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Coxeter groups

Definition
A Coxeter system (W, S) consists of a group W (called a Coxeter group) generated
by a set S of involutions with presentation

W= (5:s=1,(st)"") = 1),
where m(s, t) > 2 for s # t.

Comment
Since s and t are involutions, the relation (st)™**) =1 can be rewritten as

m(s, t) =2 = st=ts }  short braid relations
m(s,t) =3 = sts=tst

m(s,t) =4 = stst = tsts long braid relations
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Coxeter graphs

Definition
We can encode (W, S) with a unique Coxeter graph I' having:

o vertex set S;

e edges {s, t} labeled m(s, t) whenever m(s, t) > 3 (if m(s, t) = 3, we omit label).
Comments

e If s and t are not connected in I, then s and t commute.

e W is irreducible if [ is connected.

e Given I, we can uniquely reconstruct the corresponding (W, S). In this case, we
may denote the group and corresponding generating set by W(I') and S(I'),
respectively.

D.C. Ernst Diagram algebras and applications to Kazhdan—Lusztig theory 3/29



Coxeter groups of type A

Coxeter groups of type A, (n > 1) are defined by:

S1 S2 S3 Sp—1 Sn

Then W(A,) is generated by S(A,) = {s1,%,--,sa} and is subject to defining
relations

1. s? =1 for all i,
2. sisp=sjsi if |i—j| > 1,
3. sisjsi = sjsisj if |[i —j| = 1.
W(A,) is isomorphic to the symmetric group, Sn+1, under the correspondence

s (i i 4 1),

where (i i + 1) is the adjacent transposition exchanging i and i + 1.
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Coxeter groups of type B

Coxeter groups of type B, (n > 2) are defined by:

4

S1 S2 S3 Spn—1 Sn

In this case, W(B,) is generated by S(B,) = {s1,%, - ,s.} and is subject to
defining relations

1. s =1 for all i,

2. sisp=sjsi if |i—j| > 1,

3. sisisi=s;sisj if |i—j|=1and 1 <i,j <n,

4. 515515 = $251551.
W(B,) is a finite group of order 2"n! (wreath product of Z> and the symmetric
group).

D.C. Ernst Diagram algebras and applications to Kazhdan—Lusztig theory 5/29



Coxeter groups of type affine C

Coxeter groups of type G (n > 2), pronounced “affine C,,” are defined by:

4 4

S1 S2 S3 Spn—1 Sn Sn+1

Here, we see that W(C,) is generated by S(C,) = {s1,-- ,Sn41} and is subject to
defining relations

1. s? =1 forall i,
2. sisp=sjsi if |i—j| > 1,
3. sisisi=sjsisjif |[i—jl=1and 1 <i,j<n+1,
4. sisjsis; = sjsisjsi if {i,j} ={1,2} or {n,n+ 1}.
W(C,) is an infinite group.
Comment _
We can obtain W(A,) and W(B,) from W(C,) by removing the appropriate

generators and the corresponding relations. In fact, we can obtain W(B,) in two
ways.
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Reduced expressions & Matsumoto's theorem

Definition
A word s, sy, - - - Sy, € S™ is called an expression for w € W if it is equal to w when
considered as a group element.

If m is minimal, it is a reduced expression, and the length of w is ¢(w) := m.

Given w € W, if we wish to emphasize a fixed, possibly reduced, expression for w,

we represent it as
W = Sy Sx, * * * Sxpp -

Theorem (Matsumoto)
Any two reduced expressions for w € W differ by a sequence of braid relations.
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An example

Example
Let w € W(Bs) with expression W = s;s;51528351. Since sis:s15 = s251 5251,
5153 = s351, and s? = 1 in W(Bs), we see that

515251525351 = S25152515351 = S25152515153 = S2515253.

This shows that w is not reduced. However, it is true (but not immediately obvious)
that sys15553 is a reduced expression for w, so that /(w) = 4.

