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Chapter 1

Introduction

1.1 What is This Course All About?

The foundations of mathematics refers to logic and set theory; the axioms of number and
space. Also, it refers to an introduction to the techniques of proof, and at a larger level
the process of doing Mathematics. Proof is central to doing mathematics.

Up to this point, it is likely that your experience of mathematics has been about us-
ing formulas and algorithms. That is only one part of mathematics. Mathematicians do
much more than just use formulas. Mathematicians experiment, make conjectures, write
definitions, and prove theorems. In this class, then, we will learn about doing all of these
things.

What will this class require? Daily practice. Just like learning to play an instrument or
sport, you will have to learn new skills and ideas. Sometimes you’ll feel good, sometimes
frustrated. You’ll probably go through a range of feelings from being exhilarated, to
being stuck. Figuring it out, victories, defeats, and all that is part of real life is what
you can expect. Most importantly it will be rewarding. Learning mathematics requires
dedication. It will require that you be patient despite periods of confusion. It will require
that you persevere in order to understand. As the instructor, I am here to guide you, but
I cannot do the learning for you, just as music teacher cannot move your fingers and
your heart for you. Only you can do that. I can give suggestions, structure the course to
assist you, and try to help you figure out how to think through things. Do your best, be
prepared to put in a lot of time, and do all the work. Ask questions in class, ask questions
in office hours, and ask your classmates questions. When you work hard and you come
to understand, you feel good about yourself. In the meantime, you have to believe that
your work will pay off in intellectual development.

How will this class be organized? You have probably heard that mathematics is not
a spectator sport. Our focus in this class is on learning to DO mathematics, not learn-
ing to sit patiently while others do it. Therefore, class time will be devoted to working
on problems, and especially on students presenting conjectures and proofs to the class,
asking questions of presenters in order to understand their work and their thinking, and
sharing and clarifying our thinking and understanding of each other’s ideas.

The class is fueled by your ability to prove theorems and share your ideas. As we
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progress, you will find that you have ideas for proofs, but you are unsure of them. In that
case, you can either bring your idea to the class, or you can bring it to office hours. By
coming to office hours, you have a chance to refine your ideas and get individual feedback
before bringing them to the class. The more you use office hours, the more you will learn.
If the whole class is stuck, we can work on some ego-booster problems to get your ideas
flowing.

Finally, this is a very exciting time in your mathematical career. It’s where you learn
what mathematics is really about!

1.2 An Inquiry-Based Approach

In a typical course, math or otherwise, you sit and listen to a lecture. (Hopefully) These
lectures are polished and well-delivered. You may have often been lured into believing
that the instructor has opened up your head and is pouring knowledge into it. I absolutely
love lecturing and I do believe there is value in it, but I also believe that in reality most
students do not learn by simply listening. You must be active in the learning process. I'm
sure each of you have said to yourselves, “Hmmm, I understood this concept when the
professor was going over it, but now that I am alone, I am lost.” In order to promote a
more active participation in your learning, we will incorporate ideas from an educational
philosophy called inquiry-based learning (IBL).

Loosely speaking, IBL is a student-centered method of teaching mathematics that en-
gages students in sense-making activities. Students are given tasks requiring them to
solve problems, conjecture, experiment, explore, create, communicate. Rather than show-
ing facts or a clear, smooth path to a solution, the instructor guides and mentors students
via well-crafted problems through an adventure in mathematical discovery. Effective IBL
courses encourage deep engagement in rich mathematical activities and provide oppor-
tunities to collaborate with peers (either through class presentations or group-oriented
work).

Perhaps this is sufficiently vague, but I believe that there are two essential elements to
IBL. Students should as much as possible be responsible for:

1. Guiding the acquisition of knowledge, and

2. Validating the ideas presented. That is, students should not be looking to the in-
structor as the sole authority.

For additional information, check out my blog post, What the Heck is IBL?

Much of the course will be devoted to students proving theorems on the board and a
significant portion of your grade will be determined by how much mathematics you pro-
duce. I use the word “produce” because I believe that the best way to learn mathematics
is by doing mathematics. Someone cannot master a musical instrument or a martial art
by simply watching, and in a similar fashion, you cannot master mathematics by simply
watching; you must do mathematics!

Furthermore, it is important to understand that proving theorems is difficult and takes
time. You should not expect to complete a single proof in 10 minutes. Sometimes, you
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might have to stare at the statement for an hour before even understanding how to get
started.
In this course, everyone will be required to

read and interact with course notes on your own;

write up quality proofs to assigned problems;

present proofs on the board to the rest of the class;

participate in discussions centered around a student’s presented proof;

call upon your own prodigious mental faculties to respond in flexible, thoughtful,
and creative ways to problems that may seem unfamiliar on first glance.

As the semester progresses, it should become clear to you what the expectations are. This
will be new to many of you and there may be some growing pains associated with it.

Lastly, it is highly important to respect learning and to respect other people’s ideas.
Whether you disagree or agree, please praise and encourage your fellow classmates. Use
ideas from others as a starting point rather than something to be judgmental about.
Judgement is not the same as being judgmental. Helpfulness, encouragement, and com-
passion are highly valued.

1.3 Your Toolbox, Questions, and Observations

Throughout the semester, we will develop a list of tools that will help you understand and
do mathematics. Your job is to keep a list of these tools, and it is suggested that you keep
a running list someplace.

Next, it is of utmost importance that you work to understand every proof. (Every!)
Questions are often your best tool for determining whether you understand a proof.
Therefore, here are some sample questions that apply to any proof that you should be
prepared to ask of yourself or the presenter:

e What method(s) of proof are you using?

e What form will the conclusion take?

e How did you know to set up that [equation, set, whatever]?

e How did you figure out what the problem was asking?

e Was this the first thing you tried?

e Can you explain how you went from this line to the next one?
e What were you thinking when you introduced this?

e Could we have ...instead?
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e Would it be possible to ...?

e Whatif...?

Another way to help you process and understand proofs is to try and make obser-
vations and connections between different ideas, proof statements and methods, and to
compare approaches used by different people. Observations might sound like some of
the following:

e When I tried this proof, I thought I needed to ...But I didn’t need that, because ...
e [ think that...is important to this proof, because ...

e When I read the statement of this theorem, it seemed similar to this earlier theorem.
Now I see that it [is/isn’t] because ...

1.4 Rules of the Game

You should not look to resources outside the context of this course for help. That is, you
should not be consulting the Internet, other texts, other faculty, or students outside of our
course. On the other hand, you may use each other, the course notes, me, and your own
intuition. In this class, earnest failure outweighs counterfeit success; you need not feel
pressure to hunt for solutions outside your own creative and intellectual reserves. For
more details, check out the Syllabus.

1.5 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It
is your responsibility to read and understand new definitions and their related concepts.
However, you will be supported in this sometimes difficult endeavor. In addition, you
will be asked to complete exercises aimed at solidifying your understanding of the mate-
rial. Most importantly, you will be asked to make conjectures, produce counterexamples,
and prove theorems.

Most items in the notes are labelled with a number. The items labelled as Definition
and Example are meant to be read and digested. However, the items labelled as Exercise,
Question, Theorem, Corollary, and Problem require action on your part. In particu-
lar, items labelled as Exercise are typically computational in nature and are aimed at
improving your understanding of a particular concept. There are very few items in the
notes labelled as Question, but in each case it should be obvious what is required of you.
Items with the Theorem and Corollary designation are mathematical facts and the in-
tention is for you to produce a valid proof of the given statement. The main difference
between a Theorem and Corollary is that corollaries are typically statements that follow
quickly from a previous theorem. In general, you should expect corollaries to have very
short proofs. However, that doesn’t mean that you can’t produce a more lengthy yet valid
proof of a corollary. The items labelled as Problem are sort of a mixed bag. In many
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circumstances, I ask you to provide a counterexample for a statement if it is false or to
provide a proof if the statement is true. Usually, I have left it to you to determine the
truth value. If the statement for a problem is true, one could relabel it as a theorem.

It is important to point out that there are very few examples in the notes. This is
intentional. One of the goals of the items labelled as Exercise is for you to produce the
examples.

Lastly, there are many situations where you will want to refer to an earlier definition or
theorem/corollary/problem. In this case, you should reference the statement by number.
For example, you might write something like, “By Theorem 1.13, we see that....”

1.6 Some Minimal Guidance

Especially in the opening sections, it won’t be clear what facts from your prior experience
in mathematics we are “allowed” to use. Unfortunately, addressing this issue is difficult
and is something we will sort out along the way. However, in general, here are some
minimal and vague guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations.
You should feel free to do this whenever the need arises. But you should show sufficient
work along the way. You do not need to write down justifications for basic algebraic ma-
nipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same
amount on the same side of an equation, adding like terms, factoring, basic simplifica-
tion, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a
proof. When necessary, you should cite a previous definition, theorem, etc. by number.

Unlike the experience many of you had writing proofs in geometry, our proofs will be
written in complete sentences. You should break sections of a proof into paragraphs and
use proper grammar. There are some pedantic conventions for doing this that I will point
out along the way. Initially, this will be an issue that most students will struggle with,
but after a few weeks everyone will get the hang of it.

Ideally, you should rewrite the statements of theorems before you start the proof.
Moreover, for your sake and mine, you should label the statement with the appropriate
number. I will expect you to indicate where the proof begins by writing “Proof.” at the
beginning. Also, we will conclude our proofs with the standard “proof box” (i.e., J or H),
which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your
assumptions crystal clear. Sometimes there will be some implicit assumptions that we can
omit, but at least in the beginning, you should get in the habit of stating your assumptions
up front. Typically, these statements will start off “Assume...” or “Let...”.

This should get you started. We will discuss more as the semester progresses. Now, go
have fun and kick some butt!
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Introduction to Mathematics and Logic

Before you get started, make sure you've read Chapter 1, which sets the tone for the work
we will begin doing here.

2.1 A Taste of Number Theory

In this section, we will work with the set of integers, Z ={...,-3,-2,-1,0,1,2,3,...}. The
purpose of this section is to get started with proving some theorems about numbers and
study the properties of Z.

It is important to note that we are diving in head first here. There are going to be some
subtle issues that you will bump into and our goal will be to see what those issues are,
and then we will take a step back and start again. See what you can do!

Definition 2.1. An integer n is even if n = 2k for some integer k.
Definition 2.2. An integer n is odd if n = 2k + 1 for some integer k.
Theorem 2.3. The sum of two consecutive integers is odd.
Theorem 2.4. If n is even, then n? is even.

Problem 2.5. Prove or provide a counterexample: The sum of an even number and an
odd number is odd.

Question 2.6. Did Theorem 2.3 need to come before Problem 2.5? Could we have used
Problem 2.5 to prove Theorem 2.3? If so, outline how this alternate proof would go.
Perhaps your original proof utilized the approach I'm hinting at. If this is true, can you
think of a proof that does not rely directly on Problem 2.5? Is one approach better than
the other?

Problem 2.7. Prove or provide a counterexample: The product of an odd number and an
even number is odd.

Problem 2.8. Prove or provide a counterexample: The product of an odd number and an
odd number is odd.
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Problem 2.9. Prove or provide a counterexample: The product of two even numbers is
even.

Definition 2.10. An integer n divides the integer m, written n|m, if and only if there
exists an integer k such that m = nk. In the same context, we may also write that m is
divisible by n.

In this section on number theory, we allow addition, subtraction, and multiplication.
Division is not allowed since an integer divided by an integer may result in a number that
is not an integer. The upshot: don’t write 77. When you feel the urge to divide, switch to
an equivalent formulation using multiplication.

Problem 2.11. Let n be an integer. Prove or provide a counterexample: If 6 divides n,
then 3 divides n.

Problem 2.12. Let n be an integer. Prove or provide a counterexample: If 6 divides n,
then 4 divides n.

Theorem 2.13. Assume 1, m, and a are integers. If a|n, then a|mn.

A theorem that follows almost immediately from another theorem is called a corol-
lary. See if you can prove the next result quickly using the previous theorem. Be sure to
cite the theorem in your proof.

Corollary 2.14. Assume n and a are integers. If a divides n, then a divides n?.

Problem 2.15. Assume n and a are integers. Prove or provide a counterexample: If a
divides n?, then a divides n.

Theorem 2.16. Assume a and n are integers. If a divides n, then a divides —n.

Theorem 2.17. Assume a, m, and n are integers. If a divides m and a divides n, then a
divides m + n.

Problem 2.18. Is the converse® of Theorem 2.17 true? That is, is the following statement
true?

Assume a, m, and n are integers. If a divides m + n, then a divides m and a
divides n.

If the statement is true, prove it. If the statement is false, provide a counterexample.

Once we've proved a few theorems, we should be on the look out to see if we can
utilize any of our current results to prove new results. There’s no point in reinventing the
wheel if we don’t have to. Try to use a couple of our previous results to prove the next
theorem.

Theorem 2.19. Assume a, m, and n are integers. If a divides m and a divides n, then a
divides m —n.

*See Definition 2.40 for the formal definition of converse.
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Problem 2.20. Assume a4, b, and m are integers. Determine whether the following state-
ment holds sometimes, always, or never. If ab divides m, then a divides m and b divides
m. Justify with a proof or counterexample.

Theorem 2.21. If 4,b, and c are integers where a divides b and b divides ¢, then a divides
c.

The previous theorem is referred to as transitivity of division of integers.

Theorem 2.22. The sum of any three consecutive integers is always divisible by three.

2.2 Introduction to Logic

After diving in head first in the last section, we’ll take a step back and do a more careful
examination of what it is we are actually doing.

