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Coxeter Groups

Definition
A Coxeter group is a group W together with a set S of generating
involutions subject to defining relations

(si sj)
mij = 1,

where mii = 1 (each generator is an involution) and mij = mji .

We can represent a Coxeter group using a Coxeter graph Γ:

I vertices of Γ are the elements of S

I connect si to sj by an edge labeled mij , except we omit an
edge if mij = 2, and if mij = 3, we omit the label.



Example

s1 s2 s3 s4

Coxeter graph of type A4

The graph tells us that

1. If |i − j | = 1, then (si sj)
3 = 1 iff si sjsi = sjsi sj . These

relations are referred to as long braid relations.

2. And if |i − j | > 1, then (si sj)
2 = 1 iff si and sj commute.

For example, s1s2s1 = s2s1s2 and s1s3 = s3s1.



In this case, the underlying Coxeter group W is isomorphic to the
symmetric group S5 under the correspondence

si 7→ (i i + 1) ∈ S5.

Comment
In general, the underlying Coxeter group of type An (straight line
Coxeter graph with n vertices and all edges having weight 3) is
isomorphic to Sn+1.



Definition
Every w ∈W can be written as a word in the generators:

w = si1si2 · · · sir
If r is minimal, then we call this a reduced expression for w .
In this case, we define the length of w :

l(w) = r .



Example

s1 s2 s3

Coxeter graph of type A3

Let w1 = s1s3s1s2s3s1. This expression for w1 is not reduced.

s1s3s1s2s3s1 = s3s1s1s2s3s1

= s3s1s1s2s3s1

= s3s2s3s1

The last expression above is reduced. So, l (w1) = 4. Notice that
in the last reduced expression above, we have an opportunity to
apply a long braid.

s3s2s3s1 = s2s3s2s1.



Example

Now, let w2 = s2s1s3s2. This is a reduced expression for w2. So,
l (w2) = 4. However, we can apply one commutation.

s2s1s3s2 = s2s3s1s2.

These are the only reduced expressions for w2. In particular, we
never have an opportunity to apply a long braid relation.



Definition
We say that w ∈W is fully commutative if any two reduced
expressions for w may be transformed into each other by iterated
commutations.

Theorem
w ∈W is fully commutative iff no reduced expression for w
contains a long braid.

Example

In the previous example, w1 is not fully commutative since we were
able to apply the long braid s3s2s3 = s2s3s2. However, w2 is fully
commutative.



Theorem
In a Coxeter group of type An−1 (W ∼= Sn), the number of fully
commutative elements is equal to the nth Catalan number:

Cn =
1

n + 1

(
2n
n

)
=

(2n)!

(n + 1)!n!
.

Example

In S4, there are 4! = 24 elements, of which

1

5

(
8
4

)
= 14

of these are fully commutative.



Hecke Algebras

Definition
Associated to a Coxeter group W , we have an associative
Z[q, q−1]-algebra Hq. This is a free module on the set
{Tw : w ∈W }, which satisfies

TsTw =

{
Tsw , if l(sw) > l(w),

qTsw + (q − 1)Tw , otherwise.

This extends uniquely to an associative algebra structure. We
extend the scalars to A := Z[v , v−1], where v2 = q:

H := A⊗Z[q,q−1] Hq.

We call H the Hecke algebra associated to W .



Comments

I If w = sir · · · sir (reduced), then

Tw = Tsi1
· · ·Tsir .

I A has a ring automorphism ¯ sending v 7→ v−1. This extends
to a ring automorphism ¯ : H → H satisfying

Tw = (Tw−1)−1 .

(¯ is like inverse the revenge)

I Define T̃w = v−l(w)Tw . Then {T̃w : w ∈W } is an A-basis
for H.

I We define L to be the free Z[v−1]-module on the set T̃w .
There exists a natural map π : L → L/v−1L.



Theorem (Kazhdan, Lusztig)

There is a unique basis {C ′w : w ∈W } for H satisfying:

1. C ′w = C ′w

2. C ′w ∈ L and π (C ′w ) = π
(
T̃w

)
.

The basis {C ′w} has important and subtle properties (like positivity
properties).

Definition
The Kazhdan–Lusztig polynomials occur as follows. If

C ′w =
∑
y≤w

P∗y ,w T̃y ,

where ≤ is the Bruhat order on the Coxeter group W , then

Py ,w := v l(w)−l(y)P∗y ,w .



Properties of K–L polynomials

1. Pw ,w = 1 for all w ∈W

2. Py ,w ∈ Z[q] (Acutally, Z≥0[q] . . . deep!)

3. Py ,w = 0 unless y ≤ w

4. If Py ,w 6= 0, then degPy ,w ≤ 1
2(l(w)− l(y)− 1)

5. We write µ(y ,w) ∈ Z for the coefficient of q1/2(l(w)−l(y)−1) in
Py ,w . Clearly, µ(y ,w) = 0 unless both y < w and l(w) and
l(y) have different parity.



Properties of K–L polynomials (continued)

6. There is a recursive formula

Px ,w = q1−cPsx ,v + qcPx ,v −
∑

z≺v ,sz<z

µ(z ,w)q1/2(l(w)−l(z)−1)Px ,z ,

where sw = v < w and c =

{
0, if x < sx

1, otherwise.



Comment
Here’s the upshot.

I There is natural basis indexed by the elements of W for H:
{Tw}.

I There is this another really nice basis that we like better:
{C ′w}.

