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Coxeter Groups

Definition
A Coxeter group is a group W with together with a distinguished
set of generating involutions S subject to relations of the form

(st)m(s,t) = 1,

where m(s, s) = 1 and m(s, t) = m(t, s).

We call the pair (W , S) a Coxeter system.



Remark
If s, t ∈ S , then the relation

(st)m(s,t) = 1

can be rewritten as
stst · · ·︸ ︷︷ ︸
m(s,t)

= tsts · · ·︸ ︷︷ ︸
m(s,t)

(1)

since s and t are involutions. In particular, if m(s, t) = 2, then

st = ts.

That is, s and t commute when m(s, t) = 2. If m(s, t) ≥ 3, then
we refer to (1) as a long braid relation.



Definition
Given a Coxeter system (W , S), the associated Coxeter graph is
the graph X with:

1. vertex set equal to S ;

2. edges connecting si and sj labeled m(si , sj) for all pairs i , j
with m(si , sj) > 2. If m(si , sj) = 3 it is customary to leave the
corresponding edge unlabeled.

Remark
Given a Coxeter graph X , we can reconstruct the corresponding
Coxeter system (W , S).



Example

The Coxeter graph of type An (n ≥ 1) is as follows.

s1 s2 s3 sn−1 sn
· · ·

Then W (An) is generated by S(An) = {s1, s2, · · · , sn} and is
subject to defining relations

1. s2
i = 1 for all i ,

2. si sj = sjsi if |i − j | > 1,

3. si sjsi = sjsi sj if |i − j | = 1.

W (An) is isomorphic to the symmetric group, Sn+1, under the
correspondence

si 7→ (i i + 1),

where (i i + 1) is the adjacent transposition exchanging i and i + 1.



Example

The Coxeter graph of type Bn (n ≥ 2) is as follows.

s1

4

s2 s3 sn−1 sn
· · ·

In this case, W (Bn) is generated by S(Bn) = {s1, s2, · · · , sn} and
is subject to defining relations

1. s2
i = 1 for all i ,

2. si sj = sjsi if |i − j | > 1,

3. si sjsi = sjsi sj if |i − j | = 1 and 1 < i , j ≤ n,

4. s1s2s1s2 = s2s1s2s1.

W (Bn) is a finite group of order 2nn!.



Example

The Coxeter graph of type C̃n (n ≥ 2), pronounced “affine Cn,” is
as follows.

s1

4

s2 s3 sn−1 sn

4
sn+1

· · ·

Here, we see that W (C̃n) is generated by S(C̃n) = {s1, · · · , sn+1}
and is subject to defining relations

1. s2
i = 1 for all i ,

2. si sj = sjsi if |i − j | > 1,

3. si sjsi = sjsi sj if |i − j | = 1 and 1 < i , j < n + 1,

4. si sjsi sj = sjsi sjsi if {i , j} = {1, 2} or {n, n + 1}.
W (C̃n) is an infinite group.



Definition
Let X be an arbitrary Coxeter graph. An expression is any product
of generators from S(X ). The length l(w) of an element
w ∈W (X ) is the minimum number of generators appearing in any
expression for the element w . Such a minimum length expression is
called a reduced expression.

Each element w ∈W (X ) can have several different reduced
expressions that represent it. Given w ∈W (X ), if we wish to
emphasize a fixed, possibly reduced, expression for w , we represent
it as

w = si1 · · · sik ,

where each sij ∈ S(X ).



Example

Let w ∈W (B3) with expression w = s1s2s1s2s3s1. Since
s1s2s1s2 = s2s1s2s1, s1s3 = s3s1, and s2

1 = 1 in W (B3), we see that

s1s2s1s2s3s1 = s2s1s2s1s3s1 = s2s1s2s1s1s3 = s2s1s2s3.

This shows that w is not reduced. However, it is true (but not
immediately obvious) that s2s1s2s3 is a reduced expression for w ,
so that l(w) = 4.



Definition
Let w ∈W (X ). We write

L(w) = {s ∈ S(X ) : l(sw) < l(w)}

and
R(w) = {s ∈ S(X ) : l(ws) < l(w)}.

The set L(w) (respectively, R(w)) is called the left (respectively,
right) descent set of w .

It turns out that s ∈ L(w) (respectively, R(w)) iff w has a
reduced expression beginning (respectively, ending) with s.



Example

Let w ∈W (B4) have reduced expression w = s1s3s2s1. Since s1

and s3 commute, but s2 commutes with neither s1 nor s3, it follows
(from Matsumoto’s Theorem) that

L(w) = {s1, s3}

and
R(w) = {s1}.



