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Coxeter groups

Definition
A Coxeter system (W ,S) consists of a group W (called a Coxeter group) generated
by a set S of involutions with presentation

W = 〈S : s2 = 1, (st)m(s,t) = 1〉,

where m(s, t) ≥ 2 for s 6= t.

Comment
Since s and t are involutions, the relation (st)m(s,t) = 1 can be rewritten as

m(s, t) = 2 =⇒ st = ts
}

short braid relations

m(s, t) = 3 =⇒ sts = tst

m(s, t) = 4 =⇒ stst = tsts
...





long braid relations
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Coxeter graphs

Definition
We can encode (W ,S) with a unique Coxeter graph Γ having:

• vertex set S ;

• edges {s, t} labeled m(s, t) whenever m(s, t) ≥ 3 (if m(s, t) = 3, we omit label).

Comments

• If s and t are not connected in Γ, then s and t commute.

• W is irreducible if Γ is connected.

• Given Γ, we can uniquely reconstruct the corresponding (W ,S). In this case, we
may denote the group and corresponding generating set by W (Γ) and S(Γ),
respectively.
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Coxeter groups of type A

Coxeter groups of type An (n ≥ 1) are defined by:

s1 s2 s3 sn−1 sn
· · ·

Then W (An) is generated by S(An) = {s1, s2, · · · , sn} and is subject to defining
relations

1. s2i = 1 for all i ,

2. si sj = sj si if |i − j | > 1,

3. si sj si = sj si sj if |i − j | = 1.

W (An) is isomorphic to the symmetric group, Sn+1, under the correspondence

si 7→ (i i + 1),

where (i i + 1) is the adjacent transposition exchanging i and i + 1.
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Coxeter groups of type B

Coxeter groups of type Bn (n ≥ 2) are defined by:

s1 s2 s3 sn−1 sn
· · ·

4

In this case, W (Bn) is generated by S(Bn) = {s1, s2, · · · , sn} and is subject to
defining relations

1. s2i = 1 for all i ,

2. si sj = sj si if |i − j | > 1,

3. si sj si = sj si sj if |i − j | = 1 and 1 < i , j ≤ n,

4. s1s2s1s2 = s2s1s2s1.

W (Bn) is a finite group of order 2nn! (wreath product of Z2 and the symmetric
group).
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Coxeter groups of type affine C

Coxeter groups of type C̃n (n ≥ 2), pronounced “affine Cn,” are defined by:

s1 s2 s3 sn−1 sn sn+1

· · ·
4 4

Here, we see that W (C̃n) is generated by S(C̃n) = {s1, · · · , sn+1} and is subject to
defining relations

1. s2i = 1 for all i ,

2. si sj = sj si if |i − j | > 1,

3. si sj si = sj si sj if |i − j | = 1 and 1 < i , j < n + 1,

4. si sj si sj = sj si sj si if {i , j} = {1, 2} or {n, n + 1}.

W (C̃n) is an infinite group.

Comment
We can obtain W (An) and W (Bn) from W (C̃n) by removing the appropriate
generators and the corresponding relations. In fact, we can obtain W (Bn) in two
ways.
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Reduced expressions & Matsumoto’s theorem

Definition
A word sx1 sx2 · · · sxm ∈ S∗ is called an expression for w ∈ W if it is equal to w when
considered as a group element.

If m is minimal, it is a reduced expression, and the length of w is ℓ(w) := m.

Given w ∈ W , if we wish to emphasize a fixed, possibly reduced, expression for w ,
we represent it as

w = sx1 sx2 · · · sxm .

Theorem (Matsumoto)

Any two reduced expressions for w ∈ W differ by a sequence of braid relations.
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An example

Example

Let w ∈ W (B3) with expression w = s1s2s1s2s3s1. Since s1s2s1s2 = s2s1s2s1,
s1s3 = s3s1, and s21 = 1 in W (B3), we see that

s1s2s1s2s3s1 = s2s1s2s1s3s1 = s2s1s2s1s1s3 = s2s1s2s3.

This shows that w is not reduced. However, it is true (but not immediately obvious)
that s2s1s2s3 is a reduced expression for w , so that l(w) = 4.

Comment
Applying a commutation or a long braid does not change the length of an expression.
Only applying relations of the form s2 = 1 can reduce length.