Comment

Applying a commutation or a long braid does not change the length of an expression.
Only applying relations of the form s> = 1 can reduce length.
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Fully commutative elements

Definition

We say that w € W is fully commutative (FC) if any two reduced expressions for w
can be transformed into each other via iterated commutations. The set of FC
elements of W is denoted by FC(W).

Theorem (Stembridge)
w € W is FC iff no reduced expression for w contains a long braid.

Comments _
The FC elements of W(GC,) are precisely those that avoid the following consecutive
subexpressions:

1. sisjsifor |i—jl=1and 1 <i,j<n+1,

2. sisjsisy for {i,j} = {1,2} or {n,n+ 1}.
It follows from work of Stembridge that W(Z’,,) contains an infinite number of FC
elements. There are examples of infinite Coxeter groups that contain a finite number
of FC elements (e.g., type E, for n > 9).
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Examples of FC elements

Example

Let w € W(G3) have reduced expression W = sis35515,. Since s; and s3 commute,
we can write
W = 5153525152 = S351525150.

This shows that w has a reduced expression containing sis;s1s» as a consecutive
subexpression, which implies that w is not FC.

Now, let w' € W/(Gs) have reduced expression W = s1s;51535.. Then we will never
be able to rewrite w’ to produce one of the illegal consecutive subexpressions since
the only relation we can apply is

5183 — S3S1

which does not provide an opportunity to apply any additional relations. So, w’ is FC.
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Hecke Algebras

Let (W,S) be a Coxeter system with graph I'. The associated Hecke algebra is an
algebra with a basis indexed by the elements of W and relations that deform the
relations of W by a parameter q. If we set g to 1, we recover the group algebra of
W. More specifically:

Definition

The associative Z[q, g~ *]-algebra #4(I) is the free module on the set {T : w € W}

that satisfies
1.7, — Tow, if /(sw). > I(w),
qTew + (g —1)T., otherwise.

We extend the scalars to A := Z[v, v '], where v = g:
H(F) == A®gzq,q-1] Ha(l)-
We call H(I') the Hecke algebra associated to W.
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Properties of Hecke algebras

Comments

o If W=s5,5" Sk, is a reduced expression for w € W, then

‘m

T, = TSXl TSX2 ce. Tsxm~
e A has a ring automorphism ~ sending v — v~1. This “extends” to a ring
automorphism ~ : H(I') — H(I) satisfying
Tw=(T,1)".

~ is like inverse the revenge!
e Define T, = v '™ T,. Then {T, : w € W} is an A-basis for H(T).

e We define £ to be the free Z[v™']-module on the set Tw. There exists a natural
map7:L— L/vIL.
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Kazhdan—Lusztig polynomials

Theorem (Kazhdan, Lusztig)
There is a unique basis {C,, : w € W} for H(T") satisfying:
1. C,=c,
2. C,eLlandw(C,)=n (ﬁ)
This basis has important and subtle properties. (Called the canonical basis).

Definition
The Kazhdan—Lusztig polynomials occur as follows. If

Co=) Py,
y<w
where < is the Bruhat order on the Coxeter group W, then

(W) =1() p*

Pyw:i=v o
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Properties of K-L polynomials

Comments
e P, =0 unless y < w (Bruhat order).
o Pyw=1forall we W.

P, w € Z[q]. In fact, Z>o[q] .. . deep!

If Pyw # 0, then deg(Py,,w) < %(/( ) —I(y) —1)
1/2(1(w)~I(y)

We write pu(y, w) € Z for the coefficient of ¢ in P,,w. Clearly,
u(y, w) = 0 unless both y < w and /(w) and /(y) have different parity.

There is a (terrifying looking!) recursive formula

Paw =0 Pocy+qPey— Y p(z,w)g/ P,

z<v,sz<z

0, if x <sx

where sw = v < w and ¢ = .
1, otherwise.
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The big picture of K—L polynomials

Comments

K—-L polynomials have applications to the representation theory of semisimple
algebraic groups, Verma modules, algebraic geometry and topology of Schubert
varieties, etc.