Definition 2.23. A proposition (or statement) is a sentence that is either true or false.

For example, the sentence “All liberals are hippies” is a false proposition. However,
the perfectly good sentence “x = 1” is not a proposition all by itself since we don’t actually
know what x is.

Exercise 2.24. Determine whether the following are propositions or not. Explain.

1. All cars are red.
2. Van Gogh was the best artist ever.
3. If my name is Joe, then my name starts with the letter J.
4. If my name starts with the letter J, then my name is Joe.
5. f is continuous.
6. All functions are continuous.
7. If f is a differentiable function, then f is continuous function.
8. The president had eggs for breakfast the morning of his tenth birthday.
9. What time is it?

10. There exists an x such that x> = 4.

11. x* = 4.

12. V2 is an irrational number.

3

13. For all real numbers x, x° = x.
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14. There exists a real number x such that x3 = x.
15. pis prime.

Given two propositions, we can form more complicated propositions using the logical
connectives “and”, “or”, and “If. .., then...”.

Definition 2.25. Let A and B be propositions. The proposition “A and B” is true if and
only if both A and B are true. The statement “A and B” is expressed symbolically as

ANB

and is known as the conjunction of A and B.

Definition 2.26. Let A and B be propositions. The proposition “A or B” is true if and only
if at least one of A or B is true. The statement “A or B” is symbolically represented as

AVB

and is known as the disjunction of A and B.

Definition 2.27. Let A be a proposition. The negation of A, denoted —A, is true if and
only if A is false.

Exercise 2.28. Describe the meaning of —=(A A B) and —~(A V B).

Definition 2.29. A truth table is a table that illustrates all possible truth values for a
proposition.

Example 2.30. Let A and B be propositions. Then the truth table for the conjunction AAB
is given by the following.

|A[B[AAB]
T[T| T
T|F| F
F|T| F
F|F| F

Notice that we have columns for each of A and B. The rows for these two columns corre-
spond to all possible combinations for A and B. The third column gives us the truth value
of A A B given the possible truth values for A and B.

Exercise 2.31. Create a truth table for each of AV B, =A, =(A A B), and —A A —B. Feel free
to add additional columns to your tables to assist you with intermediate steps.

Exercise 2.32. Suppose P is a complex proposition built out of the propositions A, B, and
C. How many rows would the truth table for P require?
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Definition 2.33. Let A and B represent propositions. The conditional proposition “If A,
then B” is expressed symbolically as

A = B
and has the following truth table.
(A[B[A = B
T|T T
T|F F
F|T T
F|F T

Exercise 2.34. Let A represent “6 is an even number” and B represent “6 is a multiple
of 4.” Express each of the following in ordinary English sentences and state whether the
statement is true or false.

1. AAB
2. AVB
3. -A

4. -B

5. =(AAB)
6. -(AV B)
7.A = B

Problem 2.35. Suppose I am the coach of our co-ed dodgeball team and you all are the
players. I tell you “If we win tonight, then I will buy you pizza tomorrow.” After re-
viewing the definition of conditional proposition, determine the case(s) in which you can
rightly claim to have been lied to.

Definition 2.36. Two statements are logically equivalent (or equivalent if the context is
clear) if and only if they have the same truth table. That is, proposition P is true exactly
when proposition Q is true, and P is false exactly when Q is false. When P and Q are
logically equivalent we denote this symbolically as

P = Q
which we read “P if and only if Q”. It is common to abbreviate “if and only if” as “iff”.
Each of the next three facts can be justified using truth tables.
Theorem 2.37. If A is a proposition, then —(—A) is equivalent to A.

Theorem 2.38. If A and B are propositions, then =(A A B) <= —-AV =B. (Note: This
theorem is referred to as DeMorgan’s Law.)
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Problem 2.39. Let A and B be propositions. Conjecture a statement similar to Theo-
rem 2.38 for the proposition —(A V B) and then prove it.

Definition 2.40. The converse of A — Bis B — A.
Definition 2.41. The contrapositive of A — Bis -B — -A.

Exercise 2.42. Let A and B represent the statements from Exercise 2.34. Express the
following in ordinary English sentences.

1. The converse of A = B
2. The contrapositive of A — B
Exercise 2.43. Find the contrapositive of the following statements:
1. If n is an even natural number, then 7 + 1 is an odd natural number.’
2. If it rains today, then I will bring my umbrella.
3. If it does not rain today, then I will not bring my umbrella.

Exercise 2.44. Provide an example of a true conditional proposition whose converse is
false.

Theorem 2.45. Assume A and B are statements. Then A — B is equivalent to its con-
trapositive.

The upshot of Theorem 2.45 is that if you want to prove a conditional proposition,
you can prove its contrapositive instead. Prove each of the next two propositions using
the contrapositive of the given statement.

Theorem 2.46. Assume x and y are integers. If xy is odd, then both x and p are odd.
(Prove using contrapositive.)

Theorem 2.47. Assume x and y are integers. If xy is even, then x or y is even. (Prove
using contrapositive.)

2.3 Negating Implications and Proof by Contradiction

So far we have discussed how to negate propositions of the form A, AA B, and AV B for
propositions A and B. However, we have yet to discuss how to negate propositions of the
form A = B.

tDespite the fact that each of “n is an even natural number” and “n + 1 is an odd natural number” are not
propositions (since we cannot determine their truth values without knowing what  is), the implication is
a proposition. We discuss this further when we introduce predicates.
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Problem 2.48. Let A and B be propositions. Conjecture an equivalent way of expressing
the conditional proposition A = B as a proposition involving the disjunction symbol
V and possibly the negation symbol —, but not the implication symbol = . Prove your
conjecture using a truth table.

Exercise 2.49. Let A and B be the propositions “Darth Vader is a hippie” and “Sarah Palin
is a liberal”, respectively. Using Problem 2.48, express A = B as an English sentence
involving the disjunction “or.”

Problem 2.50. Let A and B be two propositions. Conjecture an equivalent way of ex-
pressing the proposition -(A = B) as a proposition involving the conjunction symbol
A and possibly the negation symbol —, but not the implication symbol = . Prove your
conjecture using previous results.

Exercise 2.51. Let A and B be the propositions in Exercise 2.49. Using Problem 2.50,
express =(A = B) as an English sentence involving the conjunction “and.”

Exercise 2.52. The following proposition is false. Negate this proposition to obtain a true
statement. Write your statement as a conjunction.

00 — 9 9 9 00
If.99—E+m+m+"',then.99¢1.

You do not need to prove your new statement.

Recall that a proposition is exclusively either true or false. That is, a proposition can
never be both true and false. This idea leads us to the next definition.

Definition 2.53. A compound proposition that is always false is called a contradiction.
A compound statement that is always true is called a tautology.

Theorem 2.54. Let A be a proposition. Then —A A A is a contradiction.

Exercise 2.55. Provide an example of a tautology using arbitrary positions and any of the
logical connectives —, A, and V. Then prove that your example is in fact a tautology.

Suppose that we want to prove some proposition P (which might be something like
A = B or possibly more complicated). One approach, called proof by contradiction,
involves assuming —P and then logically deducing a contradiction of the form Q A =Q,
where Q is some proposition (possibly equal to P). Since this is absurd, it cannot be
the case that —P is true, which implies that P is true. The tricky part about a proof by
contradiction is that it is not usually obvious what the statement Q is going to be. Here is
what the general structure for a proof by contradiction looks like.

Skeleton Proof 2.56 (Proof of P by contradiction). Here is what the general structure for
a proof by contradiction looks like if we are trying to prove the proposition P.

Proof. For sake of a contradiction, assume —P.

(Use definitions and previous theorems to derive some QQ and its negation —Q.)

This is a contradiction. Therefore, P. O]
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Among other situations, proof by contradiction can be useful for proving statements
of the form A — B, where B is worded negatively or —B is easier to “get your hands on.”

Skeleton Proof 2.57 (Proof of A = B by contradiction). If you want to prove the propo-
sition A = B via a proof by contradiction, then the structure of the proof is as follows.

Proof. For sake of a contradiction, assume A and —B.

(Use definitions and previous theorems to derive some QQ and its negation —Q.)

This is a contradiction. Therefore, if A, then B. O

Question 2.58. In Skeleton Proof 2.57, why did we start by assuming A and —B?

Prove the following theorem in two ways: (i) prove the contrapositive, and (ii) prove
using a proof by contradiction.

Theorem 2.59. Assume that x € Z. If x is odd, then 2 does not divide x. (Prove in two
different ways.)

Prove the following theorem by contradiction.

Theorem 2.60. Assume that x,y € N, If x divides v, then x < p. (Prove using a proof by
contradiction.)

Question 2.61. What obstacles (if any) are there to proving the previous theorem directly
without using proof by contradiction?

2.4 Introduction to Quantification

Recall that sentences of the form “x > 0” are not propositions (unless the context of x is
perfectly clear). In this case, we call x a free variable. In order to turn a sentence with
free variables into a proposition, for each free variable, we need to either substitute in
a value (not necessarily a number) for the free variable or we must “quantify” the free
variable.

Definition 2.62. A sentence with a free variable is called a predicate.

Exercise 2.63. Give 3 examples of mathematical predicates involving 1, 2, and 3 free
variables, respectively.

¥Note that N = {1,2,3,...} is the set of natural numbers. Notice that we did not include 0 in the set of
natural numbers. It is worth pointing out that there is some disagreement about this. That is, some
mathematicians (set theorists, in particular) include 0 in N, but this will not be our convention. The given
statement is not true if we replace N with Z. Do you see why?
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It is convenient to borrow function notation to represent predicates. For example,
each of the following represents a predicate with the indicated free variables.

o S(x):=“x*-4=0"
e L(a,b):="“a<b”
e F(x,v):=“x1is friends with p”

The notation “:=" is used in mathematics to define something as being equal to some-
thing else. Also, note that the use of the quotation marks above removed some ambiguity.
What would S(x) = x> — 4 = 0 mean? It looks like S(x) equals 0, but actually we want S(x)
to be a whole sentence not a noun.

One way we can make propositions out of predicates is by assigning specific values to
the free variables. That is, if P(x) is a predicate and x is specific value, then P(x,) is now
a proposition (and may be true or false).

Exercise 2.64. Consider S(x) and L(a,b) from the discussion above. Determine the truth
values of S(2), S(0), S(-2), L(1,2), L(2,1), and L(-3,-2).

Exercise 2.65. Again, consider L(a,b) from above. Is L(2,b) a proposition or a predicate?
Explain your answer.

Besides substituting specific values in for free variables in a predicate, there are (at
least) two other ways in which we can use predicates to build propositions. We do this by
making a claim about which values of the free variables apply to the predicate.

Example 2.66. The following sentences are both propositions.
1. Forall xeR, x2—4=0.
2. There exists x € R such that x> -4 = 0.

Exercise 2.67. Determine the truth value of the two propositions from Example 2.66.
What would it take to prove your answers?

Definition 2.68. “For all” is called the universal quantifier and “there exists...such
that” is called the existential quantifier.

The variables in propositions with quantifiers are called bound variables. In order
for a sentence containing variables to be a proposition, all variables must be bound. That
is, all variables need to be quantified. When all variables are quantified, there is no
ambiguity. (We are not making any claims about whether a proposition is true or false
here).

It is important to note that the existential quantifier is making a claim about “at least
one” not “exactly one.” Also, we can replace “there exists. ..such that” with phrases (pos-
sibly with some other tweaking to the sentence) like “for some”. It is also worth not-

ing that “for all”, “for any”, “for every” are used interchangeably in mathematics (even
though they might convey slightly different meanings in colloquial language).
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A few additional remarks are in order. We must take care to specify the universe of
acceptable values for the free variables. Consider for a moment, the proposition “For all
x, x > 0”. Is this proposition true or false? The answer depends on what x’s we are taking
all of. For example, if the universe of discourse is the set of integers, then the statement
is false. However, if we take the universe of acceptable values to be the natural numbers,
then the proposition is true. We must be careful to avoid such ambiguities. Often, the
context can resolve such ambiguities, but otherwise, we need to write things like: “For all
x€Z,x>0"or “ForallxeN, x>0".

Exercise 2.69. Suppose our universe of acceptable values is the set of integers.

1. Provide an example of a predicate P(x) such that “For all x, P(x)” is true.

2. Provide an example of a predicate Q(x) such that “For all x, Q(x)” is false, but “There
exists x such that Q(x)” is true.

If a predicate has more than one free variable, then we can build propositions by
quantifying each variable. However, the order of the quantifiers is extremely important!!!

Exercise 2.70. Let P(x,y) be a predicate with the free variables x and y (and let’s assume
the universe of discourse is clear). Write down all possible ways (where order matters)
that the variables could be quantified. To get you started, here’s one: For all x, there exists
y such that P(x,y). Find the rest.

Problem 2.71. Are there any propositions on your list from Exercise 2.70 that are equiv-
alent to others on your list?

Exercise 2.72. Suppose that the universe of acceptable values is the set of married people.
Consider the predicate M(x,y) := “x is married to y”. Discuss the meaning of each of the
following.

1. For all x, there exists y such that M(x, ).
2. There exists y such that for all x, M(x,p).

Exercise 2.73. Suppose that the universe of acceptable values is the set of real numbers.
Consider the predicate R(x,p) := “x = y2”. Discuss the meaning of each of the following.

1. There exists x such that there exists y such that R(x,p).

2. There exists y such that there exists x such that R(x,p).

Exercise 2.74. Repeat the exercise above but replace the existential quantifiers with uni-
versal quantifiers.

Problem 2.75. Conjecture a summary of the various possibilities for quantifying predi-
cates involving two variables. You do not need to prove your conjecture.