D.C. Ernst Diagram algebras and applications to Kazhdan–Lusztig theory 8 / 29



Fully commutative elements

Definition
We say that w ∈ W is fully commutative (FC) if any two reduced expressions for w
can be transformed into each other via iterated commutations. The set of FC
elements of W is denoted by FC(W ).

Theorem (Stembridge)

w ∈ W is FC iff no reduced expression for w contains a long braid.

Comments
The FC elements of W (C̃n) are precisely those that avoid the following consecutive
subexpressions:

1. si sj si for |i − j | = 1 and 1 < i , j < n + 1,

2. si sj si sj for {i , j} = {1, 2} or {n, n + 1}.

It follows from work of Stembridge that W (C̃n) contains an infinite number of FC
elements. There are examples of infinite Coxeter groups that contain a finite number
of FC elements (e.g., type En for n ≥ 9).
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Examples of FC elements

Example

Let w ∈ W (C̃3) have reduced expression w = s1s3s2s1s2. Since s1 and s3 commute,
we can write

w = s1s3s2s1s2 = s3s1s2s1s2.

This shows that w has a reduced expression containing s1s2s1s2 as a consecutive
subexpression, which implies that w is not FC.

Now, let w ′ ∈ W (C̃3) have reduced expression w ′ = s1s2s1s3s2. Then we will never
be able to rewrite w ′ to produce one of the illegal consecutive subexpressions since
the only relation we can apply is

s1s3 → s3s1

which does not provide an opportunity to apply any additional relations. So, w ′ is FC.
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Hecke Algebras

Let (W ,S) be a Coxeter system with graph Γ. The associated Hecke algebra is an
algebra with a basis indexed by the elements of W and relations that deform the
relations of W by a parameter q. If we set q to 1, we recover the group algebra of
W . More specifically:

Definition
The associative Z[q, q−1]-algebra Hq(Γ) is the free module on the set {Tw : w ∈ W }
that satisfies

TsTw =

{
Tsw , if l(sw) > l(w),

qTsw + (q − 1)Tw , otherwise.

We extend the scalars to A := Z[v , v−1], where v2 = q:

H(Γ) := A⊗Z[q,q−1 ] Hq(Γ).

We call H(Γ) the Hecke algebra associated to W .
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Properties of Hecke algebras

Comments

• If w = sx1 sx2 · · · sxm is a reduced expression for w ∈ W , then

Tw = Tsx1
Tsx2

· · ·Tsxm
.

• A has a ring automorphism ¯ sending v 7→ v−1. This “extends” to a ring
automorphism ¯ : H(Γ) → H(Γ) satisfying

Tw = (Tw−1 )
−1 .

¯ is like inverse the revenge!

• Define T̃w = v−l(w)Tw . Then {T̃w : w ∈ W } is an A-basis for H(Γ).

• We define L to be the free Z[v−1]-module on the set T̃w . There exists a natural
map π : L → L/v−1L.
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Kazhdan–Lusztig polynomials

Theorem (Kazhdan, Lusztig)

There is a unique basis {C ′
w : w ∈ W } for H(Γ) satisfying:

1. C ′
w = C ′

w

2. C ′
w ∈ L and π (C ′

w) = π
(
T̃w

)
.

This basis has important and subtle properties. (Called the canonical basis).

Definition
The Kazhdan–Lusztig polynomials occur as follows. If

C ′
w =

∑

y≤w

P∗
y,w T̃y ,

where ≤ is the Bruhat order on the Coxeter group W , then

Py,w := v l(w)−l(y)P∗
y,w .
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Properties of K–L polynomials

Comments

• Py,w = 0 unless y ≤ w (Bruhat order).

• Pw,w = 1 for all w ∈ W .

• Py,w ∈ Z[q]. In fact, Z≥0[q] . . . deep!

• If Py,w 6= 0, then deg(Py,w ) ≤
1
2
(l(w) − l(y) − 1)

• We write µ(y ,w) ∈ Z for the coefficient of q1/2(l(w)−l(y)−1) in Py,w . Clearly,
µ(y ,w) = 0 unless both y < w and l(w) and l(y) have different parity.