There is natural basis indexed by the elements of W for H: {Tw}.
There is this another really nice basis that we like better: {C;,}.

The K-L polynomials essentially occur as the entries in the change of basis
matrix from one basis to the other.

The p-values occur as the coefficients on the highest degree term in the
corresponding K-L polynomial.

Unfortunately, computing the polynomials efficiently quickly becomes difficult,
even in finite groups of moderate size.

Computing the p-values is helpful, but not known to be any easier.
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More on p-values

0-1 Conjecture
In type An, u(y,w) is always 0 or 1.

Theorem (McLarnan, Warrington)
0-1 Conjecture fails in type Ao and up.

Comment
Conjecture does hold for some special classes of elements.

Theorem
In type An, if y is FC, then p(y, w) is always 0 or 1.

Current Research
There are quite a few people (like myself) trying to find non-recursive ways to
compute K-L polynomials and/or p-values for various Coxeter groups.
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Temperley—Lieb algebras

Definition
Let (W,S) be a Coxeter system with graph I'. Define J(I') be the two-sided ideal of
H(I') generated by

> Tw

we(s,s’)
where (s,s’) runs over all pairs of of elements of S(I') with 3 < m(s,s’) < oo, and

(s,s’) is the (parabolic) subgroup generated by s and s’. We define the (generalized)
Temperley—Lieb algebra, TL(I'), to be the quotient .A-algebra H(I')/J(T).

Theorem (Graham)

Let t., denote the image of T,, in the quotient. Then the set {t, : w € FC(W)} is
an A-basis for TL(T).

Comment

Green and Losonczy have show that TL(I') admits a canonical basis,

{cw : w € FC(W)}. This basis is analogous to the K-L basis for (') and in many
situations, ¢, is known to be the image of C,, in the quotient (conjectured to always
be the case).
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The monomial basis

Definition
For each s; € S, define b; = v 't + v 't.. If w € FC(W) has reduced expression
W = Sy - Sx,, define
by = by - by,.
Theorem (Graham)
The set {b, : w € FC(W)} forms an A-basis for TL(I"). (Called the monomial basis.)

Theorem (Graham)
TL(C,) is generated (as unital algebra) by by, ba, . .., bay1 with defining relations
1. b? = 6b; for all i, where § = v+ v7!
2. bibj = bib; if |i — j| > 1,
3. bibjbi=b;i if|i—jl=1landl1<ij<n+1,
4. bibjbib; = 2bib; if {i,j} ={1,2} or {n,n+ 1}.
TL(A.) and TL(B,) are generated by b, ..., b, and b1, ba, . .., bs, respectively,
together with the corresponding relations.
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History & Motivation

History
e The algebra TL(A,) was invented in 1971 by Temperley and Lieb and first arose
in the context of integrable Potts models in statistical mechanics.

e As well as having applications in physics, TL(A,) appears in the framework of
knot theory, braid groups, Coxeter groups and their corresponding Hecke
algebras, and subfactors of von Neumann algebras.

e Penrose/Kauffman use diagram algebra to model TL(A,) in 1971.

e In 1987, Vaughan Jones recognized that TL(A,) is isomorphic to a particular
quotient of the Hecke Algebra of type A, (the symmetric group).

e Since 1987, there have been various generalizations of Temperley— Lieb type
quotients and related diagram algebras.

Motivation
e One motivation behind studying TL(I') is that it provides a gateway to
understanding the K-L theory of the associated Hecke algebra.

o Loosely speaking, TL(I') retains some of the relevant structure of H(I'), yet is
small enough that the computation of the p-values of the K—L polynomials is
often simpler.
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Ordinary Temperley—Lieb diagrams

Definition
A standard k-box is a rectangle with 2k nodes, labeled as follows:

1 2 3 cee k=1 k

1 o 3/ o (k—1) K

A concrete pseudo k-diagram consists of a finite number of disjoint curves (planar),
called edges, embedded in and disjoint from the standard k-box such that

1. edges may be closed (isotopic to circles), but not if their endpoints coincide with
the nodes of the box;

2. the nodes of the box are the endpoints of curves, which meet the box
transversely.
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Ordinary Temperley—Lieb diagrams (continued)

Definition (continued)

Two concrete pseudo k-diagrams are (isotopically) equivalent if one concrete
diagram can be obtained from the other by isotopically deforming the edges such
that any intermediate diagram is also a concrete pseudo k-diagram.