Exercise 2.76. Suppose that the universe of acceptable values is the set of real numbers.
Consider the predicate G(x,) := “x > y”. Find all possible distinct ways to bind the vari-
ables to create propositions and then determine the truth value of each (you do not need
to prove your answers).
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2.5 More on Quantification

In the last section, we introduced the universal quantifier “for all” and the existential
quantifier “there exists. ..such that.” Here are a couple of important points to remember
about quantification:

1. In order to have a proposition, all variables must be bound. That is, all variables
must be quantified. This can happen in at least two ways:

(a) The variables are explicitly bound by quantifiers in the same sentence, or

(b) The variables are implicitly bound by preceding sentences and/or by context.
Note: Statements of the form “Let x =...” and “Let x €...” bind the variable x
and remove ambiguity.

2. The order of the quantification is important. Reversing the order of the quantifiers
can substantially change the meaning of a proposition.

Using our logical connectives (“and”, “or”, “If..., then...”, and “not”) together with
quantification, we can build very complex mathematical statements.

Example 2.77. Let f be a function and consider the formal definition of the calculus
statement lim f (x) = L. This statement about the limit of f(x) at x = c is equivalent to:
X—C

For all € > 0, there exists 6 > 0 such that for all x, if 0 < |x —¢| < 8, then
|f(x)—L|<e.

Exercise 2.78. Identify all the quantifiers from Example 2.77 and any logical connectives.
Are there any implicit bound variables?

In order to study the abstract nature of complicated mathematical statements, it is
useful to adopt some notation.

Definition 2.79. We use the symbol V to denote the universal quantifier “for all” and the
symbol 7 to denote the existential quantifier “there exists. ..such that”.$

Using our abbreviations for the logical connectives and quantifiers, we can symboli-
cally represent mathematical propositions.

Example 2.80. For each of the following, suppose our universe of discourse is the set of
real numbers.

1. Consider the following (true) proposition:
There exists x such that x2—1 = 0.

This proposition can be denoted symbolically as (x)(x?> — 1 = 0).

SNote that the IATEX symbol commands are \forall and \exists, respectively. Here is something fun:
What does YV33 mean? For every upside-down A, there exists a backwards E, of course.
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2. Consider the following (false) proposition:
For all x € N, there exists y € N such that y < x.

This one can be represented symbolically as (Vx)(xe N —= (dy)(ye N — p <x))
or more simply as (Yx € N)(dy e N)(y < x).

3. Consider the following (true) proposition:
Every positive real number has a multiplicative inverse.

There are several ways of representing this statement symbolically. However, if you
unpack what a multiplicative inverse is, you'll get something like (Vx)(x >0 —
(Ay)(xy = 1)). Alternatively, you can shorten the statement to (Yx > 0)(dy)(xy = 1).

Exercise 2.81. Convert the following statements into statements using only logical sym-
bols. Assume that the universe of discourse is the set of real numbers.

1. There exists a number x such that x + 1 is greater than zero.
2. There exists a natural number 7 such that n? = 36.
3. For every real number x, x? is greater than or equal to zero.

Exercise 2.82. Express the definition of the limit in Example 2.77 using only logic sym-
bols.

Remark 2.83. If A(x) and B(x) are predicates, then it is standard practice for the statement
A(x) = B(x) to mean (Vx)(A(x) = B(x)) (where the universe of discourse for x needs
to be made clear). In this case, we say that the universal quantifier is implicit.

Exercise 2.84. Find at least two examples earlier in the notes that exhibit the claim made
in Remark 2.83. Attempt to write the statements symbolically using explicit quantifiers.

Exercise 2.85. Convert the following proposition into a statement using only logical sym-
bols. The universe of discourse is the set of real numbers. (Watch out for implicit quanti-
fiers.)

If € > 0, then there exists N € N such that 1/N < e.
Is this statement true?

Exercise 2.86. In the previous exercise, you should end up with more than one quantifier.
Reverse the order of the quantifiers to get a new statement. Does the meaning of the
statement change? If so, how does it change? Is the new statement true?

Remark 2.87. The symbolic expression (Vx)(¥y) can be replaced with the simpler expres-
sion (Yx,v) as long as x and y are coming from the same set.

Exercise 2.88. For each of the following statements, (i) unpack the statement into words,
and (ii) determine whether the statement is true or false.
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1. (YneN)(n*>5)

2. @AneN)(n*-1=0)

3. AN eN)(¥n>N)( <0.01)

4. (Vm,neZ)2lmA2n = 2|(m+n))

5. (VxeN)(dy eN)(x-2y =0)

6. (AxeN)(VyeN)(y <x)

To whet your appetite for the next section, tackle the following questions.

Question 2.89. How would you go about proving a true statement of the form “For all
x...”?

Question 2.90. If a statement is false, then its negation is true. How would you go about
negating a statement involving quantifiers? In particular, if P(x) is a predicate, what are
the negations of (Vx)(P(x)) and (dx)(P(x)), respectively?

2.6 And Even More on Quantification

Before we get started, it is important to remind you that we will not be explicitly using
the symbolic representation of a given statement in terms of quantifiers and logical con-
nectives. Nonetheless, having this notation at our disposal allows us to compartmentalize
the abstract nature of mathematical propositions and will provide us with a way to talk
about the meta-concepts surrounding the construction of proofs.

Definition 2.91. Two quantified propositions are equivalent in a given universe of dis-
course iff they have the same truth value in that universe. Two quantified propositions
are equivalent iff they are equivalent in every universe of discourse.

Exercise 2.92. Consider the propositions (Vx)(x > 3) and (Vx)(x > 4). Are these proposi-
tions equivalent if the universe of discourse is the set of integers? (Hint: What are their
truth values in this case?) Come up with two different universes of discourse that yield
different truth values for these propositions. What can you conclude?

Remark 2.93. At this point it is worth pointing out an important distinction. Consider
the propositions “All cars are red” and “All natural numbers are positive”. Both of these
are instances of the logical form (Vx)P(x). It turns out that the first proposition is false
and the second is true; however, the logical form is neither true or false. A logical form
is a blueprint for particular propositions. If we are careful, it makes sense to talk about
whether two logical forms are equivalent. For example, (Vx)(P(x) = Q(x)) is equivalent
to (Vx)(-Q(x) = —P(x)). For fixed P(x) and Q(x), these two forms will always have the
same truth value independent of the universe of discourse. If you change P(x) and Q(x),
then the truth value may change, but the two forms will still agree.
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Theorem 2.94. Let P(x) be a predicate. Then
1. —=(Vx)P(x) is equivalent to (dx)(—P(x));
2. =(dx)P(x) is equivalent to (Vx)(=P(x)).

Exercise 2.95. Negate each of the following. Disregard the truth value and the universe
of discourse.

1. (Vx)(x>3)

2. (dx)(x is prime A x is even)
3. All cars are red.
4

. Every Wookiee is named Chewbacca.

o

Some hippies are republican.
For all x € N, x? + x + 41 is prime.

There exists x € Z such that 1/x ¢ Z.

® N

There does not exist a function f such that if f is continuous, then f is not differen-
tiable.

Using Theorem 2.94 and our previous results involving quantification, we can negate
complex mathematical propositions by working from left to right.

Example 2.96. Consider the proposition
Ax eR)(Vy e R)(x+y =0).
It turns out that this statement is false, which means that its negation is true. That is,
-(AxeR)(Vy eR)(x+y =0),

which is equivalent to
(VxeR)dy eR)(x+y =0),

is true.
Example 2.97. Consider the proposition

(Vx)[x>0 = (Ay)(y <0 Axy>0)]
(which happens to be false). Then

—(Vx)[x>0 = (dy)(¥y <0Axy>0)]

is equivalent to
(Jx)[x>0A=(Fy)(y <0) Axy >0)],

which is equivalent to
Jx)[x>0A (Vy)(y >0V xy <0)].
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Exercise 2.98. What previous theorems were used when negating the proposition in the
previous example?

Exercise 2.99. Negate each of the following. Disregard the truth value and the universe
of discourse.

1. (VneN)(dmeN)(m<n)
2. (Vx,9,z€ Z)((xy is even A yz is even) = xy is even)
3. For all positive real numbers x there exists a real number y such that y2 = x.

4. There exists a married person x such that for all married people y, x is married to y.

At this point, we should be able to use our understanding of quantification to con-
struct counterexamples to complicated false propositions and proofs of complicated true
propositions. Here are some general proof structures for various logical forms.

Skeleton Proof 2.100 (Direct Proof of (Vx)P(x)). Here is what the general structure for a
direct proof of the proposition (Vx)P(x) looks like.

Proof. Let x € U (where U is whatever the universe of discourse is).

(Use definitions and previous results.)

Therefore, P(x) is true. Since x was arbitrary, for all x, P(x). O

Skeleton Proof 2.101 (Proof of (Vx)P(x) by Contradiction). Here is the general structure
for a proof of the proposition (Vx)P(x) via contradiction.

Proof. For sake of a contradiction, assume that there exists x € U (where U is whatever
the universe of discourse is) such that —=P(x).

(Do something to derive a contradiction.)

This is a contradiction. Therefore, for all x, P(x) is true. O]

Skeleton Proof 2.102 (Direct Proof of (1x)P(x)). Here is what the general structure for a
direct proof of the proposition (Jx)P(x) looks like.

Proof. (Either use definitions and previous results to deduce that an x exists such that
P(x) is true or if you think you have an x that works, just verify that it does.)

(Do stuff.)

Therefore, there exists x such that P(x). O
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Skeleton Proof 2.103 (Proof of (dx)P(x) by Contradiction). Here is the general structure
for a proof of the proposition (dx)P(x) via contradiction.

Proof. For sake of a contradiction, assume that for all x, —=P(x).

(Do something to derive a contradiction.)

This is a contradiction. Therefore, there exists x such that P(x). O

Question 2.104. Suppose P(x) is a proposition such that (Vx)P(x) is false. Which of the
above proof situations is identical to providing a counterexample to this proposition?

Remark 2.105. It is important to point out that sometimes we will have to combine vari-
ous proof techniques in a single proof. For example, if you wanted to prove a proposition
of the form (Vx)(P(x) = Q(x)) by contradiction, we would start by assuming that there
exists x such that P(x) and = Q(x).

Problem 2.106. For each of the following statements, determine its truth value. If the
statement is false, provide a counterexample. Prove at least two of the true statements.

1. Forall ne N, n? > 5.

2. There exists n € N such that n?> —1 = 0.

3. There exists x € N such that forall y e N, y <x.

4. Forall xe Z, x3 > x.

5. For all n € Z, there exists m € Z such that n+m = 0.

6. There exists integers a and b such that 2a+7b =1.

7. There do not exist integers m and n such that 2m+4n =7.

8. For all integers a,b,c, if a divides bc, then either a divides b or a divides c.

When proving the following theorem, you might discover that considering two differ-
ent cases is helpful.

Theorem 2.107. For all integers, 3n% +n+ 14 is even.



Chapter 3

Introduction to Set Theory and Topology

At its essence, all of mathematics is built on set theory. In this chapter, we will introduce
some of the basics of sets and their properties.

3.1 Sets

Definition 3.1. A set is a collection of objects called elements. If A is a set and x is an
element of A, we write x € A. Otherwise, we write x ¢ A.

Definition 3.2. The set containing no elements is called the empty set, and is denoted by
the symbol 0.

If we think of a set as a box containing some stuff, then the empty set is a box with
nothing in it.

Definition 3.3. The language associated to sets is specific. We will often define sets using
the following notation, called set builder notation.

S ={x € A: x satisfies some condition}

The first part “x € A” denotes what type of x is being considered. The statements to the
right of the colon are the conditions that x must satisfy in order to be members of the set.
This notation is read as “The set of all x in A such that x satisfies some condition,” where
“some condition” is something specific about the restrictions on x relative to A.

Exercise 3.4. Unpack each of the following sets into a description using a sentence and
see if you can determine exactly what elements each set contains.

1. M={xeR:x>2}
2. A={xeN:x =3k for some k € N}
3. T={teR:t?<2)

4, H:{teR:t:l—%,whereneN}

25
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Exercise 3.5. Write each of the following sentences using set builder notation.
1. Suppose R is the set of all real numbers x such that x is less than —V?2.

2. Suppose A is the set of all real numbers p, such that p is greater than —12 and less
than 42.4.

3. Suppose D is the set of all even natural numbers.

Definition 3.6. If A and B are sets, then we say that A is a subset of B, written A C B,
provided that every element of A is also an element of B.

Remark 3.7. Observe that A C B is equivalent to “For all x (in the universe of discourse),
if x € A, then x € B.” Since we know how to deal with “for all” statements and conditional
propositions, we know how to go about proving A C B.

Question 3.8. Suppose that A and B are sets. Describe a general strategy for proving that
ACB.

Theorem 3.9. Let S be a set. Then
1. SCS,
2. CS.

Exercise 3.10. List all of the subsets of A = {1,2,3}. Any conjectures about how many
there might be for a set with n elements?

Theorem 3.11 (Transitivity of subsets). Suppose that A, B, and C are sets. If A C B and
BCC,then ACC.

Definition 3.12. If A C B, then A is called a proper subset provided that A # B. In this
case, we may write AC Bor A C B.*

Definition 3.13 (Interval Notation). For a,b € R with a < b, we define the following.
1. (a,b)={xeR:a<x<b}
2. (a,00)={xeR:a<x}
3. (—o0,b)={xeR:x<b}
4. [a,b]={xeR:a<x<b}
We analogously define [a,b), (a,b], [a, ), and (-0, b].
Exercise 3.14. Provide two examples of proper subsets of the interval [0,1].
Here are some more definitions. In each case, take U to be the universe of discourse.