• There is a (terrifying looking!) recursive formula

Px,w = q1−cPsx,v + qcPx,v −
∑

z≺v,sz<z

µ(z ,w)q1/2(l(w)−l(z)−1)Px,z ,

where sw = v < w and c =

{
0, if x < sx

1, otherwise.
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The big picture of K–L polynomials

Comments

• K–L polynomials have applications to the representation theory of semisimple
algebraic groups, Verma modules, algebraic geometry and topology of Schubert
varieties, etc.

• There is natural basis indexed by the elements of W for H: {Tw}.

• There is this another really nice basis that we like better: {C ′
w}.

• The K–L polynomials essentially occur as the entries in the change of basis
matrix from one basis to the other.

• The µ-values occur as the coefficients on the highest degree term in the
corresponding K–L polynomial.

• Unfortunately, computing the polynomials efficiently quickly becomes difficult,
even in finite groups of moderate size.

• Computing the µ-values is helpful, but not known to be any easier.
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More on µ-values

0–1 Conjecture

In type An, µ(y ,w) is always 0 or 1.

Theorem (McLarnan, Warrington)

0–1 Conjecture fails in type A9 and up.

Comment
Conjecture does hold for some special classes of elements.

Theorem
In type An, if y is FC, then µ(y ,w) is always 0 or 1.

Current Research
There are quite a few people (like myself) trying to find non-recursive ways to
compute K–L polynomials and/or µ-values for various Coxeter groups.
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Temperley–Lieb algebras

Definition
Let (W ,S) be a Coxeter system with graph Γ. Define J(Γ) be the two-sided ideal of
H(Γ) generated by ∑

w∈〈s,s′〉

Tw ,

where (s, s ′) runs over all pairs of of elements of S(Γ) with 3 ≤ m(s, s ′) < ∞, and
〈s, s ′〉 is the (parabolic) subgroup generated by s and s ′. We define the (generalized)
Temperley–Lieb algebra, TL(Γ), to be the quotient A-algebra H(Γ)/J(Γ).

Theorem (Graham)

Let tw denote the image of Tw in the quotient. Then the set {tw : w ∈ FC(W )} is
an A-basis for TL(Γ).

Comment
Green and Losonczy have show that TL(Γ) admits a canonical basis,
{cw : w ∈ FC(W )}. This basis is analogous to the K–L basis for H(Γ) and in many
situations, cw is known to be the image of C ′

w in the quotient (conjectured to always
be the case).
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The monomial basis

Definition
For each si ∈ S , define bi = v−1tsi + v−1te . If w ∈ FC(W ) has reduced expression
w = sx1 · · · sxm , define

bw = bx1 · · · bxm .

Theorem (Graham)

The set {bw : w ∈ FC(W )} forms an A-basis for TL(Γ). (Called the monomial basis.)

Theorem (Graham)

TL(C̃n) is generated (as unital algebra) by b1, b2, . . . , bn+1 with defining relations

1. b2
i = δbi for all i , where δ = v + v−1

2. bibj = bjbi if |i − j | > 1,

3. bibjbi = bi if |i − j | = 1 and 1 < i , j < n + 1,

4. bibjbibj = 2bibj if {i , j} = {1, 2} or {n, n + 1}.

TL(An) and TL(Bn) are generated by b2, . . . , bn and b1, b2, . . . , bn, respectively,
together with the corresponding relations.
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History & Motivation

History

• The algebra TL(An) was invented in 1971 by Temperley and Lieb and first arose
in the context of integrable Potts models in statistical mechanics.

• As well as having applications in physics, TL(An) appears in the framework of
knot theory, braid groups, Coxeter groups and their corresponding Hecke
algebras, and subfactors of von Neumann algebras.

• Penrose/Kauffman use diagram algebra to model TL(An) in 1971.

• In 1987, Vaughan Jones recognized that TL(An) is isomorphic to a particular
quotient of the Hecke Algebra of type An (the symmetric group).

• Since 1987, there have been various generalizations of Temperley– Lieb type
quotients and related diagram algebras.

Motivation

• One motivation behind studying TL(Γ) is that it provides a gateway to
understanding the K–L theory of the associated Hecke algebra.