A pseudo k-diagram (or an ordinary Temperley-Lieb pseudo diagram) is defined to be
an equivalence class of equivalent concrete pseudo k-diagrams.

An edge joining i in the N-face to j' in the S-face is called a propagating edge. All
other edges are called non-propagating.

Let's look at some examples.
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Examples of diagrams

Example
Here are two examples of concrete pseudo diagrams.

O

@\ O

Here is an example that is not a concrete pseudo diagram.
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The Temperley—Lieb diagram algebra

Definition
The (type A) Temperley—Lieb diagram algebra, denoted by DTL(A,), is the free
Z[6]-module with basis consisting of the pseudo (n + 1)-diagrams having no loops.

We define multiplication by defining multiplication in the case where d and d’ are
basis elements (i.e., loop-free pseudo diagrams), and then extend bilinearly.

To calculate the product dd’ identify the “S-face” of d with the “N-face” of d’ and
then multiply by a factor of § for each resulting loop and then discard the loop.

DTL(A») is an associative Z[d]-algebra having the loop-free pseudo (n + 1)-diagrams
as a basis.

Comment
A typical element of TL(A,) looks like a linear combination of loop-free pseudo
(n+ 1)-diagrams, where the coefficients are polynomials in .

D.C. Ernst Diagram algebras and applications to Kazhdan—Lusztig theory 23/29



Examples of diagram multiplication

Example
Multiplication of two concrete pseudo 5-diagrams.

)

{
(

\
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Examples of diagram multiplication (continued)

Example
And here's another example.

(
)

)
{
{

=4

(
{

0

)
)
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The simple diagrams of DTL(A,)

Now, we define the set of simple pseudo (n + 1)-diagrams, which turn out to form a
generating set for DTL(A,).

d =

i i+1

n n+1
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Faithful diagrammatic representation of TL(A,)

Theorem
The Z[d)-algebra homomorphism 6 : TL(A,) — DTL(A,) determined by

0(b;) = di

is an algebra isomorphism. Moreover, the loop-free pseudo (n + 1)-diagrams are in
bijection with the monomial basis elements of TL(A,).

Theorem (R.M. Green)

Ify,w € W(A,) with both FC, then u(y,w) can be computed (non-recursively) as
follows.

1. Draw diagrams for d, and d,,—1.
2. Multiply d, times d,,—1. Do not replace any closed loops with §.
3. Connect point i in N-face to point i’ in S-face (without intersections).

If this forms n closed loops, then u(y, w) = 1, and otherwise, u(y,w) = 0.
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Example of p-computation

Example
Let ¥ = s» and W = s»s1535, be reduced expressions for y and w, respectively, in
W/(A3). Note that both y and w are FC. We see that w™' = s;53515. Then

dyd, -1 = dadhd3di1db,

which yields the following pseudo diagram:
S
(AN

If we “wrap up” this diagram, we see that there are 3 loops. Therefore, by the
previous theorem, u(y, w) = 1.
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Generalized Jones trace

Comments

What we are really doing when we “wrap up” d,d, -1 is defining a trace function
on a quotient of the Hecke algebra.

This trace function is a generalized Jones trace and satisfies the Markov
property.

When this type of trace function is known to exist, we can use it to compute
uly, w) for y,w € FC(W).

At this point, only when we have a diagrammatic representation of TL(I') have
we been able to define the necessary trace so that we can non-recursively
compute p-values.

Current state of affairs: we can do this when I is of type A, B, D, H, E, or A.
(See papers by R.M. Green.)

Coming soon: type C!
Elusive: type F.

S1 2 S3 Sa Sp—1 Sn
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