Remark
It is known to be true that we can obtain W (Bn) from W (C̃n) by
removing the generator sn+1 and the corresponding relations. We
also obtain a Coxeter group of type B if we remove the generator
s1 and the corresponding relations.

To distinguish these two cases, we let W (Bn) denote the subgroup
of W (C̃n) generated by

S(C̃n) \ {sn+1} = {s1, s2, . . . , sn}

and we let W (B ′n) denote the subgroup of W (C̃n) generated by

S(C̃n) \ {s1} = {s2, s3, . . . , sn+1}.



Fully commutative elements of Coxeter groups

Definition
We say that w ∈W (X ) is fully commutative if any two reduced
expressions for w may be transformed into each other by iterated
commutations.

Theorem (Stembridge)

w ∈W (X ) is fully commutative iff no reduced expression for w
contains a long braid as a consecutive subexpression.

Remark
The fully commutative elements of W (C̃n) are precisely those such
that all reduced expressions avoid consecutive subexpressions of
the following types:

1. si sjsi for |i − j | = 1 and 1 < i , j < n + 1,

2. si sjsi sj for {i , j} = {1, 2} or {n, n + 1}.



Remark (continued)

It follows from work of Stembridge that W (C̃n) contains an infinite
number of fully commutative elements. There are examples of
infinite Coxeter groups that contain a finite number of fully
commutative elements.

We denote the set of fully commutative elements of W (X ) by
Wc(X ).

Example

Let w ∈W (C̃3) have reduced expression w = s1s3s2s1s2. Since s1

and s3 commute, we can write

w = s1s3s2s1s2 = s3s1s2s1s2.

This shows that w has a reduced expression containing s1s2s1s2 as
a consecutive subexpression, which implies that w is not fully
commutative.



Example (continued)

Now, let w ′ ∈W (C̃3) have reduced expression w ′ = s1s2s1s3s2.
Then we will never be able to rewrite w ′ to produce one of the
illegal consecutive subexpressions since the only relation we can
apply is

s1s3 → s3s1

and this does not provide an opportunity to apply any additional
relations. So, w ′ is fully commutative.



Weak star reductions

We now introduce the concept of a weak star reduction, which
generalizes ordinary star reductions and is similar to Fan’s notion
of cancelable.

Definition
Let X be a Coxeter graph and let w ∈Wc(X ). Suppose that
s ∈ L(w). Then w is left weak star reducible by s with respect to
t to sw if

1. t ∈ L(sw);

2. m(s, t) ≥ 3;

3. tw /∈Wc(X ).

We analogously define right weak star reducible.



Definition (continued)

If w is not left or right weak star reducible by any s ∈ S , then we
say that w is weak star irreducible, or simply irreducible.

Example

Let w ,w ′ ∈Wc(C̃n) (for n ≥ 4) have reduced expressions
w = s1s2s5 and w ′ = s1s2s1s5, respectively. We see that w ′ is left
(and right) weak star reducible by s1 with respect to s2, and so w ′

is not irreducible. However, w is irreducible.



Classification of the weak star irreducible elements

Theorem (Fan, Ernst)

w ∈Wc(Bn) is irreducible iff w is equal to one of the elements on
the following list.

(i) wp;

(ii) s1s2wp, where s1, s2, s3 /∈ supp(wp);

(iii) s2s1wp, where s1, s2, s3 /∈ supp(wp);

where in each case wp is equal to a product of commuting
generators.

We have an analogous statement for Wc(B ′n), where s1 and s2 are
replaced with sn+1 and sn, respectively.



Remark
The previous theorem verifies Fan’s unproved claim about the type
B cancelable elements. (The proof is nontrivial.)

Before stating the classification of the type C̃n irreducible
elements, we need some notation.

Definition
Define the following elements of W (C̃n).

1. If i < j , let
z i ,j = si si+1 · · · sj−1sj

and
z j ,i = sjsj−1 · · · si−1si .



2. If 1 < i ≤ n + 1 and 1 ≤ j < n + 1, let

z

k alternating factors︷ ︸︸ ︷
LRL · · ·RL

i ,j = z i ,2(z1,nzn+1,2)
k−1

2 z1,j ,

where k must be odd, so that k − 1 is even.

3. If 1 < i ≤ n + 1 and 1 < j ≤ n + 1, let

z

k alternating factors︷ ︸︸ ︷
LRL · · ·RLR
i ,j = z i ,2(z1,nzn+1,2)

k−2
2 z1,nzn+1,j ,

where k must be even, so that k − 1 is odd.



