Diagram Calculus for the Temperley-Lieb Algebra

Dana Ernst

University of Colorado, Boulder Department of Mathematics

Graduate Student Combinatorics Conference 2007 April 20, 2007

Let n be a positive integer. The Temperley-Lieb Algebra, $\mathrm{TL}_n(\delta)$, with parameter δ is defined to be the associative, unital algebra over the ring $\mathbb{Z}[\delta]$ generated by elements $e_1, e_2, \ldots, e_{n-1}$ subject only to the relations

$$e_i^2 = \delta e_i$$
, for all i
 $e_i e_j = e_j e_i$, for $|i - j| \ge 2$
 $e_i e_j e_i = e_i$, for $|i - j| = 1$

Theorem

 $\mathrm{TL}_n(\delta)$ is a finite dimensional associative algebra over $\mathbb{Z}[\delta]$. A basis may be described in terms of "reduced words" in the algebra generators e_i . The rank of $\mathrm{TL}_n(\delta)$ is the nth Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}.$$

Some Remarks:

- ▶ $\mathrm{TL}_n(\delta)$ was invented in 1971 by Temperley and Lieb.
- ► First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, $\mathrm{TL}_n(\delta)$ appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- ▶ Penrose/Kauffman use diagram algebra to model $\mathrm{TL}_n(\delta)$ in 1971.
- ▶ In 1987, Vaughan Jones recognized that $\mathrm{TL}_n(\delta)$ is isomorphic to a particular quotient of the Hecke Algebra of type A_{n-1} (the symmetric group, S_n).

A standard n-box is a rectangle with 2n nodes, labeled as follows:

An n-diagram is a graph drawn on the nodes of a standard n-box such that

- Every node is connected to exactly one other node by a single edge.
- ▶ All edges must be drawn inside the *n*-box.
- ▶ The graph can be drawn so that no edges cross.

Here is an example of a 5-diagram.

Here is another.

Here is an example that is not a diagram.

The associative diagram algebra, $\mathcal{D}_n(\delta)$, is the free $\mathbb{Z}[\delta]$ -module having the set of *n*-diagrams as a basis with multiplication defined as follows.

If d and d' are n-diagrams, then dd' is obtained by identifying the "south face" of d with the "north face" of d', and then replacing any closed loops with a factor of δ .

Multiplication of two 5-diagrams.

Here's another example.

Example

And here's one more.

 $=\delta^3$

Theorem

The rank of the diagram algebra $\mathcal{D}_n(\delta)$ is C_n .

Proof.

The number of sequences of n pairs of well-formed parentheses is C_n . There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

Now, we define a few "simple" *n*-diagrams. Let

Claim 1: The diagrams $d_1, d_2, \ldots, d_{n-1}$ generate $\mathcal{D}_n(\delta)$.

Claim 2: The generators $d_1, d_2, \ldots, d_{n-1}$ satisfy the relations of $\mathrm{TL}_n(\delta)$.

For all i, we have

For $|i - j| \ge 2$, we have

For |i - j| = 1 (here, j = i + 1; j = i - 1 being similar), we have

Claim 1 and Claim 2, along with the fact that $\mathrm{TL}_n(\delta)$ and $\mathcal{D}_n(\delta)$ have the same dimension, suggest the following theorem.

Theorem

 $\mathrm{TL}_n(\delta)$ and $\mathcal{D}_n(\delta)$ are isomorphic as $\mathbb{Z}[\delta]$ -algebras under the correspondence

$$e_i \mapsto d_i$$
.

Now, consider the group algebra of the symmetric group S_n over \mathbb{Z} :

$$\mathbb{Z}[S_n]$$

Recall that S_n is generated by the adjacent transpositions:

$$(1\ 2), (2\ 3), \ldots, (n-1\ n).$$

Define

$$s_i = (i \ i + 1).$$

Next, take the principal ideal, J, of $\mathbb{Z}[S_n]$ generated by all elements of the form

$$1+s_i+s_j+s_is_j+s_js_i+s_is_js_i,$$

where |i - j| = 1 (i.e., s_i and s_j are noncommuting generators).

Let $\sigma=s_{i_1}\dots s_{i_r}\in S_n$ be reduced. We say that σ is *fully commutative*, or FC, if any two reduced expressions for σ may be obtained from each other by repeated commutation of adjacent generators. In other words, σ has no reduced expression containing $s_is_js_i$ for |i-j|=1.

Example

 $s_1s_2s_4s_1=(1\ 2)(2\ 3)(4\ 5)(1\ 2)$ is a reduced expression for an element in S_5 . This element is *not* FC.

$$s_1 s_2 s_4 s_1 = s_1 s_2 s_1 s_4$$

Now, let

$$b_{s_i} = (1 + s_i) + J \in \mathbb{Z}[S_n]/J.$$

Theorem

As a unital algebra, $\mathbb{Z}[S_n]/J$ is generated by $b_{s_1},\ldots,b_{s_{n-1}}$.

Definition

If $\sigma = s_{i_1} \dots s_{i_r}$ is reduced and FC, then

$$b_{\sigma}=b_{s_{i_1}}\ldots b_{s_{i_r}}$$

is a well-defined element of $\mathbb{Z}[S_n]/J$.

Theorem

The set $\{b_{\sigma} : \sigma \ FC\}$ is a free \mathbb{Z} -basis for $\mathbb{Z}[S_n]/J$.

That is, $\mathbb{Z}[S_n]/J$ has a basis indexed by the fully commutative elements of S_n .

If we let $\delta = 2$, we have the following result.

Theorem

The algebras $\mathbb{Z}[S_n]/J$ and $\mathrm{TL}_n(2)$ are isomorphic as \mathbb{Z} -algebras under the correspondence

$$b_{s_i}=(1+s_i)+J\mapsto d_i.$$