A diagrammatic representation of the Temperley-Lieb algebra

Dana C. Ernst
Plymouth State University
Department of Mathematics
http://oz.plymouth.edu/~dcernst

HRUMC 2010
April 17, 2010

We will introduce (ordinary) Temperley-Lieb n-diagrams by way of example.

Example

Here is an example of a 5-diagram.

Here is an example of 6-diagram.

Here is an example that is not a diagram.

Correspondence with well-formed parentheses

Fact 1

There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

Fact 2

It is well-known that the number of sequences of n pairs of well-formed parentheses is equal to the nth Catalan number. Therefore, the number of n-diagrams is equal to the nth Catalan number.

The Catalan numbers

Comments

- The nth Catalan number is given by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}
$$

- The first few Catalan numbers are $1,1,2,5,14,42,132$.
- Richard Stanley's book, "Enumerative Combinatorics, Vol II," contains 66 different combinatorial interpretations of the Catalan numbers. An addendum online includes additional interpretations for a grand total of 161 examples of things that are counted by the Catalan numbers.
- In this talk, we'll see one more example of where the Catalan numbers turn up.

The Temperley-Lieb algebra

Definition

The Temperley-Lieb algebra, TL_{n}, with parameter δ is the free $\mathbb{Z}[\delta]$-module having the set of n-diagrams as a basis with multiplication defined as follows.

If d and d^{\prime} are n-diagrams, then $d d^{\prime}$ is obtained by identifying the "south face" of d with the "north face" of d^{\prime}, and then replacing any closed loops with a factor of δ.

Comment

A typical element of TL_{n} looks like a linear combination of n-diagrams, where the coefficients in the linear combination are polynomials in δ.

Let's look at some examples of multiplication of diagrams.

Examples of diagram multiplication

Example

Multiplication of two 5-diagrams.

Examples of diagram multiplication (continued)

Example

And here's another example.

Generating diagrams

Now, we define a few "simple" n-diagrams.

Fact

The set of "simple" diagrams generate TL_{n} as a unital algebra. In this case, we can write any n-diagram as a product of the "simple" n-diagrams.

Observation
We see that for $|i-j|=1($ here $j=i+1)$

That is, TL_{n} satisfies $d_{i} d_{j} d_{i}=d_{i}$ whenever $|i-j|=1$.

Some history

Comments

- TL_{n} was invented in 1971 by Temperley and Lieb as an algebra with abstract generators and a presentation that includes a relation identical to the one above.
- First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, TL_{n} appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman used diagram algebra to model TL_{n} in 1971.
- In 1987, Vaughan Jones (awarded Fields Medal in 1990) recognized that TL_{n} is isomorphic to a particular quotient of the Hecke algebra of type A_{n-1} (the Coxeter group of type A_{n-1} is the symmetric group, S_{n}).

Now, let's consider the symmetric group, S_{n}. Recall that S_{n} is generated by the adjacent transpositions:

$$
(12),(23), \ldots,(n-1 n) .
$$

That is, every element of S_{n} can be written as a product of the adjacent transpositions.

Define

$$
s_{i}=(i i+1)
$$

so that $s_{1}, s_{2}, \ldots, s_{n-1}$ generate S_{n}.

Comments

Note that S_{n} satisfies the following relations:

1. $s_{i}^{2}=1$ for all i (transpositions are order 2)
2. $s_{i} s_{j}=s_{j} s_{i}$, for $|i-j| \geq 2$ (disjoint cycles commute)
3. $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$, for $|i-j|=1$ (called a braid relation)

Notice that this last one has a similar flavor as the one we saw for TL_{n}, but it is different.

Fully commutative elements

Definition

Let $\sigma=s_{i_{1}} \ldots s_{i_{r}} \in S_{n}$ be a reduced expression (i.e., we cannot do anything clever to write the expression with fewer adjacent transpositions).

We say that σ is fully commutative, or FC , if any two reduced expressions for σ may be obtained from each other by repeated commutation of adjacent generators.

Equivalently (but not immediately obvious), σ is FC iff it has no reduced expression containing $s_{i} s_{j} s_{i}$ for $|i-j|=1$ (that is, there are no opportunities to apply a braid relation).

Example

The element $s_{1} s_{2} s_{3}$ is FC. However, $s_{3} s_{2} s_{3} s_{1}$ is not FC because we have an opportunity to apply a braid relation.

Tying it all together

Theorem

There is a $1-1$ correspondence between the set of n-diagrams and the set of FC elements in S_{n}. This correspondence is induced by

$$
(i i+1)=s_{i} \longmapsto d_{i} .
$$

We immediately get the following corollary.
Corollary
The number of FC elements in S_{n} is equal to the nth Catalan number.

A last example

Example

Consider the FC element $s_{1} s_{3} s_{2} s_{4} s_{3}$ in S_{4}.