Definition 3.15. The union of the sets Aand Bis AUB={xe U :xe€ Aor x€ B}.

*Warning: Some books use C to mean C.
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Definition 3.16. The intersection of the sets Aand Bis ANB={xe U :x€ A and x € B}.
Definition 3.17. The set difference of the sets Aand BisA\B={xe U :x€ A and x ¢ B}.

Definition 3.18. The complement of A (relative to U) istheset A=U\A={xeU:x¢
A}.

Definition 3.19. If two sets A and B have the property that AN B = 0, then we say that A
and B are disjoint sets.

Exercise 3.20. Suppose that the universe of discourse is U ={1,2,3,4,5,6,7,8,9,10}. Let
A=1{1,2,3,4,5}, B=1{1,3,5}, and C ={2,4,6,8}. Find each of the following.

1. AnC
2. ANB
3. AUC
4. AUB
5. A\B
6. B\A
7. C\B
8. BNC
9. B

10. A€

11. (AUB)
12. AN B°

Exercise 3.21. Suppose that the universe of discourse is U = R. Let A = [-3,-1), B =
(=2.5,2), and C = (-2,0]. Find each of the following.

1. AC
2. ANC
3. ANB
4. AUC
5. AUB
6. (ANB)
7. (AUB)
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8. A\B
9. A\(BUC)
10. B\ A
11. BNnC
Theorem 3.22. Let A and B be sets. If A C B, then B¢ C A°.

Definition 3.23. Two sets A and B are equal if and only if A C B and B C A. In this case
we write A = B.

Remark 3.24. Given two sets A and B, if we want to prove A = B, then we have to do two
separate “mini” proofs: one for A C B and one for B C A.

Theorem 3.25. Let A and B be sets. Then A\ B= AN B°.
Theorem 3.26 (DeMorgan’s Law). Let A and B be sets. Then
1. (AUB)=A°NBS,
2. (ANB)*=A°UB".
(You only need to prove one of these; the other is similar.)
Theorem 3.27 (Distribution of Union and Intersection). Let A, B, and C be sets. Then
1. AU(BNC)=(AUB)N(AUC),
2. AN(BUC)=(ANB)U(ANC).

(You only need to prove one of these; the other is similar.)

3.2 Power Sets and Paradoxes

We’ve already seen that using union, intersection, set difference, and complement we
can create new sets (in the same universe) from existing sets. In this section, we will
describe another way to generate new sets; however, the new sets will not “live” in the
same universe this time.

Definition 3.28. If S is a set, then the power set of S is the set of subsets of S. The power
set of S is denoted P(S).

Remark 3.29. It follows immediately from the definition that A C S iff A € P(S).T It is
important to pay close attention to whether “C” or “€” is the proper symbol to use.

*Recall that “iff” is an abbreviation for ‘if and only if”, which is a statement of the form A = B for
propositions A and B. Recall that this is short for both A = Band B —= A.
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Example 3.30. If S = {a, b}, then P = {0, {a},{b}, S}.

Question 3.31. Implicit in the definition of power set is that S is a subset of some fixed
universe U. What universe does it make sense for P(S) to live in?

Exercise 3.32. For each of the following sets, find the power set.

1. W={o,A, 1}
2. O={a,{a}}
3. R=0

4. D = {0}

Conjecture 3.33. How many subsets do you think that a set with n elements has? What
if n = 0? You do not need to prove your conjecture at this time. We will prove this later
using mathematical induction.

Exercise 3.34. Do your best to describe P(N). You cannot write down all of P(N). Why
not?

Remark 3.35. It is important to realize that the concepts of element and subset need to be
carefully delineated. For example, consider the set A = {x,y}. The object x is an element of
A, but the object {x} is both a subset of A and an element of P(A). This can get confusing
rather quickly. Consider the set O from the previous example. The set {a} happens to be
an element of O, a subset of O, and an element of P(O).

Theorem 3.36. Let S and T be sets. Then S C T iff P(S) C P(T).}
Theorem 3.37. Let S and T be sets. Then P(S)NP(T)=P(SNT).
Theorem 3.38. Let S and T be sets. Then P(S)UP(T)C P(SUT).
Exercise 3.39. Let S and T be sets.

1. Provide a counterexample to show that it is not necessarily true that P(S)UP(T) =
P(SUT).

2. Is it ever true that P(S)UP(T) = P(SUT) or are P(S)UP(T) and P(S U T) always
different sets?

We now turn out attention to the issue of whether there is one mother of all universal
sets. Before reading any further, consider this for a moment. That is, is there one largest
set that all other sets are a subset of? Or, in other words, is there a set of all sets? To help
wrap our heads around this issue, consider the following riddle, known as the Barber of
Seville Paradox.

In Seville, there is a barber who shaves all those men, and only those men,
who do not shave themselves. Who shaves the barber?

To prove this theorem, you have to write two distinct subproofs: A = Band B = A.
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Problem 3.40. Discuss the Barber of Seville Paradox. Does the barber shave himself or
not?

Problem 3.40 is an example of a paradox. I haven’t defined paradox. What do you
think it means? Now, suppose that there is a set of all sets and call it &/. Then we can
write U = {A: A is a set}.

Problem 3.41. Given our definition of U/, explain why it is an element of itself.

If we continue with this line of reasoning, it must be the case that some sets are ele-
ments of themselves and some are not. Let X be the set of all sets that are elements of
themselves and let Y be the set of all sets that are not elements of themselves.

Question 3.42. Does Y belong to X or Y? Explain why this is a paradox.

The above paradox is one way of phrasing a paradox referred to as Russell’s paradox.
Okay, how did we get into this mess in the first place?! By assuming the existence of a set
of all sets, we can produce all sorts of paradoxes. The only way to avoid the paradoxes is
to conclude that there is no set of all sets. Here is some more evidence that we shouldn’t
assume the existence of a set of all sets.

Question 3.43. If U/ is the set of all sets, then what is the relationship between ¢/ and
P(U)? What about P(P(U)?

The upshot is that the collection of all sets is not a set! Here are some additional
paradoxes.

Problem 3.44. Pick any two of the paradoxes below and for each one explain why it is a
paradox.

Librarian’s Paradox. A librarian is given the unenviable task of creating two new books
for the library. Book A contains the names of all books in the library that reference them-
selves and Book B contains the names of all books in the library that do not reference
themselves. But the librarian just created two new books for the library, so their titles
must be in either Book A or Book B. Clearly Book A can be listed in Book B, but where
should the librarian list Book B?

Liar’s Paradox. Consider the statement: this sentence is false. Is it true or false?

Berry Paradox. Consider the claim: every natural number can be unambiguously de-
scribed in fourteen words or less. It seems clear that this statement is false, but if that
is so, then there is some smallest natural number which cannot be unambiguously de-
scribed in fourteen words or less. Let’s call it n. But now n is “the smallest natural
number that cannot be unambiguously described in fourteen words or less.” This is a
complete and unambiguous description of n in fourteen words, contradicting the fact
that n was supposed not to have such a description. Therefore, all natural numbers can
be unambiguously described in fourteen words or less!
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The Naming Numbers Paradox. Consider the claim: every natural number can be unam-
biguously described using no more than 50 characters (where a character is a-z, 0-9, and
a “space”). For example, we can describe 9 as “9” or “nine” or “the square of the second
prime number.” There are only 37 characters, so we can describe at most 37°% numbers,
which is very large, but not infinite. So the statement is false. However, here is a “proot”
that it is true. Let S be the set of natural numbers that can be unambiguously described
using no more than 50 characters. For the sake of contradiction, suppose it is not all of
N. Then there is a smallest number t € N—-S. We can describe t as: the smallest natural
number not in S. Thus ¢ can be described using no more than 50 characters. Sot € S, a
contradiction.

Euathlus and Protagoras. Euathlus wanted to become a lawyer but could not pay Pro-
tagoras. Protagoras agreed to teach him under the condition that if Euathlus won his first
case, he would pay Protagoras, otherwise not. Euathlus finished his course of study and
did nothing. Protagoras sued for his fee. He argued:

If Euathlus loses this case, then he must pay (by the judgment of the court).
If Euathlus wins this case, then he must pay (by the terms of the contract).
He must either win or lose this case.

Therefore Euathlus must pay me.

But Euathlus had learned well the art of rhetoric. He responded:

If I win this case, I do not have to pay (by the judgment of the court).
If I lose this case, I do not have to pay (by the contract).

I must either win or lose the case.

Therefore, I do not have to pay Protagoras.

3.3 Indexing Sets
Suppose we wish to consider the following collection of open intervals:
(0,1),(0,1/2),(0,1/4),...,(0,1/2"1),...
This collection has a natural way for us to “index” the sets:
I, =(0,1),I, = (0,1/2),...,1, = (0,1/2"71), ...

In this case the sets are indexed by the set N. The subscripts on the capital letters are
taken from the index set. If we wanted to talk about an arbitrary set from this indexed
collection, we could use the notation I,,.

Let’s consider another example:

{a},{a,b},{a,b,c},....{a,b,c,...,2}
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An obvious way to index these sets is as follows:
Ay ={a},Ay,={a,b},A3=1{a,b,c},...,As =1{a,b,c,...,2}
In this case, the collection of sets is indexed by {1, 2,...,26}.

Remark 3.45. Using indexing sets in mathematics is an extremely useful notational tool,
but it is important to keep straight the difference between the sets that are being indexed,
the elements in each set being indexed, the indexing set, and the elements of the indexing
set.

Any set (finite or infinite) can be used as an indexing set. Often capital Greek letters
are used to denote arbitrary indexing sets and small Greek letters to represent elements
of these sets. For example, we might use A (capital delta) to refer to an indexing set and
write a € A for an individual index. Typically, if the indexing set is some subset of Z
(like N), then we would use letters like k,m, n,l for an individual index. Likewise, if the
indexing set is R, then we might use s,t,x,y as indices.

Example 3.46. Here are some examples of common notation that you will encounter.

1. If Ais a set and we have a collection of sets indexed by A, then we may write

{Sa}aeA
to refer to this collection. We read this as “the set of S-alphas over alpha in Delta.”

2. If a collection of sets is indexed by the natural numbers, then we may write

{Un}neN

or
{Unhy?

n=1-

3. Borrowing from this idea, we can write the collection {Ay,...,Ays} from the begin-
ning of the section as
(A28

n=1-
Definition 3.47. Suppose we have a collection {A,},ca-

1. The union of the entire collection is defined via

UAa:{X3XEAa for some a € A}.

a€eA

2. The intersection of the entire collection is defined via

ﬂAa:{x:xeAa for all a € A}.

a€eA



CHAPTER 3. INTRODUCTION TO SET THEORY AND TOPOLOGY

Example 3.48. In the special case that A = N, we write
UA” ={x:x€A, forsomeneN}=A;UA,UA3U---
n=1

and

ﬂAn:{x:xGAn forallneN}=A NA,NA;N---
n=1

Similarly, if A = {1, 2, 3,4}, then

4
UAn:AluAZUA3UA4

n=1
and
4
ﬂAn = A NAyNA3N A,
n=1

Remark 3.49. Notice the difference between “\ J” and “U” (respectively, “()” and “N”).

The larger versions of the union and intersection symbols very much like the notation
[o0]

that you’ve likely seen for sums (e.g., Ziz).
i=1

Exercise 3.50. Let {I,},cn be the collection of open intervals from the beginning of the
section. Find each of the following.

1. Uln

Exercise 3.51. Repeat the previous exercise, but assume that the sets are closed intervals.

Exercise 3.52. Let {An}ig1 be the collection from earlier in the section. Find each of the
following.

26
1. UAH
n=1
26
2. ﬂAn
n=1
Exercise 3.53. Let S, ={x€R : n—1 <x <n}, where n € N. Find each of the following.

s

n=1
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Su

)

=
Il
—

Exercise 3.54. Let T, ={x€R : —% <x< %}, where n € N. Find each of the following.

-

Ty

=
I
—_

T,

)

=
Il
—_

Exercise 3.55. For each r € Q (the rational numbers), let N, be the set containing all real
numbers except r. Find each of the following.

LN,

reQ
2. ﬂN,
reQ

Definition 3.56. We say that a collection of sets {A,},ca is pairwise disjoint if A,NAg =0
whenever a = f8.

Exercise 3.57. Draw a Venn diagram of a collection of 3 sets that are pairwise disjoint.

Exercise 3.58. Provide an example of a collection of three sets, say {A1,A;, A3}, such that
the collection is not pairwise disjoint, but

e

A, =0.

n=1

Theorem 3.59 (Generalized Distribution of Union and Intersection). Suppose we have a
collection {A,},ecn- Let B be any set. Then

1. BU ﬂAa :ﬂ(BUAa),
aeA aeA

2. BN UAa :U(BmAa).
aeA aeA

(You only need to prove one of these; the other is similar.)

Theorem 3.60 (Generalized DeMorgan’s Law). Suppose we have a collection {A,},en-
Then

C
= (A5,

a€eA

1. UAa

aeA
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C
= J4S.

a€eA

2. ﬂAa

a€eA

(You only need to prove one of these; the other is similar.)

3.4 Topology of R

Remark 3.61. For this entire section, our universe of discourse is the set of real numbers.
You may assume all the usual basic algebraic properties of the real numbers (addition,
subtraction, multiplication, division, commutative property, distribution, etc.).

Recall that an axiom is a statement that we assume to be true. Here are some useful
axioms of the real numbers.