4. If 1 ≤ i < n + 1 and 1 ≤ j < n + 1, let

z

k alternating factors︷ ︸︸ ︷
RLR · · · LRL
i ,j = z i ,n(zn+1,2z1,n)

k−2
2 zn+1,2z1,j ,

where k must be even, so that k − 1 is odd.

5. If 1 ≤ i < n + 1 and 1 < j ≤ n + 1, let

z

k alternating factors︷ ︸︸ ︷
RLR · · · LR
i ,j = z i ,n(zn+1,2z1,n)

k−1
2 zn+1,j ,

where k must be odd, so that k − 1 is even.

We will refer to these elements as type I.



Example

Consider W (C̃4). Then

zR
1,1 = s1s2s3s4s5s4s3s2s1.

Also, we have

zLRL
2,3 = s2s1s2s3s4s5s4s3s2s1s2s3.

Remark
It will be helpful for us to define l = dn−1

2 e. Then regardless of
whether n is odd or even, 2l (respectively, 2l + 1) will always be
the largest even (respectively, odd) number amongst
{1, 2, . . . , n, n + 1}.



Definition
Define O = {1, 3, . . . , 2l − 1, 2l + 1} and E = {2, 4, . . . , 2l − 2, 2l}.
Then define

xO = s1s3 · · · s2l−1s2l+1,

and
xE = s2s4 · · · s2l−2s2l .

We will refer to finite alternating products of xO and xE as type II
elements.

Example

Let w ∈Wc(C̃4) have reduced expression s1s3s5s2s4s1s3s5. Then w
is of type II.



Theorem (Ernst)

An element w ∈Wc(C̃n) is irreducible iff w is equal to one of the
elements on the following list.

(i) uv, where u is a type B irreducible element and v is a type B ′

irreducible element such that supp(u) ∩ supp(v) = ∅;
(ii) zR∗R

1,1 , zL∗L
n+1,n+1, zL∗R

n+1,1, and zR∗L
1,n+1 (these are the type I

elements with left and right descent sets equal to either s1 or
sn+1);

(iii) any type II element.



Hecke algebras

Definition
Let X be an arbitrary Coxeter graph. We define the Hecke algebra
of type X , denoted by Hq(X ), to be the Z[q, q−1]-algebra with
basis consisting of (invertible) elements Tw , for all w ∈W (X ),
satisfying

TsTw =

{
Tsw if l(sw) > l(w),

qTsw + (q − 1)Tw if l(sw) < l(w)

where s ∈ S(X ) and w ∈W (X ).

It is convenient to extend the scalars of Hq(X ) to produce an
A-algebra, H(X ) = A⊗Z[q,q−1] Hq(X ), where A = Z[v , v−1] and

v2 = q.



Temperley–Lieb algebras

Definition
Let J(X ) be the two-sided ideal of H(X ) generated by∑

w∈〈s,s′〉

Tw ,

where (s, s ′) runs over all pairs of of elements of S(X ) with
3 ≤ m(s, s ′) <∞, and 〈s, s ′〉 is the subgroup generated by s and
s ′.

Following Graham, we define the (generalized) Temperley–Lieb
algebra, TL(X ), to be the quotient A-algebra H(X )/J(X ).



Theorem (Graham)

Let tw denote the image of Tw in the quotient. Then the set
{tw : w ∈Wc(X )} is an A-basis for TL(X ).

For our purposes, it will be more useful to work with a different
basis.

Definition
For each si ∈ S(X ), define bi = v−1tsi + v−1te , where e is the
identity in W (X ). If w ∈Wc(X ) has reduced expression
w = si1 · · · sir , then we define

bw = bi1 · · · bir .

(It turns out that this definition is independent of choice of
reduced expression.)



The following two theorems are implicit in J. Graham’s thesis.

Theorem
The set {bw : w ∈Wc(X )} forms an A-basis for TL(X ). This
basis is referred to as the monomial basis.

Theorem
The infinite dimensional A-algebra TL(C̃n) is generated as a unital
algebra by b1, b2, . . . , bn+1 with defining relations

1. b2
i = δbi for all i , where δ = v + v−1

2. bibj = bjbi if |i − j | > 1,

3. bibjbi = bi if |i − j | = 1 and 1 < i , j < n + 1,

4. bibjbibj = 2bibj if {i , j} = {1, 2} or {n, n + 1}.



Ordinary Temperley–Lieb diagrams

Definition
Let k be a nonnegative integer. The standard k-box is a rectangle
with 2k marks points, called nodes labeled as follows.

