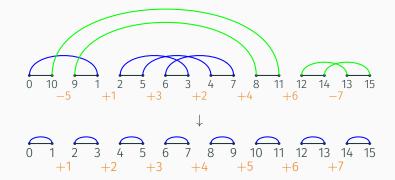
- The edit distance between two genomes is the minimum number of mutations required to transform one into another, approximates evolutionary distance.
 - mouse $\xrightarrow{251}$ human (149 reversals)
 - cabbage $\xrightarrow{3}$ turnip (all reversals)
- Comparing two similar sequences of genes appearing along a chromosome in two species yields two signed permutations.
- **Reversal distance** between two signed permutations is minimum number of reversals needed to transform one into the other. Good estimate of evolutionary distance.
- Reinterpret as sorting problem. Reversal distance for signed permutation π is minimum number of reversals needed to sort π to identity.

 $d_{rev}(\pi) \leq 3$

Definition

The maximal reversal distance for signed permutations of length *n* is defined to be the greatest reversal distance among all signed permutations of length *n*.

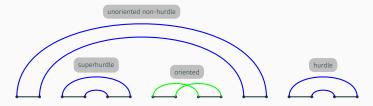
$$d_{max}(n) := \max\{d_{rev}(\pi) \mid \pi \in S_n^{\pm}\}$$


Problem 1

For given n, what is $d_{max}(n)$?

Problem 2

How many signed permutations in S_n^{\pm} have maximal reversal distance?


Breakpoint Graphs

Cycles Types

- $\cdot \text{ Oriented} = \text{Good}$
- Unoriented = Bad

Hurdles, Superhurdles, & Fortresses

Cycle Component Types

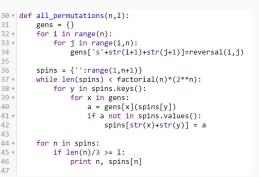
- Hurdle: A "bad" collection of overlapping cycles that either covers all other bad collections or covers no bad collections.
- Superhurdle: A hurdle that if removed creates a new hurdle.
- Fortress: A permutation with an odd number of hurdles where every hurdle is a superhurdle.

Theorem (Hannenhalli & Pevzner 1999)

The reversal distance for a signed permutation π of length n is

$$d_{rev}(\pi) = n + 1 - c(\pi) + h(\pi) + f(\pi),$$

where $c(\pi)$ is the number of cycles, $h(\pi)$ is the number of hurdles, and $f(\pi) = 1$ if π is a fortress and 0 otherwise.

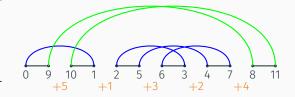

Claim (Entry A131209 on OEIS)

The maximal reversal distance for signed permutations of length *n* is given by

$$d_{max}(n) = \begin{cases} n, & \text{if } n \in \{1,3\}\\ n+1, & \text{otherwise} \end{cases}$$

Python Code

n	# attaining d _{max} (n)	
1	1	
2	1	
3	25	to to
4	8	3
5	3	4 4 4
6	180	4
7	64	4
		4



Conjecture

The number of signed permutations that attain the maximal reversal distance depends on the parity of *n*.

Examples of Maximal Permutations

 $\begin{array}{r} +2 +1 \\ +2 -3 -1 \\ +2 +1 +4 +3 \\ +5 +1 +3 +2 +4 \end{array}$

Conjecture

All maximal permutations are positive (for $n \neq 3$)

Next Steps

- Find number of maximal permutations of length *n*.
- Examine structure of maximal permutations.
- What structures in breakpoint graph are permissible?