Axiom 3.62. If p and g are two different real numbers in R, then there is a number be-
tween them.

Exercise 3.63. Given real numbers p and g with p < g, construct a real number x such that
p <x < g. (We know such a point must exist by the previous example, but this exercise is
asking you to produce an actual candidate.)

Axiom 3.64. (Linear ordering) If 4, b, and c are real numbers, then:

1. Ifa<band b<c, thena<c;

2. Exactly one of the following is true: (i) a < b, (ii) a = b, or (iii) a > b.
Axiom 3.65. If p is a real number, then there exists g,r € Rsuch thatg<p <.

Axiom 3.66. (Archimedean Property) If x is a real number, then either (i) x is an integer
or (ii) there exists an integer n, such that n <x <n+ 1.

Definition 3.67. Suppose a,b € R such that a < b. The intervals (a,b),(—o0,b),(a, o) are
called open intervals while the interval [a,b] is called a closed interval. An interval like
[a,b) is neither open nor closed.

Remark 3.68. In this class, we will always assume that any time we write (a,b),[a, b], (a,b],
or [a,b) that a < b.

Exercise 3.69. Give an example of each of the following.
1. An open interval.
2. A closed interval.
3. An interval that is neither open nor closed.

4. An infinite set that is not an interval.
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Definition 3.70. A set U is called an open set iff for every t € U, there exists an open
interval containing t such that the open interval is a subset of U. We define the empty set
to be open.

Problem 3.71. Prove that the set I =(1,2) is an open set.

Theorem 3.72. Every open interval is an open set.

Theorem 3.73. The real numbers form an open set.

Exercise 3.74. Provide an example of an open set that is not a single open interval.
Theorem 3.75. Every closed interval is not an open set.

Theorem 3.76. Let x € R. Then the set {x} is not open.

Exercise 3.77. Determine whether {4,17,42} is an open set, and briefly justify your asser-
tion.

Theorem 3.78. Let A and B be open sets. Then AU B is an open set.
Theorem 3.79. Let A and B be open sets. Then AN B is an open set.
Theorem 3.80. Let {U,},ea be a collection of open sets. Then
U
aeA
is an open set.
Exercise 3.81.
1. Find a collection of open sets {U,},eca such that
)V
aeA

is not an open set.

2. Find a collection of open sets {B,},ca such that
[
a€eA

is an open set.

Remark 3.82. Taken together, Theorems 3.78-3.80 and Exercise 3.81 tell us that the
union of open sets is open, but that the intersection of open sets may or may not be open.
However, if we are taking the intersection of finitely many open sets, then the intersection
will be open.

Exercise 3.83. Determine whether each of the following sets is open or not open.
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Definition 3.84. A point p is a limit point of the set S iff for every open interval I con-
taining p, there exists a point g € I such that g € S with g = p.

Problem 3.85. Consider the open interval S = (1,2). Prove each of the following.
1. The points 1 and 2 are limit points of S.
2. If p €S, then p is a limit point of S.
3. If p<1or p>2,then pisnota limit point of S.

Theorem 3.86. A point p is a limit point of (a,b) iff p € [a,]].

Problem 3.87. Prove that the point p = 0 is a limit point of S = {1 : n € N}. Are there any
other limit points?

Exercise 3.88. Provide an example of a set S such that 1 is a limit pointof S, 1= S, and S
contains no intervals.

Exercise 3.89. Provide an example of a set T with exactly two limit points.
Theorem 3.90. If p € R, then p is a limit point of Q.
Definition 3.91. A set is called closed iff it contains all of its limit points.

Exercise 3.92. Provide an example of each of the following. You do not need to prove
that your answers are correct.

1. A closed set.
2. A set that is not closed.
3. A set that is open and closed.
4. A set that neither open nor closed.
Theorem 3.93. The set [a, b] is closed.
Theorem 3.94. The set U is open iff UC is closed.
Theorem 3.95. Every finite set is closed.
Problem 3.96. Prove or provide a counterexample: If a set S is not open, then it is closed.

Theorem 3.97. The real numbers are both open and closed.
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Theorem 3.98. The rational numbers are neither open nor closed.
Theorem 3.99. The empty set is both open and closed.
Theorem 3.100. Let {A,},ca be a collection of closed sets. Then
)4
ael
is a closed set.

Problem 3.101. Prove or provide a counterexample: If A and B are closed sets, then AUB
is also closed.

Exercise 3.102. Provide an example of a collection of closed sets {A,},ea such that
4
aeA

is a not closed set.

Remark 3.103. You should compare what happened in Theorem 3.100 and Exercise 3.102
to what we stated in Remark 3.82.



Chapter 4

Induction

4.1 Introduction to Induction

In this section, we will explore a technique for proving statements of the form (Vn €
N)P(n), where P(n) is some predicate. Notice that this is a statement about natural num-
bers and not some other set. Consider the claims:

1
1. ForallneN,1+2+3+---+n:n(n; ).

2. For all n €N, n? + n+41 is prime.

Let’s take a look at potential proofs.

“Proof” of Claim (1). 1t n =1, then 1 = 1) 1f n = 2, then 1+2=3 = 22) 1f 1= 3, then
1+2+3:6:3(32+1),andsoon. O

“Proof” of Claim (2). If n = 1, then n®? + n+ 41 = 43, which is prime. If n = 2, then
n% +n+41 = 47, which is prime. If n = 3, then n? + n+ 41 = 53, which is prime, and so on.
O

Are these actual proofs? The answer is NO! In fact, the second claim isn’t even true. If
n=41,then n?+n+41 = 41 +41+41 = 41(41 +1+1), which is not prime since it has 41 as
a factor. It turns out that the first claim is true, but what we wrote cannot be a proof since
the same type of reasoning when applied to the second claim seems to prove something
that isn’t actually true. We need a rigorous way of capturing “and so on” and a way to
verify whether it really is “and so on.”

Axiom 4.1 (Axiom of Induction). Let S C N such that both
1. 1 €S, and
2. iftkeS,thenk+1€S.

Then S =N.

39



CHAPTER 4. INDUCTION

Remark 4.2. Recall that an axiom is a basic mathematical assumption. That is, we are
assuming that the Axiom of Induction is true, which I'm hoping that you can agree is
a pretty reasonable assumption. I like to think of the first hypothesis of the Axiom of
Induction as saying that we have a first rung of a ladder. The second hypothesis says that
if we have some random rung, we can always get to the next rung. Taken together, this
says that we can get from the first rung to the second, from the second to the third, and
so on. Again, we are assuming that the “and so on” works as expected here.

Theorem 4.3 (Principle of Mathematical Induction). Let P(1), P(2), P(3),... be a sequence
of statements, one for each natural number.* Assume

1. P(1) is true, and
2. If P(k) is true, then P(k + 1) is true.
Then P(n) is true for all n € N.*

Remark 4.4. The Principal of Mathematical Induction (PMI) provides us with a process
for proving statements of the form: “For all n € N, P(n),” where P(n) is some predicate
involving n. Hypothesis (1) above is called the base step while (2) is called the inductive
step.

Skeleton Proof 4.5 (Proof by induction for (Vn € N)P(n)). Here is what the general struc-
ture for a proof by induction looks like. Remarks are in parentheses.

Proof. We proceed by induction.

(i) Base step: (Verify that P(1) is true. This often, but not always, amounts to plug-
ging n = 1 into two sides of some claimed equation and verifying that both sides
are actually equal. Don’t assume that they are equal!)

(ii) Inductive step: (Your goal is to prove that “For all k € N, if P(k) is true, then P(k+1)
is true.”) Let k € N and assume that P(k) is true. (Now, do some stuff to show that
P(k + 1) is true.) Therefore, P(k + 1) is true.

Thus, by the PMI, P(n) is true for all n € N. O]

n(n+1)i
B

n
Theorem 4.6. For all n €N, Zi =

i=1

Theorem 4.7. For all n €N, 3 divides 4" — 1.

“In this case, you should think of P(n) as a predicate, where P(1) is the statement that corresponds to
substituting in the value 1 for .

tHint: Let S = {k € N : Py is true} and use the Axiom of Induction. The set S is sometimes called the truth
set. Your job is to show that the truth set is all of N.

n

$Recall that Zi =1+4+2+3+---+n, by definition. Also, this theorem should look familar from calculus.
i=1
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Theorem 4.8. For all n € N, 6 divides n> — n.

Theorem 4.9. Let py,p,,...,p, be n distinct points arranged on a circle. Then the number

. . . R
of line segments joining all pairs of points is =5=.

Theorem 4.10. Let A be a set with 1 elements. Then P(A) is a set with 2" elements.S

SWe encountered this theorem back in Section 2.2 (see Conjecture 2.33), but we didn’t prove it. Proving
this theorem is rather tricky. If you use induction (which I suggest), at some point, you will need to argue
that if you add one more element to a finite set, then you end up with twice as many subsets.
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Two Famous Theorems

As the title suggests, in this chapter, we tackle two famous theorems. Most of this chapter
was originally written by Dave Richeson of Dickinson College.

5.1 The Irrationality of V2

In this section we will prove one of the oldest and most important theorems in math-
ematics. The Pythagoreans were an ancient secret society that followed their spiritual
leader: Pythagoras of Samos (c. 570-495 BCE). The Pythagoreans believed that the way
to spiritual fulfillment and to an understanding of the universe was through the study
of mathematics. They believed that all of mathematics, music, and astronomy could be
described via whole numbers and their ratios. In modern mathematical terms they be-
lieved that all numbers are rational. Attributed to Pythagoras is the saying, “Beatitude is
the knowledge of the perfection of the numbers of the soul.” And their motto was “All is
number.”

Thus they were stunned when one of their own—Hippasus of Metapontum (c. 5th
century BCE)—discovered that the side and the diagonal of a square are incommensu-
rable. That is, the ratio of the length of the diagonal to the length of the side is irrational”.
Indeed, if the side of the square has length 4, then the diagonal will have length av2;
the ratio is V2 (see Figure 5.1). In today’s language, Hipassus discovery is given by the
following theorem.

Before tackling a proof of Theorem 5.6, we need a few tools. In particular, we will
make use of the Fundamental Theorem of Arithmetic (see Corollary 5.5). The following
result makes up half of the Fundamental Theorem of Arithmetic.

Theorem 5.1. Let n be a natural number greater than 1. Then n can be expressed as a
product of primes. That is, we can write

n=pip2- Pk

“Recall that a number is rational if it can be written in the form 7}, where m,n € Z and n # 0. A number is
irrational if it is not rational.
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av'2

4]

Figure 5.1: The side and diagonal of a square are incommensurable.

where each of py,p,,...,pr are prime numbers (and there may possibly be repeats in this
list).t

The previous theorem states that we can write every natural number as a product of
primes, but it does not say that the primes and the number of times the primes appear
are unique. It turns out that this is fairly difficult to prove. We will need the following
result known as the Division Algorithm, but we won’t worry about proving it. Instead,
we will take it for granted and use it in the proof of Theorem 5.3, which we will then use
to prove uniqueness.

Theorem 5.2 (Division Algorithm). Suppose that m,n € N. Then there exists unique g,7 €
N such that m =ng+r with 0 <r <n.

The numbers g and r from the Division Algorithm are referred to as quotient and re-
mainder, respectively. Now, see if you can prove the following theorem, which is known
as Euclid’s Lemma.

Theorem 5.3 (Euclid’s Lemma). Assume that p is prime. If p divides ab, where a,b € N,
then either p divides a or p divides b.}

Alright, let’s tackle the uniqueness of the product of primes now.

Theorem 5.4. Let n be a natural number greater than 1. Then the expression for n as the
product of one or more primes is unique (up to the order in which they appear).S

The following corollary follows immediately from Theorem 5.1 and Theorem 5.4.

Corollary 5.5 (Fundamental Theorem of Arithmetic). Every natural number greater than
1 can be expressed uniquely (up to the order in which they appear) as the product of one
Or more primes.

tHint: Use a proof by contradiction. Let n be the smallest natural number for which the theorem fails.
Then n cannot be prime since this would satisfy the theorem. So, it must be the case that n has a divisor
other than 1 and itself. This implies that there exists natural numbers a and b greater than 1 such that
n = ab. Since n was our smallest counterexample, what can you conclude about both a and b? Use this
information to derive a counterexample for n.

tHint: Use a proof by contradiction and apply the Division Algorithm to both a and b. What can you say
about ab?

SHint: Use a proof by contradiction. Write 1 as both pyp,---px and g4, ---q;, where both are products of
primes. Use Euclid’s Lemma to derive a contradiction.
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We are finally ready to prove that V2 is irrational.
Theorem 5.6. The real number V?2 is irrational. T

As one might expect, the Pythagoreans were unhappy with this discovery. Legend
says that Hippasus was expelled from the Pythagoreans and was perhaps drowned at sea.
Ironically, this result, which angered the Pythagoreans so much, is probably their greatest
contribution to mathematics: the discovery of irrational numbers.

Now, let’s tackle a few more problems dealing with irrational numbers.

Problem 5.7. Determine whether is rational or irrational and then prove that

+
, 3+242
your answer 1s correct.

Theorem 5.8. Let p be a prime number. Then 4/p is irrational.

Exercise 5.9. Let p be a prime number. For which values of n € N is {/p irrational? You
do not need to prove your answer.

Theorem 5.10. Let p and g be distinct primes. Then 4/pq is irrational.

Problem 5.11. State a generalization of Theorem 5.10 and briefly describe how its proof
would go. Be as general as possible.

Remark 5.12. It is important to point out that not every positive irrational number is
equal to the square root of some natural number. For example, 7 is irrational, but is not
equal to the square root of a natural number.

