Diagram algebras and Kazhdan–Lusztig polynomials

Dana Ernst

University of Colorado at Boulder Department of Mathematics http://math.colorado.edu/~ernstd

NAU Departmental Colloquium January 17, 2008

Definition

A Coxeter group is a group W together with a set S of generating involutions subject to defining relations

$$(s_i s_j)^{m_{ij}} = 1,$$

where $m_{ii} = 1$ (each generator is an involution) and $m_{ij} = m_{ji}$.

We can represent a Coxeter group using a *Coxeter graph* Γ :

- vertices of Γ are the elements of S
- ▶ connect s_i to s_j by an edge labeled m_{ij}, except we omit an edge if m_{ij} = 2, and if m_{ij} = 3, we omit the label.

The graph tells us that

- 1. If |i j| = 1, then $(s_i s_j)^3 = 1$ iff $s_i s_j s_i = s_j s_i s_j$. These relations are referred to as *long braid relations*.
- 2. And if |i j| > 1, then $(s_i s_j)^2 = 1$ iff s_i and s_j commute.

For example, $s_1s_2s_1 = s_2s_1s_2$ and $s_1s_3 = s_3s_1$.

In this case, the underlying Coxeter group W is isomorphic to the symmetric group S_5 under the correspondence

$$s_i\mapsto (i\ i+1)\in S_5.$$

Comment

In general, the underlying Coxeter group of type A_n (straight line Coxeter graph with *n* vertices and all edges having weight 3) is isomorphic to S_{n+1} .

Definition Every $w \in W$ can be written as a word in the generators:

$$w = s_{i_1}s_{i_2}\cdots s_{i_r}$$

If r is minimal, then we call this a *reduced expression* for w. In this case, we define the *length* of w:

$$l(w) = r.$$

Coxeter graph of type A_3

Let $w_1 = s_1 s_3 s_1 s_2 s_3 s_1$. This expression for w_1 is not reduced.

$$\begin{aligned} s_1 s_3 s_1 s_2 s_3 s_1 &= s_3 s_1 s_1 s_2 s_3 s_1 \\ &= s_3 s_1 s_1 s_2 s_3 s_1 \\ &= s_3 s_2 s_3 s_1 \end{aligned}$$

The last expression above is reduced. So, $l(w_1) = 4$. Notice that in the last reduced expression above, we have an opportunity to apply a long braid.

$$s_3s_2s_3s_1 = s_2s_3s_2s_1.$$

Now, let $w_2 = s_2 s_1 s_3 s_2$. This is a reduced expression for w_2 . So, $l(w_2) = 4$. However, we can apply one commutation.

 $s_2s_1s_3s_2 = s_2s_3s_1s_2.$

These are the only reduced expressions for w_2 . In particular, we never have an opportunity to apply a long braid relation.

Definition

We say that $w \in W$ is *fully commutative* if any two reduced expressions for w may be transformed into each other by iterated commutations.

Theorem

 $w \in W$ is fully commutative iff no reduced expression for w contains a long braid.

Example

In the previous example, w_1 is not fully commutative since we were able to apply the long braid $s_3s_2s_3 = s_2s_3s_2$. However, w_2 is fully commutative.

Theorem

In a Coxeter group of type A_{n-1} ($W \cong S_n$), the number of fully commutative elements is equal to the *n*th Catalan number:

$$C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n+1)!n!}.$$

Example

In S_4 , there are 4! = 24 elements, of which

$$\frac{1}{5}\left(\begin{array}{c}8\\4\end{array}\right)=14$$

of these are fully commutative.

Definition

Associated to a Coxeter group W, we have an associative $\mathbb{Z}[q, q^{-1}]$ -algebra \mathcal{H}_q . This is a free module on the set $\{T_w : w \in W\}$, which satisfies

$$T_s T_w = egin{cases} T_{sw}, & ext{if } I(sw) > I(w), \ q T_{sw} + (q-1)T_w, & ext{otherwise.} \end{cases}$$

This extends uniquely to an associative algebra structure. We extend the scalars to $\mathcal{A} := \mathbb{Z}[v, v^{-1}]$, where $v^2 = q$:

$$\mathcal{H} := \mathcal{A} \otimes_{\mathbb{Z}[q,q^{-1}]} \mathcal{H}_q.$$

We call \mathcal{H} the *Hecke algebra* associated to W.

