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(Ordinary) Temperley–Lieb diagrams

We will introduce (ordinary) Temperley–Lieb n-diagrams by way of example.

Example

Here is an example of a 5-diagram.

Here is an example of 6-diagram.

Here is an example that is not a diagram.
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Correspondence with well-formed parentheses

Fact 1
There is a one-to-one correspondence between n-diagrams and sequences of n pairs
of well-formed parentheses.

l

l
()((()()))

Fact 2
It is well-known that the number of sequences of n pairs of well-formed parentheses is
equal to the nth Catalan number. Therefore, the number of n-diagrams is equal to
the nth Catalan number.
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The Catalan numbers

Comments

• The nth Catalan number is given by

Cn =
1

n + 1

(
2n
n

)
=

(2n)!

(n + 1)!n!
.

• The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132.

• Richard Stanley’s book, “Enumerative Combinatorics, Vol II,” contains 66
different combinatorial interpretations of the Catalan numbers. An addendum
online includes additional interpretations for a grand total of 161 examples of
things that are counted by the Catalan numbers.

• In this talk, we’ll see one more example of where the Catalan numbers turn up.
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The Temperley–Lieb algebra

Definition
The Temperley-Lieb algebra, TLn, with parameter δ is the free Z[δ]-module having
the set of n-diagrams as a basis with multiplication defined as follows.

If d and d ′ are n-diagrams, then dd ′ is obtained by identifying the “south face” of d
with the “north face” of d ′, and then replacing any closed loops with a factor of δ.

Comment
A typical element of TLn looks like a linear combination of n-diagrams, where the
coefficients in the linear combination are polynomials in δ.

Let’s look at some examples of multiplication of diagrams.
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Examples of diagram multiplication

Example

Multiplication of two 5-diagrams.

= δ
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Examples of diagram multiplication (continued)

Example

And here’s another example.

= δ3
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Generating diagrams

Now, we define a few “simple” n-diagrams.

d1 = · · ·

1 2

...

di = · · · · · ·

i i + 1

...

dn−1 = · · ·

n − 1 n

Fact
The set of “simple” diagrams generate TLn as a unital algebra. In this case, we can
write any n-diagram as a product of the “simple” n-diagrams.
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A special relation

Observation
We see that for |i − j | = 1 (here j = i + 1)

didjdi =

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

i i + 1 i + 2

= · · · · · ·

= di

That is, TLn satisfies didjdi = di whenever |i − j | = 1.
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Some history

Comments

• TLn was invented in 1971 by Temperley and Lieb as an algebra with abstract
generators and a presentation that includes a relation identical to the one above.

• First arose in the context of integrable Potts models in statistical mechanics.

• As well as having applications in physics, TLn appears in the framework of knot
theory, braid groups, Coxeter groups and their corresponding Hecke algebras,
and subfactors of von Neumann algebras.

• Penrose/Kauffman used diagram algebra to model TLn in 1971.

• In 1987, Vaughan Jones (awarded Fields Medal in 1990) recognized that TLn is
isomorphic to a particular quotient of the Hecke algebra of type An−1 (the
Coxeter group of type An−1 is the symmetric group, Sn).
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The symmetric group Sn

Now, let’s consider the symmetric group, Sn. Recall that Sn is generated by the
adjacent transpositions:

(1 2), (2 3), . . . , (n − 1 n).

That is, every element of Sn can be written as a product of the adjacent
transpositions.

Define
si = (i i + 1),

so that s1, s2, . . . , sn−1 generate Sn.

Comments
Note that Sn satisfies the following relations:

1. s2i = 1 for all i (transpositions are order 2)

2. si sj = sjsi , for |i − j | ≥ 2 (disjoint cycles commute)

3. si sjsi = sjsi sj , for |i − j | = 1 (called a braid relation)

Notice that this last one has a similar flavor as the one we saw for TLn, but it is
different.
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Fully commutative elements

Definition
Let σ = si1 . . . sir ∈ Sn be a reduced expression (i.e., we cannot do anything clever to
write the expression with fewer adjacent transpositions).

We say that σ is fully commutative, or FC, if any two reduced expressions for σ may
be obtained from each other by repeated commutation of adjacent generators.

Equivalently (but not immediately obvious), σ is FC iff it has no reduced expression
containing si sjsi for |i − j | = 1 (that is, there are no opportunities to apply a braid
relation).

Example

The element s1s2s3 is FC. However, s3s2s3s1 is not FC because we have an
opportunity to apply a braid relation.

D.C. Ernst Counting generators in TL-diagrams 12 / 14



Tying it all together

Theorem
There is a 1-1 correspondence between the set of n-diagrams and the set of FC
elements in Sn. This correspondence is induced by

(i i + 1) = si 7−→ di .

We immediately get the following corollary.

Corollary

The number of FC elements in Sn is equal to the nth Catalan number.
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A last example

Example

Consider the FC element s1s3s2s4s3 in S4.

=
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