It is worth pointing out that our approach for proving that V2 was irrational was not
the most efficient. However, our technique was easy to generalize to handle results like
Theorem 5.8.

5.2 The Infinitude of Primes

The highlight of this section is Theorem 5.17, which states that there are infinitely many
primes. In case you forgot, here is the definition of a prime number.

Definition 5.13. A natural number p is called prime iff p is divisible by exactly two
distinct natural numbers (namely, 1 and p itself).

Exercise 5.14. Is 1 a prime number? Explain your answer.

The first known proof of Theorem 5.17 is in Eulcid’s Elements (c. 300 BCE). Euclid
stated it as follows:

I Hint: Use a proof by contradiction. That is, suppose that there exist 2, n € Z such that n = 0 and V2 = .
Next, square both sides and solve for m?. How many factors of 2 does m? have? How many factors of 2
does 2n? have? Derive a contradiction using Corollary 5.5.
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Proposition IX.20. Prime numbers are more than any assigned multitude of
prime numbers.

There are a few interesting observations to make about Euclid’s proposition and his proof.
First, notice that the statement of the theorem does not contain the word “infinity.” The
Greek’s were skittish about the idea of infinity. Thus he proved that there were more
primes than any given finite number. Today we’d say that they are infinite. In fact, Euclid
proved that there are more than three primes and concluded that there were more than
any finite number. While you would lose points for such a proof in this class, we can
forgive Euclid for this less-than-rigorous proof; in fact, it is easy to turn his proof into the
general one that you will give below. Lastly, Euclid’s proof was geometric. He was viewing
his numbers as line segments with integral length. The modern concept of number was
not developed yet.

Prior to tackling a proof of Theorem 5.17, we need to prove a couple lemmas. The
proof of the first lemma is provided for you.

Lemma 5.15. The only natural number that divides 1 is 1.

Proof. Let m be a natural number that divides 1. We know that m > 1 because 1 is the
smallest positive integer. Since m divides 1, there exists k € N such that 1 = mk. Since
k > 1, we see that mk > m. But 1 = mk, and so 1 > m. Thus, we have 1 < m < 1, which
implies that m = 1, as desired. O

Lemma 5.16. Let p be a prime number and let n € Z. If p divides n, then p does not divide
n+ 1.l

Now, we are ready to prove the following important theorem.

Theorem 5.17. There are infinitely many prime numbers.™

IHint: Use a proof by contradiction and utilize the previous lemma.
“Hint: Use a proof by contradiction. In this case, there are finitely many primes. Consider the product of
all of them and then add 1.
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Relations and Functions

6.1 Relations

Definition 6.1. An ordered pair is an object of the form (x,y). Two ordered pairs (x,y)
and (a,b) are equal if x=aand y = b.

Definition 6.2. An n-tuple is an object of the form (xy,x,,...,x,,). Each x; is referred to as
the ith component.

Note that an ordered pair is just a 2-tuple.

Definition 6.3. If X and Y are sets, the Cartesian product of X and Y is defined by
XxY={(xy):xeX,yeY}

That is, X x Y is the set of all ordered pairs where the first element is from X and the
second element is from Y. The set X x X is sometimes denoted by X?. We similarly define
the Cartesian product of n sets, say Xj,..., X, by

n
]_[Xi =Xy X x X, ={(xq,...,x,) : each x; € X;}.
i=1

Example 6.4. Let A ={a,b,c} and B = {©®, ®}. Then
AxB={(a,0),(a,0),(b,®),(b,®),(c,®),(c,®)}
Exercise 6.5. Using the sets A and B from the previous example, find B x A.

Exercise 6.6. Using the set B from the previous examples, find B x B.

Exercise 6.7. What general conclusion can you make about X x Y versus Y x X? When
will they be equal?

Exercise 6.8. If X and Y are both finite sets, then how many elements will X x Y have? Be
as specific as possible.
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Exercise 6.9. Let A ={1,2,3}, B={1,2},and C = {1, 3}. List the elements of the set AxBxC.
Exercise 6.10. Let A =N and B = R. Describe the elements of the set A x B.

Exercise 6.11. Let A be the set of all differentiable functions on the open interval (0, 1),
and let B equal the set of all derivatives of functions in A evaluated at x = % Describe the
elements of the set A x B.

Exercise 6.12. Three space, R, is a Cartesian product. Unpack the meaning of R? using
the Cartesian product, and write the complete set notation version.

Exercise 6.13. Let X =[0,1] and let Y = {1}. Describe geometrically what X xY, ¥ x X,
X xX,and Y x Y look like.

Definition 6.14. Let X and Y be sets. A relation from a set X to a set Y is a subset of
X xY. A relation on X is a subset of X x X.

Example 6.15. You may not realize it, but you are familiar with many relations. For
example, on the real numbers, we have the relation <. We could say that (3,7) is in the
relation since 3 < 7. However, (1,-1) is not in the relation since 1 £ —1. (Order matters!)

Remark 6.16. Different notations for relations are used in different contexts. When talk-
ing about relations in the abstract, we indicate that a pair (4, b) is in the relation by some
notation like a ~ b, which is read “a is related to b.”

Example 6.17. Let Py denote the set of all people with accounts on Facebook. Define F
via xFy iff x is friends with y. Then F is a relation on P.

Remark 6.18. We can often represent relations using graphs or digraphs. Given a finite
set X and a relation ~ on X, a digraph (short for directed graph) is a discrete graph having
the members of X as vertices and a directed edge from x to y iff x ~ y.

Example 6.19. Figure 6.1 depicts a digraph that represents a relation R given by
R={(a,b),(a,c)(bb),(brc)(c,d),(ce)(d d)(d,a),(ea)}

Exercise 6.20. Let A = {a,b,c} and define ~= {(a,4),(a,b),(b,c),(c,b),(c,a)}. Draw the di-

graph for ~.

Exercise 6.21. Let A = {1,2,3,4,5, 6}. Define | on A via x|y iff x divides y. Draw the digraph
for | on A.

When X or Y is infinite, it is not practical to draw a digraph. However, you are familiar
with the graphs of some relations involving infinite sets.

Example 6.22. When we write x> +y? = 1, we are implicitly defining a relation. In partic-
ular, the relation is the set of ordered pairs (x,y) satisfying x>+ y2 = 1. In set notation:

() :x*+p>=1)

The graph of this relation in R? is the standard unit circle.
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Figure 6.1: An example of a digraph for a relation.

Exercise 6.23. Define ~ on R via x ~ y iff x < y. Draw a picture of this relation in R2. In
other words, draw all points (x,y) where x ~ .

Definition 6.24. Let ~ be a relation on a set A.
1. ~is reflexive if for all x € A, x ~ x (every element is related to itself).
2. ~is symmetric if for all x,y € A, if x ~y, then y ~ x.
3. ~is transitive if for all x,y,z€ A, if x ~y and y ~ z, then x ~ z.
Example 6.25.

1. < on R is reflexive and transitive, but not symmetric. < on R is transitive, but not
symmetric and not reflexive.

2. If S is a set, then C on P(S) is reflexive and transitive, but not symmetric.
3. = on R s reflexive, symmetric, and transitive.

Exercise 6.26. Given a finite set A and a relation ~, describe what each of reflexive, sym-
metric, and transitive look like in terms of a digraph.

Exercise 6.27. Let P be the set of people at a party and define N via (x,p) € N iff x
knows the name of y. Describe what it would mean for N to be reflexive, symmetric, and
transitive.

Exercise 6.28. Determine whether each of the following relations is reflexive, symmetric,
or transitive.

1. Let Pr denote the set of all people with accounts on Facebook. Define F via xFy iff x
is friends with y.
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N

Let P be the set of all people and define H via xHy iff x and y have the same height.

Let P be the set of all people and define T via xTy iff x is taller than p.

= W»

Consider the relation “divides” on N.

o

Let L be the set of lines and define || via /1], iff I, is parallel to I,.

6. Let C[0,1] be the set of continuous functions on [0, 1]. Define f ~ g iff

1 1
jo (o)l dx = fo lo(0)] dx.

7. Define ~ on N via n ~ m iff n + m is even.

8. Define D on R via (x,y) € D iff x = 2y.

6.2 Equivalence Relations

Remark 6.29. So that we have them handy, let’s recall the following definitions. Let ~ be
a relation on a set A. Then

1. ~is reflexive if for all x € A, x ~ x (every element is related to itself).
2. ~is symmetric if for all x,y € A, if x ~ y, then y ~ x.
3. ~is transitive if for all x,y,z€ A, if x ~y and y ~ z, then x ~ z.

As we’ve seen in the previous section of notes, these conditions are mutually exclusive.
That is, a relation may have some combination of these properties, but not necessarily all
of them. However, we have a special name for when a relation does satisfy all three.

Definition 6.30. Let ~ be a relation on a set A. Then ~ is called an equivalence relation
if ~ is reflexive, symmetric, and transitive.

Exercise 6.31. Given a finite set A and a relation ~ on A, describe what the corresponding
digraph would have to look like in order for ~ to be an equivalence relation.

Exercise 6.32. Let A = {a,b,c,d,e}. Make up an equivalence relation on A by drawing a
digraph such that a is not related to b and c is not related to b.

Exercise 6.33. Let S ={1,2,3,4,5,6} and define
~={(1,1),(1,6),(2,2),(2,3),(2,4),(3,3),(3,2),(3,4),(4,4),(4,2),(4,3),(5,5),(6,6),(6,1)}.
Justify that this is an equivalence relation.

Problem 6.34. Determine which of the following are equivalence relations. Some of these
occurred in the last section of notes and you are welcome to use your answers from those
problems.
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1. Let Pr denote the set of all people with accounts on Facebook. Define F via xFy iff x
is friends with y.

2. Let P be the set of all people and define H via xHy iff x and p have the same height.
3. Let P be the set of all people and define T via xTy iff x is taller than y.

4. Consider the relation “divides” on N.

5. Let L be the set of lines and define || via [/, iff I, is parallel to I,.

6. Let C[0,1] be the set of continuous functions on [0, 1]. Define f ~ g iff

1 1
JO ()l dx = fo o)) dx.

7. Define ~ on N via n ~ m iff n+ m is even.
8. Define D on Rvia (x,p) € D iff x = 2y.
9. Define ~ on Z via a ~ b iff a— b is a multiple of 5.
10. Define ~ on R? via (x,;) ~ (x5, v,) iff x% +y12 = x% +y§.

11. Define ~ on R via x ~ p iff |x] = |y, where |x] is the greatest integer less than or
equal to x (e.g., [t]=3,|-1.5] =-2,and [4] = 4).

12. Define ~ on Rvia x ~ p iff [x —y| < 1.

Definition 6.35. Let ~ be a relation on a set A (not necessarily an equivalence relation)
and let x € A. Then we define the set of relatives of x via

[x]={yeA:x~yp}

Also, define
Q. ={[x]:x€A}.

Notice that ()_ is a set of sets. In particular, an element in ()_ is a subset of A (equiva-
lently, an element of P(A)). Other common notations for [x] include X and R,.

Exercise 6.36. Let P and F be as in part 1 of Exercise 6.34. Describe [Bob] (assume you
know which Bob we’re talking about). What is (Q¢?

Exercise 6.37. Using your digraph in Exercise 6.32, find Q) _ for all x € A.
Exercise 6.38. Consider the relation < on R. If x € R, what is [x]?

Exercise 6.39. Find [1] and [2] for the relation given in part 9 of Exercise 6.34. How many
different sets of relatives are there? What are they?

Exercise 6.40. Find [x] for all x € S for S and ~ from Exercise 6.33. Any observations?
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Theorem 6.41. Suppose ~ is an equivalence relation on a set A and let a,b € A. Then
[a] = [b]iff a ~D.

Theorem 6.42. Suppose ~ is an equivalence relation on a set A. Then
1. Uyealx]=A, and
2. for all x,y € A, either [x] =[y] or [x]N[y] = 0.

Definition 6.43. In light of Theorem 6.42, if ~ is an equivalence relation on a set A, then
we refer to each [x] as the equivalence class of x. In this case, Q) _ is the set of equivalence
classes determined by ~.

Remark 6.44. The upshot of Theorem 6.42 is that given an equivalence relation, every
element lives in exactly one equivalence class. We’ll see in the next section of notes that
we can run this in reverse. That is, if we separate out the elements of a set so that every
element is an element of exactly one subset (like the bins of my kid’s toys), then this
determines an equivalence relation. More on this later.

Example 6.45. The set of relatives that you found in part 9 of Exercise 6.34 is the set of
equivalence classes modulo 5.

Exercise 6.46. If ~ is an equivalence relation on a finite set A, then what is the connection
between the equivalence classes and the corresponding digraph?

Exercise 6.47. For each of the equivalence relations in Exercise 6.34, describe the equiv-
alence classes as best as you can.

6.3 Partitions

Remark 6.48. The upshot of Theorems 5.41 and 5.42 is that if ~ is an equivalence relation
on a set A, then ~ breaks A up into pairwise disjoint chunks, where each chunk is some
[a] for a € A. Furthermore, each pair of elements in the same set of relatives are related
via ~.

As you’ve probably already noticed, equivalence relations are intimately related to the
following concept.

Definition 6.49. A collection QO of nonempty subsets of a set A is said to be a partition
of A if the elements of () satisfy:

1. Given X,Y € ), either X =Y or XNY =0 (We can’t have both at the same time. Do
you see why?), and

2. UX:A.

That is, the elements of () are pairwise disjoint and their union is all of A.
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Example 6.50. The following are all examples of partitions of the given set. Perhaps you
can find exceptions in these examples, but please take them at face value.