• Loosely speaking, TL(Γ) retains some of the relevant structure of H(Γ), yet is
small enough that the computation of the µ-values of the K–L polynomials is
often simpler.
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Ordinary Temperley–Lieb diagrams

Definition
A standard k-box is a rectangle with 2k nodes, labeled as follows:

1′ 2′ 3′

1 2 3

(k − 1)′ k′

k − 1 k

· · ·

· · ·

A concrete pseudo k-diagram consists of a finite number of disjoint curves (planar),
called edges, embedded in and disjoint from the standard k-box such that

1. edges may be closed (isotopic to circles), but not if their endpoints coincide with
the nodes of the box;

2. the nodes of the box are the endpoints of curves, which meet the box
transversely.
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Ordinary Temperley–Lieb diagrams (continued)

Definition (continued)

Two concrete pseudo k-diagrams are (isotopically) equivalent if one concrete
diagram can be obtained from the other by isotopically deforming the edges such
that any intermediate diagram is also a concrete pseudo k-diagram.

A pseudo k-diagram (or an ordinary Temperley-Lieb pseudo diagram) is defined to be
an equivalence class of equivalent concrete pseudo k-diagrams.

An edge joining i in the N-face to j ′ in the S-face is called a propagating edge. All
other edges are called non-propagating.

Let’s look at some examples.
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Examples of diagrams

Example

Here are two examples of concrete pseudo diagrams.

Here is an example that is not a concrete pseudo diagram.
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The Temperley–Lieb diagram algebra

Definition
The (type A) Temperley–Lieb diagram algebra, denoted by DTL(An), is the free
Z[δ]-module with basis consisting of the pseudo (n + 1)-diagrams having no loops.

We define multiplication by defining multiplication in the case where d and d ′ are
basis elements (i.e., loop-free pseudo diagrams), and then extend bilinearly.

To calculate the product dd ′ identify the “S-face” of d with the “N-face” of d ′ and
then multiply by a factor of δ for each resulting loop and then discard the loop.

DTL(An) is an associative Z[δ]-algebra having the loop-free pseudo (n + 1)-diagrams
as a basis.

Comment
A typical element of TL(An) looks like a linear combination of loop-free pseudo
(n + 1)-diagrams, where the coefficients are polynomials in δ.
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Examples of diagram multiplication

Example

Multiplication of two concrete pseudo 5-diagrams.

= δ
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Examples of diagram multiplication (continued)

Example

And here’s another example.

= δ3
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The simple diagrams of DTL(An)

Now, we define the set of simple pseudo (n + 1)-diagrams, which turn out to form a
generating set for DTL(An).

d1 = · · ·

1 2

...

di = · · · · · ·

i i + 1

...

dn = · · ·

n n + 1
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Faithful diagrammatic representation of TL(An)

Theorem
The Z[δ]-algebra homomorphism θ : TL(An) → DTL(An) determined by

θ(bi ) = di

is an algebra isomorphism. Moreover, the loop-free pseudo (n + 1)-diagrams are in
bijection with the monomial basis elements of TL(An).

Theorem (R.M. Green)

If y ,w ∈ W (An) with both FC, then µ(y ,w) can be computed (non-recursively) as
follows.

1. Draw diagrams for dy and dw−1 .

2. Multiply dy times dw−1 . Do not replace any closed loops with δ.

3. Connect point i in N-face to point i ′ in S-face (without intersections).

If this forms n closed loops, then µ(y ,w) = 1, and otherwise, µ(y ,w) = 0.
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Example of µ-computation

Example

Let y = s2 and w = s2s1s3s2 be reduced expressions for y and w , respectively, in
W (A3). Note that both y and w are FC. We see that w−1 = s2s3s1s2. Then

dydw−1 = d2d2d3d1d2,

which yields the following pseudo diagram:

If we “wrap up” this diagram, we see that there are 3 loops. Therefore, by the
previous theorem, µ(y ,w) = 1.
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Generalized Jones trace

Comments

• What we are really doing when we “wrap up” dydw−1 is defining a trace function
on a quotient of the Hecke algebra.

• This trace function is a generalized Jones trace and satisfies the Markov
property.

• When this type of trace function is known to exist, we can use it to compute
µ(y ,w) for y ,w ∈ FC(W ).

• At this point, only when we have a diagrammatic representation of TL(Γ) have
we been able to define the necessary trace so that we can non-recursively
compute µ-values.

• Current state of affairs: we can do this when Γ is of type A, B, D , H, E , or Ã.
(See papers by R.M. Green.)

• Coming soon: type C̃ !

• Elusive: type F .

s1 s2 s3 s4 sn−1 sn
· · ·

4
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