I The K–L polynomials essentially occur as the entries in the
change of basis matrix from one basis to the other.

I The µ-values occur as the coefficients on the highest degree
term in the corresponding K–L polynomial.

I Computing the K–L polynomials is a pain in the butt.

I Computing the µ-values is helpful, but not known to be any
easier.



0–1 Conjecture

In Sn, µ(y ,w) is always 0 or 1.

Theorem (Maclarnan, Warrington, 2003)

Conjecture fails in S10 and up.

Comment
Conjecture does hold for some special classes of elements.

Theorem
In Sn, if y is fully commutative, then µ(y ,w) is always 0 or 1.

Current Research
There are quite a few people (like me) trying to find non-recursive
ways to compute K–L polynomials and/or µ-values for various
Coxeter groups.



Diagram algebras

Definition
A standard n-box is a rectangle with 2n nodes, labeled as follows:

An n-diagram is a graph drawn on the nodes of a standard n-box
such that

I Every node is connected to exactly one other node by a single
edge.

I All edges must be drawn inside the n-box.

I The graph can be drawn so that no edges cross.



Example

Here is an example of a 5-diagram.

Here is another.



Example

Here is an example that is not a diagram.



Comment
There is a one-to-one correspondence between n-diagrams and
sequences of n pairs of well-formed parentheses.

l

l
()((()()))

It is well-known that the number of sequences of n pairs of
well-formed parentheses is Cn. Therefore, the number of
n-diagrams is Cn.



Definition
The Temperley-Lieb algebra of type A, TLn(A), is the free
A-module having the set of n-diagrams as a basis with
multiplication defined as follows.

If d and d ′ are n-diagrams, then dd ′ is obtained by identifying the
“south face” of d with the “north face” of d ′, and then replacing
any closed loops with a factor of δ = v + v−1.

TLn is an associative algebra.



Example

Multiplication of two 5-diagrams.

=



Example

Here’s another example.

= δ



Example

And here’s one more.

= δ3



Now, we define a few “simple” n-diagrams. Let

d1 =

...

di =

...

dn−1 =



Claim
The set of “simple” diagrams generate TLn as a unital algebra.

Theorem
TLn has a presentation (as a unital algebra):

1. d2
i = δdi , for all i

2. didj = djdi , for |i − j | ≥ 2

3. didjdi = di , for |i − j | = 1



Here’s the most interesting relation. The other two are also easy to
check. For |i − j | = 1 (here, j = i + 1; j = i − 1 being similar), we
have

didjdi =

=

= di



Comments

I TLn(A) as an algebra with the presentation given above was
invented in 1971 by Temperley and Lieb.

I First arose in the context of integrable Potts models in
statistical mechanics.

I As well as having applications in physics, TLn(A) appears in
the framework of knot theory, braid groups, Coxeter groups
and their corresponding Hecke algebras, and subfactors of von
Neumann algebras.

I Penrose/Kauffman use diagram algebra to model TLn(A) in
1971.

I In 1987, Vaughan Jones recognized that TLn(A) is isomorphic
to a particular quotient of the Hecke Algebra of type An−1

(the symmetric group, Sn).



Theorem
TLn is isomorphic to a quotient of the Hecke algebra of type An−1

and has a basis indexed by the fully commutative elements of the
underlying Coxeter group Sn. In particular, there exists a surjective
homomorphism θ : H → TLn, where

θ
(
C ′si
)

= di .

Suppose w = si1si2 · · · sir (reduced). Define dw = di1di2 · · · dir .
Then

θ
(
C ′w
)

=

{
dw , if w is fully commutative

0, otherwise.



Theorem (R.M. Green)

If y and w are fully commutative elements of Sn, then µ(y ,w) can
be computed (non-recursively) as follows.

1. Draw diagrams for dy and dw−1 .

2. Multiply dy times dw−1 . Do not replace any closed loops with
δ.

3. Connect point i in north face to point 2n− i + 1 in south face
(w/o intersections).

If this forms n − 1 closed loops, then µ(y ,w) = 1, and otherwise,
µ(y ,w) = 0.



Example

s1 s2 s3

Coxeter graph of type A3

Let y = s2 and w = s2s1s3s2. Note that both y and w are fully
commutative. We see that w−1 = s2s3s1s2. Then

dw−1 = d2d3d1d2.

Finish on chalk board. . .



Closing Remarks

I What we are really doing when we “wrap up” dydw−1 is
defining a trace function on a quotient of the Hecke algebra.

I Having a diagrammatic representation of this quotient allows
us to easily define and compute this trace.

I This trace function is a generalized Jones trace and satisfies
the Markov property.

I When this type of trace function is known to exist, we can use
it to compute µ(y ,w) for y and w fully commutative.

I At this point, only when we have a diagrammatic
representation of the appropriate Hecke algebra quotient have
we been able to define the trace that can be used to compute
µ-values (types A, B, D, H, E , and Ã).



Closing Remarks (continued)

I My Ph.D. thesis focuses on establishing a faithful
representation of a generalized Temperley–Lieb algebra of
type C̃ by a particular diagram algebra.

I One application of this representation is a simple construction
of a trace on the corresponding Hecke algebra, which can then
be used to compute µ-values in a non-recursive way.

I This is the first successful attempt at this type of construction
for a Coxeter group having an infinite number of fully
commutative elements and a Coxeter graph involving edge
weights greater than 3.