1. Democrat, Republican, Independent, Green Party, Libertarian, etc. (set of registered
voters)

2. freshman, sophomore, junior, senior (set of high school students)
3. evens, odds (set of integers)
4. rationals, irrationals (set of real numbers)

Example 6.51. Let A = {a,b,c,d,e, f} and Q = {X, X,, X3}, where X, = {a}, X, = {b,c,d},
and X3 = {e, f}. Then Q) is a partition of A since the elements of () are pairwise disjoint
and their union is all of A.

Exercise 6.52. Consider the set A from Example 6.51.
1. Find a partition of A that has 4 subsets in the partition.
2. Find a collection of subsets of A that does not form a partition.

Exercise 6.53. Find a partition of N that consists of 3 subsets, where one of the sets is
finite and the remaining two sets are infinite.

Exercise 6.54. Let P be the set of prime numbers, N be the set of odd natural numbers
that are not prime, and E be the set of even natural numbers. Explain why this is not a
partition of N.

The next theorem spells out half of the close connection between partitions and equiv-
alence relations. Hopefully you were anticipating this.

Theorem 6.55. Let ~ be an equivalence relation on a set A. Then Q) _ forms a partition of
A.

Exercise 6.56. Consider the equivalence relation
~={(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(4,5),(5,4),(5,5),(6,6),(5,6),(6,5), (4, 6), (6, 4)}
on the set A=1{1,2,3,4,5,6}. Find the partition determined by (...

It turns out that we can reverse the situation, as well. That is, given a partition, we
can form an equivalence relation. Before proving this, we need a definition.

Definition 6.57. Let A be a set and () any collection of subsets from P(A) (not necessarily
a partition). If a,b € A, we will define a to be ()-related to b if there exists an R € () that
contains both a and b. This relation is denoted by ~q and is called the relation on A
associated to ().
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Remark 6.58. This definition may look more awkward than the actual underlying con-
cept. The idea is that if two elements are in the same subset, then they are related. For
example, when my kids pick up all their toys and put them in the appropriate toy bins,
we say that two toys are related if they are in the same bin.

Remark 6.59. Notice that we have two notations that looks similar: () and ~(.
1. Q_ is the collection of subsets of A determined by the relation ~.
2. ~q is the relation determined by the collection of subsets ().

Exercise 6.60. Let A ={a,b,c,d,e, f} and let Q) = {X;, X, X3}, where X; ={a,c}, X, = {b,c},
and X3 = {d, f}. List the elements of ~q by listing ordered pairs or drawing a digraph.

Exercise 6.61. Let A and Q) be as in Example 6.51. List the elements of ~n by listing
ordered pairs or drawing a digraph.

Theorem 6.62. Let A be a set and let () be a collection of subsets from P(A) (not neces-
sarily a partition). Then ~¢ is symmetric.

Exercise 6.63. Give an example of a set A and a collection () from P(A) such that the
relation ~(, is not reflexive.

Theorem 6.64. Let A be a set and let () be a collection of subsets from P(A). If U R=A,

then ~(, is reflexive.

Theorem 6.65. Let A be a set and let () be a collection of subsets from P(A). If the
elements of () are pairwise disjoint, then ~¢, is transitive.

Corollary 6.66. Let A be a set and let Q) be a partition of A. Then ~(, is an equivalence
relation.

Remark 6.67. The previous corollary says that every partition determines a natural equiv-
alence relation. Namely, two elements are related if they are in the same equivalence
class.

Exercise 6.68. Let A ={o,A, A,[],l,%,©,®}. Make up a partition () on A and then draw
the digraph corresponding to ~q.

6.4 Introduction to Functions

The concept of function is one of the most important and fundamental ones in the field
of mathematics. Functions are used in all branches of mathematics to model diverse
situations and pull together ideas that at first seem unrelated. Functions are as vital as
numbers.

Undoubtably, you have encountered the concept of function in your prior mathemati-
cal experience. In this section, we will introduce the concept of function as a special type
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of relation. As you shall see, this agrees with any previous definition of function that you
may have learned.

Up until this point, you’ve probably only encountered functions as an algebraic rule,
e.g. f(x) = x? -1, for transforming one real number into another. However, we can study
functions in a much broader context. Loosely speaking, the basic building blocks of a
function are a first set and a second sets, say X and Y, respectively, and a “correspon-
dence” that assigns to each element of X to exactly one element of Y. Let’s take a look at
the actual definition.

Definition 6.69. Let X and Y be two nonempty sets. A function from set X to set Y,
denoted f : X — Y, is a relation (i.e., subset of X x Y) such that:

1. For each x € X, there exists y € Y such that (x,y) € f, and
2. If (x,31), (x,92) € f, then p; = p,.
Note that if (x,v) € f, we usually write y = f(x) and say that “f maps x to y.”

Remark 6.70. Item 1 of Definition 6.69 says that every element of X appears in the first
coordinate of an ordered pair in the relation. Item 2 says that each element of X only
appears once in the first coordinate of an ordered pair in the relation. It is important to
note that there are no restrictions on whether an element of Y ever appears in the second
coordinate. Furthermore, if an element of B appears in the second coordinate, it may
appear again in a different ordered pair.

Definition 6.71. The set X from Definition 6.69 is called the domain of f and is denoted
by Dom(f). The set Y is called the codomain of f and is denoted by Codom(f). The set

Rng(f) ={y € Y : there exists x such that y = f(x)}

is called the range of f or the image of X under f.

Remark 6.72. It follows immediately from the definition that Rng(f) € Codom(f). How-
ever, it is possible that the range of f is strictly smaller.

Remark 6.73. If f is a function and (x,y) € f, then we may refer to x as the input of f
and p as the output of f.

Exercise 6.74. Let X ={o,[J,A,®}and Y ={a,b,c,d, e}. Determine whether each of the fol-
lowing represent functions. Explain. If the relation is a function, determine the domain,
codomain, and range.

1. f:X — Y defined via f = {(0,a),(3,b), (s, ), (®,d)}.

2. ¢:X — Y defined via g = {(0,4),(3,b), (2,¢),(®, ).

3. h: X — Y defined via h = {(o,a),(3,b), (a,¢), (0,d)).

4. k:X — Y defined via k = {(0,a),(3,b), (&, ¢),(®,d), (0, e)).
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5. 1: X — Y defined via [ = {(o,¢),([J,e),(A,e),(O,e)}.

6. m: X — Y defined via m = {(o,a), (A, b),(®,c)}.

7. happy:Y — X defined via happy(y) = ®@ forall ye Y.
8. id : X — X defined via id(x) = x for all x € X.

9. nugget : X — X defined via

x, if x is a geometric shape,

nugget(x) = {

O, otherwise.

Definition 6.75. One useful representation of functions on finite sets is via bubble di-
agrams. To draw a bubble diagram for a function f : X — Y, draw one circle (i.e, a
“bubble”) for each of X and Y and for each element of each set, put a dot in the corre-
sponding set. Typically, we draw X on the left and Y on the right. Now, draw an arrow
fromxeXtoyeYif f(x)=vp (ie., (x,9) € f). In fact, we can draw bubble diagrams even
if f isn’t a function.

Exercise 6.76. For each of the relations in Exercise 6.74 draw the corresponding bubble
diagram.

Problem 6.77. What properties does a bubble diagram have to have in order to represent
a function?

Exercise 6.78. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or a write a formula (as long as the domain
and codomain are clear).

1. A function f from a set with 4 elements to a set with 3 elements such that Rng(f) =
Codom(f).

2. A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

Problem 6.79. Let f : X — Y be a function and suppose that X and Y have n and m

elements in them, respectively. Also, suppose that n < m. Is it possible for Rng(f) =
Codom(f)? Explain.

Problem 6.80. In high school I am sure that you were told that a graph represents a
function if it passes the vertical line test. Using our terminology of ordered pairs, explain
why this works.

Definition 6.81. Two functions are equal if they have the same domain, same codomain,
and the same set of ordered pairs in the relation.

Remark 6.82. If two functions are defined by the same algebraic formula, but have dif-

ferent domains, then they are not equal. For example, the function f : R — R defined via

f(x) = x? is not equal to the function ¢ : N — N defined via g(x) = x2.
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Theorem 6.83. If f : X — Y and g: X — Y are functions, then f = g iff f(x) = g(x) for all
x € X.

Definition 6.84. Let f : X — Y be a function.

1. The function f is said to be one-to-one (or injective) if for all y € Rng(f), there is a
unique x € X such that y = f(x).

2. The function f is said to be onto (or surjective) if for all y € Y, there exists x € X
such that y = f(x).

3. If f is both one-to-one and onto, we say that f is a one-to-one correspondence (or
a bijection).

Exercise 6.85. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or write a formula (as long as the domain
and codomain are clear). Assume that X and Y are finite sets.

1. A function f : X — Y that is one-to-one but not onto.

2. A function f : X — Y that is onto but not one-to-one.

3. A function f : X — Y that is both one-to-one and onto.
4. A function f : X — Y that is neither one-to-one nor onto.

Problem 6.86. Perhaps you’ve heard of the horizontal line test (i.e., every horizontal
line hits the graph of f : R — R at most once). What is the horizontal line test testing for?
Explain.

Exercise 6.87. Provide an example of each of the following. You may either draw a graph
or write down a formula. Make sure you have the correct domain.

1. A function f : R — R that is one-to-one but not onto.

2. A function f : R — R that is onto but not one-to-one.

3. A function f : R — R that is both one-to-one and onto.
4. A function f : R — R that is neither one-to-one nor onto.

Theorem 6.88. Let f : X — Y be a function. Then f is one-to-one iff for all x;,x, € X, if
f(x1) = f(x;), then x; = x,.

Remark 6.89. The previous theorem gives a technique for proving that a given function
is one-to-one. Start by assuming that f(x;) = f(x,) and then work to show that x; = x,.

Remark 6.90. To show that a given function is onto, you should start with an arbitrary
y € Rng(f) and then work to show that there exists x € X such that y = f(x).

Exercise 6.91. Determine which of the following functions are one-to-one, onto, both, or
neither. In each case, you should provide proofs and counterexamples as appropriate.
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1. f:R — R defined via f(x) = x?

2. ¢:R—[0,00) defined via g(x) = x?

3. h:R — R defined via h(x) = x3

4. k:R — R defined via k(x) = x> —x

5. I:RxR — R defined via I(xy,x;) = xf +x§
6. N : N — NxN defined via N(n) = (n,n)

Exercise 6.92. Let A and B be sets and let S C Ax B. Definemn; : S > Aand nr,: S — B
via 71 (a,b) = a and m,(a,b) = b. We call 1t; (respectively, ;) the projections of S onto A
(respectively, B).

1. Provide examples to show that 7t; does not need to be one-to-one or onto.

2. Suppose that S is a function (recall that a function is a set of ordered pairs, so this
makes sense). Is 7t; one-to-one? Is 71; onto? How about 7t,?

6.5 Compositions and Inverses

Definition 6.93. If f : X — Y and g: Y — Z are functions, then a new function go f :
X — Z can be defined by (g o f)(x) = g(f(x)) for all x € Dom(f).

Remark 6.94. It is important to notice that the function on the right is the one that “goes
first.”

Exercise 6.95. In each case, give examples of finite sets X, Y, and Z, and functions f :
X — Y and g : Y — Z that satisfy the given conditions. Drawing bubble diagrams is
sufficient.

1. f is onto, but g o f is not onto.

2. gisonto, but go f is not onto.

3. f is one-to-one, but g o f is not one-to-one.
4. gis one-to-one, but go f is not.

Theorem 6.96. If f : X — Y and g: Y — Z are both functions that are onto, then go f is
also onto.

Theorem 6.97. If f : X — Y and g: Y — Z are both functions that are one-to-one, then
go f is also one-to-one.

Corollary 6.98. If f : X —» Y and g: Y — Z are both one-to-one correspondences, then
go f is also a one-to-one correspondence.
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Problem 6.99. Assume that f : X — Y and g: Y — Z are both functions. For each of
the following statements, if the statement is true, then prove it. If the statement is false,
provide a counterexample.

1. If go f is one-to-one, then f is one-to-one.
2. If go f is one-to-one, then g is one-to-one.
3. If go f is onto, then f is onto.
4. If go f is onto, then g is onto.

Definition 6.100. Let f : X — Y be a function. The relation f~!, called f inverse, is
defined via

fH=1f (%) x e X).

Remark 6.101. Notice that we called f! a relation and not a function. In some circum-
stances f~! will be a function and sometimes it won’t be.

Exercise 6.102. Provide an example of a function f : X — Y such that f~! is not a func-
tion. A bubble diagram is sufficient.

Exercise 6.103. Provide an example of a function f : X — Y such that f~! is a function.
A bubble diagram is sufficient.

Theorem 6.104. Let f : X — Y be a function. Then f~! is a function iff f is

Theorem 6.105. Let f : X — Y be a function and suppose that f~! is a function. Then
1. (fofH)(x)=xforallxe Y, and
2. (f~'o f)(x)=x for all x € X.

(You only need to prove one of these statements; the other is similar.)

Theorem 6.106. Let f : X — Y and ¢ : Y — X be functions such that f is a one-to-one
correspondence. If (f o g)(x) = x for all x € Y and (g o f)(x) = x for all x € X, then g = f L.

Remark 6.107. The upshot of the previous two theorems is that if f~! is a function, then it
is the only one satisfying the two-sided “undoing” property exhibited in Theorem 6.105.

The next theorem can be considered to be a converse of Theorem 6.106.