1′ 2′ · · · k ′

1 2 · · · k

A concrete pseudo k-diagram consists of a finite number of disjoint
curves (planar), called edges, embedded in and disjoint from the
standard k-box such that

1. edges may be closed (isotopic to circles), but not if their
endpoints coincide with the nodes of the box;

2. the nodes of the box are the endpoints of curves, which meet
the box transversely.



Definition (continued)

An edge joining i in the north face to j ′ in the south face is called
a propagating edge. All other edges are called non-propagating.

Two concrete pseudo k-diagrams are (isotopically) equivalent if
one concrete diagram can be obtained from the other by
isotopically deforming the edges such that any intermediate
diagram is also a concrete pseudo k-diagram.

A pseudo k-diagram (or an ordinary Temperley-Lieb pseudo
diagram) is defined to be an equivalence class of equivalent
concrete pseudo k-diagrams.



Example

Here is an example of a concrete pseudo 5-diagram.

Here an example of a drawing that is not a concrete pseudo
5-diagram.



Definition
The (ordinary) Temperley–Lieb diagram algebra, denoted by
DTL(An), is the free Z[δ]-module with basis consisting of the
pseudo (n + 1)-diagrams having no loops.

We define multiplication by defining multiplication in the case
where d and d ′ are basis elements (i.e., loop-free pseudo
diagrams), and then extend bilinearly. To calculate the product dd ′

identify the “south face” of d with the “north face” of d ′ and then
multiply by a factor of δ for each resulting loop and then discard
the loop.

DTL(An) is an associative Z[δ]-algebra having the loop-free
pseudo (n + 1)-diagrams as a basis.



Example

Here is an example of multiplication of three basis diagrams of
DTL(A4).

= δ3



Theorem
As Z[δ]-algebras, TL(An) ∼= DTL(An). Moreover, the loop-free
pseudo (n + 1)-diagrams are in bijection with the monomial basis
elements of TL(An).

We now describe a particular diagram algebra, where the diagrams
are allowed to carry decorations.



Decorated diagrams

Let V = {•,N, ◦,M}. This will be our decoration set, where each
element is called a decoration. The first two decorations are called
closed and the other two are called open. Any finite sequence of
decorations is called a block.

Fix n ≥ 2. Let d be a fixed concrete pseudo (n + 2)-diagram and
let e be an edge of d . We may adorn e with a finite (possibly
empty) sequence of blocks of decorations such that adjacency of
blocks and decorations is preserved as we travel along e. Each
decoration on e has an associated y -coordinate in the plane, which
we will call its vertical position.



We require the following:

I If d has no non-propagating edges (i.e., all edges are
“vertical”), then we require d to be undecorated.

I It is possible to deform all decorated edges of d so as to take
open decorations to the left and closed decorations to the
right simultaneously.

I If e is non-propagating, then we allow adjacent blocks on e to
be conjoined to form larger blocks.

I If d has more than 1 non-propagating edge in north face and
e is propagating, then we allow adjacent blocks on e to be
conjoined to form larger blocks.



I If d has exactly one non-propagating edge in north face and e
is propagating, then we allow e to be decorated subject to the
following constraints:

1. All decorations occurring on propagating edges must
have vertical position lower (respectively, higher) than
the vertical positions of decorations occurring on the
(unique) non-propagating edge in the north face
(respectively, south face) of d .

2. If b is block of decorations occurring on e, then no other
decorations occurring on any other propagating edges
may have vertical position in the range of vertical
positions that b occupies.

3. If bi and bi+1 are two adjacent blocks occurring on e,
then they may be conjoined to form a larger block only if
the previous requirement is not violated.



Definition
A concrete LR-decorated pseudo (n + 2)-diagram is any
V-decorated concrete diagram that satisfies the conditions given
above.

We define two concrete pseudo LR-decorated (n + 2)-diagrams to
be V-equivalent if we can isotopically deform one diagram into the
other such that any intermediate diagram is also a concrete pseudo
LR-decorated (n + 2)-diagram.

An LR-decorated pseudo (n + 2)-diagram is defined to be an
equivalence class of V-equivalent concrete LR-decorated pseudo
(n + 2)-diagrams.



Example

Here are two examples of LR-decorated pseudo 5-diagrams.

And here is an example of an LR-decorated pseudo 6-diagram.



Definition
We define P̂LR

n+2(V) to be the free Z[δ]-module with basis
consisting of the set of LR-decorated diagrams having blocks that
do not contain any adjacent decorations of the same type (open
and closed) and does not have any of the loops listed below.