Theorem 6.108. Let f : X — Y and g: Y — X be functions satisfying (f o g)(x) = x for all
x€Y and (go f)(x) = x for all x € X. Then f is a one-to-one correspondence.

Theorem 6.109. Let f : X — Y and g: Y — Z be functions. If f and g are both one-to-one
correspondences, then (go f)™' = flog™!.



Appendix A

Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem
is just a single number, “the right answer.” It is time to unlearn those lessons; those days
are over. From here on out, mathematics is about discovering proofs and writing them
clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number,
in my comments on your homework and exams. Keep these rules handy so that you may
refer to them as you write your proofs.

1. The burden of communication lies on you, not on your reader. It is your job to ex-
plain your thoughts; it is not your reader’s job to guess them from a few hints. You
are trying to convince a skeptical reader who doesn’t believe you, so you need to ar-
gue with airtight logic in crystal clear language; otherwise the reader will continue
to doubt. If you didn’t write something on the paper, then (a) you didn’t commu-
nicate it, (b) the reader didn’t learn it, and (c) the grader has to assume you didn’t
know it in the first place.

2. Tell the reader what you’re proving. The reader doesn’t necessarily know or re-
member what “Theorem 2.13” is. Even a professor grading a stack of papers might
lose track from time to time. Therefore, the statement you are proving should be on
the same page as the beginning of your proof. For an exam this won’t be a problem,
of course, but on your homework, recopy the claim you are proving. This has the
additional advantage that when you study for exams by reviewing your homework,
you won't have to flip back in the notes/textbook to know what you were proving.

3. Use English words. Although there will usually be equations or mathematical
statements in your proofs, use English sentences to connect them and display their
logical relationships. If you look in your notes/textbook, you’ll see that each proof
consists mostly of English words.

4. Use complete sentences. If you wrote a history essay in sentence fragments, the
reader would not understand what you meant; likewise in mathematics you must
use complete sentences, with verbs, to convey your logical train of thought.
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10.

11.

Some complete sentences can be written purely in mathematical symbols, such as
equations (e.g., a’ = b‘l), inequalities (e.g., x < 5), and other relations (like 5|10 or
7 € Z). These statements usually express a relationship between two mathematical
objects, like numbers or sets. However, it is considered bad style to begin a sentence
with symbols. A common phrase to use to avoid starting a sentence with mathemat-
ical symbols is “We see that...”

Show the logical connections among your sentences. Use phrases like “Therefore”
or “because” or “if..., then...” or “if and only if” to connect your sentences.

Know the difference between statements and objects. A mathematical object is a
thing, a noun, such as a group, an element, a vector space, a number, an ordered
pair, etc. Objects either exist or don’t exist. Statements, on the other hand, are
mathematical sentences: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it’s an
object (e.g., “x“ + 3”) or a statement (e.g., “x“+ 3 <7”). One way to tell is that every
mathematical statement includes a verb, such as =, <, “divides”, etc.

“w_»

means equals. Don’t write A = B unless you mean that A actually equals B.
This rule seems obvious, but there is a great temptation to be sloppy. In calculus,
for example, some people might write f(x) = x> = 2x (which is false), when they
really mean that “if f(x) = x2, then f’(x) = 2x.”

Don’t interchange = and — . The equals sign connects two objects, as in “x2=1p";
the symbol “ = ” is an abbreviation for “implies” and connects two statements, as
in “a+b=a = b=0." You should avoid using = in your formal write-ups.

Say exactly what you mean. Just as the = is sometimes abused, so too people some-
times write A € B when they mean A C B, or write a;; € A when they mean that a;; is
an entry in matrix A. Mathematics is a very precise language, and there is a way to
say exactly what you mean; find it and use it.

Don’t write anything unproven. Every statement on your paper should be some-
thing you know to be true. The reader expects your proof to be a series of statements,
each proven by the statements that came before it. If you ever need to write some-
thing you don’t yet know is true, you must preface it with words like “assume,”
“suppose,” or “if” (if you are temporarily assuming it), or with words like “we need
to show that” or “we claim that” (if it is your goal). Otherwise the reader will think
they have missed part of your proof.

Write strings of equalities (or inequalities) in the proper order. When your reader
sees something like
A=B<C=D,

he/she expects to understand easily why A = B, why B < C, and why C = D, and
he/she expects the point of the entire line to be the more complicated fact that A <
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D. For example, if you were computing the distance d of the point (12,5) from the

origin, you could write
d=V122+52=13.

In this string of equalities, the first equals sign is true by the Pythagorean theorem,
the second is just arithmetic, and the point is that the first item equals the last item:
d=13.

A common error is to write strings of equations in the wrong order. For example,

if you were to write “V122+52 = 13 = d”, your reader would understand the first
equals sign, would be baffled as to how we know d =13, and would be utterly per-

plexed as to why you wanted or needed to go through 13 to prove that V122 + 52 =d.
12. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!

13. Don’t write the proof backwards. Beginning students often attempt to write “proofs”
like the following, which attempts to prove that tan?(x) = sec?(x) — 1:

(x) =1
sin?(x) + cos?(x) =1
1

Notice what has happened here: the student started with the conclusion, and de-
duced the true statement “1 = 1.” In other words, he/she has proved “If tan?(x) =
sec?(x)— 1, then 1 = 1,” which is true but highly uninteresting.

Now this isn’t a bad way of finding a proof. Working backwards from your goal
often is a good strategy on your scratch paper, but when it’s time to write your proof,
you have to start with the hypotheses and work to the conclusion.

14. Be concise. Most students err by writing their proofs too short, so that the reader
can’t understand their logic. It is nevertheless quite possible to be too wordy, and
if you find yourself writing a full-page essay, it’s probably because you don’t really
have a proof, but just an intuition. When you find a way to turn that intuition into
a formal proof, it will be much shorter.

15. Introduce every symbol you use. If you use the letter “k,” the reader should know
exactly what k is. Good phrases for introducing symbols include “Let n € N,” “Let k
be the least integer such that...,” “For every real number a...,” and “Suppose that
X is a counterexample.”
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16.

17.

18.

19.

20.

21.

22.

Use appropriate quantifiers (once). When you introduce a variable x € S, it must
be clear to your reader whether you mean “for all x € S” or just “for some x € S.” If
you just say something like “y = x> where x € S,” the word “where” doesn’t indicate
whether you mean “for all” or “some”.

Phrases indicating the quantifier “for all” include “Let x € §”; “for all x € §”; “for
every x € S”; “for each x € §”; etc. Phrases indicating the quantifier “some” (or
“there exists”) include “for some x € S”; “there exists an x € §”; “for a suitable
choice of x € §”; etc.

On the other hand, don’t introduce a variable more than once! Once you have said
“Let x € S,” the letter x has its meaning defined. You don’t need to say “for all x € S”
again, and you definitely should not say “let x € S” again.

Use a symbol to mean only one thing. Once you use the letter x once, its meaning
is fixed for the duration of your proof. You cannot use x to mean anything else.

Don’t “prove by example.” Most problems ask you to prove that something is true
“for all”—You cannot prove this by giving a single example, or even a hundred. Your
answer will need to be a logical argument that holds for every example there possibly
could be.

Write “Let x =...,” not “Let --- = x.” When you have an existing expression, say a2,
and you want to give it a new, simpler name like b, you should write “Let b = a2,”
which means, “Let the new symbol b mean a?.” This convention makes it clear to the
reader that b is the brand-new symbol and a? is the old expression he/she already
understands.

If you were to write it backwards, saying “Let a®> = b,” then your startled reader
would ask, “What if a2 # b?”

Make your counterexamples concrete and specific. Proofs need to be entirely gen-
eral, but counterexamples should be absolutely concrete. When you provide an
example or counterexample, make it as specific as possible. For a set, for example,
you must name its elements, and for a function you must give its rule. Do not say
things like “O could be one-to-one but not onto”; instead, provide an actual function
O that is one-to-one but not onto.

Don’t include examples in proofs. Including an example very rarely adds anything
to your proof. If your logic is sound, then it doesn’t need an example to back it up.
If your logic is bad, a dozen examples won’t help it (see rule 18). There are only two
valid reasons to include an example in a proof: if it is a counterexample disproving
something, or if you are performing complicated manipulations in a general setting
and the example is just to help the reader understand what you are saying.

Use scratch paper. Finding your proof will be a long, potentially messy process,
full of false starts and dead ends. Do all that on scratch paper until you find a real
proof, and only then break out your clean paper to write your final proof carefully.
Do not hand in your scratch work!
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Only sentences that actually contribute to your proof should be part of the proof.
Do not just perform a “brain dump,” throwing everything you know onto the paper
before showing the logical steps that prove the conclusion. That is what scratch paper
is for.
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Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and
throughout your mathematical career.

1.

Definition—a precise and unambiguous description of the meaning of a mathemat-
ical term. It characterizes the meaning of a word by giving all the properties and
only those properties that must be true.

. Theorem—a mathematical statement that is proved using rigorous mathematical

reasoning. In a mathematical paper, the term theorem is often reserved for the
most important results.

Lemma—a minor result whose sole purpose is to help in proving a theorem. It is a
stepping stone on the path to proving a theorem. Very occasionally lemmas can take
on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s
lemma).

Corollary—a result in which the (usually short) proof relies heavily on a given the-
orem (we often say that “this is a corollary of Theorem A”).

. Proposition—a proved and often interesting result, but generally less important

than a theorem.

Conjecture—a statement that is unproved, but is believed to be true (Collatz con-
jecture, Goldbach conjecture, twin prime conjecture).

Claim—an assertion that is then proved. It is often used like an informal lemma.

. Axiom/Postulate—a statement that is assumed to be true without proof. These are

the basic building blocks from which all theorems are proved (Euclid’s five postu-
lates, Zermelo-Frankel axioms, Peano axioms).

Identity—a mathematical expression giving the equality of two (often variable)
quantities (trigonometric identities, Euler’s identity).
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10. Paradox—a statement that can be shown, using a given set of axioms and defini-
tions, to be both true and false. Paradoxes are often used to show the inconsistencies
in a flawed theory (Russell’s paradox). The term paradox is often used informally
to describe a surprising or counterintuitive result that follows from a given set of
rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn).
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Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play
a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarely-
used word rodomontade. According to the Oxford English Dictionary* (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic
speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten min-
utes later ask her to define rodomontade. Most likely she will be able to give a reasonably
accurate definition. Maybe she’d say something like, “It is a speech or act or piece of
writing created by a pompous or egotistical person who wants to show off how great they
are.” It is unlikely that she will have quoted the OED word-for-word. In everyday En-
glish that is fine—you would probably agree that your friend knows the meaning of the
rodomontade. This is because most definitions are descriptive. They describe the common
usage of a word.
Let us take a mathematical example. The OED' gives this definition of continuous.

Characterized by continuity; extending in space without interruption of sub-
stance; having no interstices or breaks; having its parts in immediate connec-
tion; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose
graph can be drawn “without picking up the pencil.” This definition is descriptive. (As
we learned in calculus the picking-up-the-pencil description is not a perfect description
of continuous functions.) This is not a mathematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the exact and
correct meaning of a word. Contrast the OED’s descriptive definition of continuous with
the the definition of continuous found in a real analysis textbook.

A function f : A — R is continuous at a point c € A if, for all € > 0, there exists
0 > 0 such that whenever |x—c| < 6 (and x € A) it follows that |f (x)—f (c)| < e. If f

“http://www.oed.com/view/Entry/166837
thttp://www.oed.com/view/Entry/40280
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is continuous at every point in the domain A, then we say that f is continuous
on A}

In mathematics there is very little freedom in definitions. Mathematics is a deductive
theory; it is impossible to state and prove theorems without clear definitions of the math-
ematical terms. The definition of a term must completely, accurately, and unambiguously
describe the term. Each word is chosen very carefully and the order of the words is crit-
ical. In the definition of continuity changing “there exists” to “for all,” changing the
orders of quantifiers, changing < to < or >, or changing R to Z would completely change
the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage
you memorize the definitions word-for-word. It is the safest way to guarantee that you
have it correct. As you gain confidence and familiarity with the subject you may be ready
to modify the wording. You may want to change “for all” to “given any” or you may want
to change |x —c| <0 to -0 <x—c < 6 or to “the distance between x and c is less than 9.”

Of course, memorization is not enough; you must have a conceptual understanding of
the term, you must see how the formal definition matches up with your conceptual un-
derstanding, and you must know how to work with the definition. It is perhaps with the
first of these that descriptive definitions are useful. They are useful for building intuition
and for painting the “big picture.” Only after days (weeks, months, years?) of experience
does one get an intuitive feel for the ¢, 5-definition of continuity; most mathematicians
have the “picking-up-the-pencil” definitions in their head. This is fine as long as we
know that it is imperfect, and that when we prove theorems about continuous functions
mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive defi-
nition was not sufficient. In 2003 the German version of the game show Who wants to be
a millionaire? contained the following question: “Every rectangle is: (a) a rhombus, (b) a
trapezoid, (c) a square, (d) a parallelogram.”

The confused contestant decided to skip the question and left with €4000. Afterward
the show received letters from irate viewers. Why were the contestant and the viewers
upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But
what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilat-
eral with a pair of parallel sides. But this leaves open the question: can a trapezoid have
two pairs of parallel sides or must there only be one pair? The viewers said two pairs is
allowed, the producers of the television show said it is not. This is a case in which a clear,
precise, mathematical definition is required.

tThis definition is taken from page 109 of Stephen Abbott's Understanding Analysis, but the definition
would be essentially the same in any modern real analysis textbook.
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