We define multiplication by defining multiplication in the case
where d and d ′ are basis elements, and then extend bilinearly. To
calculate the product dd ′, concatenate d and d ′. While
maintaining V-equivalence, conjoin adjacent blocks subject to the
following relations:

= , = , = = 2 , = = 2

= = = δ



Theorem (Ernst)

The multiplication defined above turns P̂LR
n+2(V) into a well-defined

associative Z[δ]-algebra. A basis for P̂LR
n+2(V) consists of the

LR-decorated diagrams having blocks that do not contain any
adjacent decorations of the same type (open and closed) and there
are no loops that can be replaced with δ.



Example

= 2



Example

=



We define the simple diagrams d1, d2, . . . , dn+1 as follows.

d1 =

1 2

· · ·

dn+1 =

n + 1 n + 2

· · ·

For 1 < i < n + 1:

di =

i i + 1

· · · · · ·



Note that the simple diagrams lie in P̂LR
n+2(V).

Definition
We define Dn to be the Z[δ]-subalgebra of P̂LR

n+2(V) generated by
the simple diagrams.

Now, we describe a basis for Dn.

Definition
Let d be an LR-decorated diagram. Then we say that d is
admissible, if the following axioms are satisfied.



(C1) The only loops that may appear are equivalent to the
following.

(C2) If d has no propagating edges (which can only happen if n is
even), then the edges joining nodes 1 and 1′ (respectively,
nodes n + 2 and (n + 2)′) must be decorated with a •
(respectively, ◦). Furthermore, these are the only •
(respectively, ◦) decorations that may occur on d and must be
the leftmost (respectively, rightmost) decorations on their
respective edges.



(C3) If d has exactly one propagating edge e (which can only
happen if n is odd), then e may be decorated by an
alternating sequence of N and M decorations. If e is connected
to node 1 (respectively, 1′), then the highest (respectively,
lowest) decoration occurring on e must be a •. Similarly, if e
is connected to node n + 2 (respectively, (n + 2)′), then the
highest (respectively, lowest) decoration occurring on e must
be a ◦. Furthermore, if there is a non-propagating edge
connected to 1 or 1′ (respectively, n + 2 or (n + 2)′) it must
be decorated only by a single • (respectively, ◦). Finally, no
other • or ◦ decorations appear on d .



(C5) If d has exactly one non-propagating edge in the north face,
then the leftmost propagating edge is equal to one of the
following, where the rectangle represents a sequence of blocks
(possibly empty), where each block is a single N.

1

1′

3

3′

3

1′

1

3′

Also, the occurrences of the • decorations occurring on the
propagating edge are the highest or lowest decorations
occurring on any propagating edge. We have an analogous
requirement for the rightmost propagating edge, where the
closed decorations are replaced with open decorations.
Furthermore, if there is a non-propagating edge connected to
1 or 1′ (respectively, n + 2 or (n + 2)′) it must be decorated
only by a single • (respectively, ◦). Finally, no other • or ◦
decorations appear on d .



(C4) Assume that d has more than one non-propagating edge and
more than one propagating edge. If there is a propagating
edge joining 1 to 1′ (respectively, n + 2 to (n + 2)′), then it is
decorated by a single N (respectively, M). Otherwise, an edge
joining only one of 1 or 1′ (respectively, n + 2 or (n + 2)′) is
decorated by a single • (respectively, ◦) and there are no other
• or ◦ decorations appearing on d .

Theorem (Ernst)

The admissible diagrams form a basis for Dn.



Main result

Theorem (Ernst)

Let θ : TL(C̃n)→ Dn be the function determined by

θ(bi ) = di .

Then θ is an algebra isomorphism of TL(C̃n) and Dn. Moreover,
the admissible diagrams are in bijection with the monomial basis
elements of TL(C̃n).

The hard part is proving that θ is injective. The classification of
the irreducible elements provides the groundwork for inductive
arguments that are used to prove faithfulness.



Who cares?

The monomial basis for TL(C̃n) is not the basis that we are really
interested in. We sweat blood and tears proving that we have a
faithful representation of the monomial basis, so that we can
perform a change of basis of the diagram algebra. A topic of future
research is to show that this new diagram algebra basis coincides
with the so-called “canonical basis” of TL(C̃n). Using this new
faithful representation, we define a trace on H(C̃n) that would be
very difficult to define without the diagrammatic representation in
hand. Using this trace, we will be able to non-recursively compute
leading coefficients of certain Kazhdan–Lusztig polynomials, which
are notoriously difficult to compute.
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