Comments

• If
$$w = s_{i_r} \cdots s_{i_r}$$
 (reduced), then

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_r}}.$$

 A has a ring automorphism [−] sending v → v^{−1}. This extends to a ring automorphism [−] : H → H satisfying

$$\overline{T_w} = (T_{w^{-1}})^{-1}$$

(⁻ is like inverse the revenge)

- ▶ Define T_w = v^{-l(w)}T_w. Then {T_w : w ∈ W} is an A-basis for H.
- ▶ We define \mathcal{L} to be the free $\mathbb{Z}[v^{-1}]$ -module on the set \mathcal{T}_w . There exists a natural map $\pi : \mathcal{L} \to \mathcal{L}/v^{-1}\mathcal{L}$.

Theorem (Kazhdan, Lusztig)

There is a unique basis $\{C'_w : w \in W\}$ for \mathcal{H} satisfying:

1.
$$\overline{C'_w} = C'_w$$

2. $C'_w \in \mathcal{L}$ and $\pi(C'_w) = \pi(\widetilde{T_w})$.

The basis $\{C'_w\}$ has important and subtle properties (like positivity properties).

Definition

The Kazhdan-Lusztig polynomials occur as follows. If

$$C'_w = \sum_{y \leq w} P^*_{y,w} \widetilde{T_y},$$

where \leq is the Bruhat order on the Coxeter group W, then

$$P_{y,w} := v^{l(w)-l(y)} P_{y,w}^*.$$

Properties of K–L polynomials

1.
$$P_{w,w} = 1$$
 for all $w \in W$
2. $P_{y,w} \in \mathbb{Z}[q]$ (Acutally, $\mathbb{Z}_{\geq 0}[q] \dots$ deep!)
3. $P_{y,w} = 0$ unless $y \leq w$
4. If $P_{y,w} \neq 0$, then $\deg P_{y,w} \leq \frac{1}{2}(l(w) - l(y) - 1)$
5. We write $\mu(y, w) \in \mathbb{Z}$ for the coefficient of $q^{1/2(l(w) - l(y) - 1)}$ in $P_{y,w}$. Clearly, $\mu(y, w) = 0$ unless both $y < w$ and $l(w)$ and $l(y)$ have different parity.

Properties of K–L polynomials (continued)

6. There is a recursive formula

$$P_{x,w} = q^{1-c} P_{sx,v} + q^{c} P_{x,v} - \sum_{z \prec v, sz < z} \mu(z,w) q^{1/2(l(w)-l(z)-1)} P_{x,z},$$

where
$$sw = v < w$$
 and $c = egin{cases} 0, & ext{if } x < sx \ 1, & ext{otherwise.} \end{cases}$

Comment

Here's the upshot.

- There is natural basis indexed by the elements of W for \mathcal{H} : $\{T_w\}$.
- ► There is this another really nice basis that we like better: {C'_w}.
- The K-L polynomials essentially occur as the entries in the change of basis matrix from one basis to the other.
- ► The µ-values occur as the coefficients on the highest degree term in the corresponding K−L polynomial.
- Computing the K-L polynomials is a pain in the butt.
- ► Computing the µ-values is helpful, but not known to be any easier.

0–1 Conjecture

In S_n , $\mu(y, w)$ is always 0 or 1.

Theorem (Maclarnan, Warrington, 2003) Conjecture fails in S_{10} and up.

Comment

Conjecture does hold for some special classes of elements.

Theorem

In S_n , if y is fully commutative, then $\mu(y, w)$ is always 0 or 1.

Current Research

There are quite a few people (like me) trying to find non-recursive ways to compute K–L polynomials and/or μ -values for various Coxeter groups.

Diagram algebras

Definition

A *standard* n-box is a rectangle with 2n nodes, labeled as follows:

An *n*-diagram is a graph drawn on the nodes of a standard *n*-box such that

- Every node is connected to exactly one other node by a single edge.
- ► All edges must be drawn inside the *n*-box.
- The graph can be drawn so that no edges cross.

Here is an example of a 5-diagram.

Here is another.

Here is an example that is not a diagram.

Comment

There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

It is well-known that the number of sequences of n pairs of well-formed parentheses is C_n . Therefore, the number of n-diagrams is C_n .

Definition

The *Temperley-Lieb algebra of type A*, $TL_n(A)$, is the free A-module having the set of *n*-diagrams as a basis with multiplication defined as follows.

If *d* and *d'* are *n*-diagrams, then *dd'* is obtained by identifying the "south face" of *d* with the "north face" of *d'*, and then replacing any closed loops with a factor of $\delta = v + v^{-1}$.

 TL_n is an associative algebra.

Multiplication of two 5-diagrams.

Here's another example.

And here's one more.

Now, we define a few "simple" n-diagrams. Let

Claim

The set of "simple" diagrams generate TL_n as a unital algebra.

Theorem

 TL_n has a presentation (as a unital algebra):

1.
$$d_i^2 = \delta d_i$$
, for all *i*
2. $d_i d_j = d_j d_i$, for $|i - j| \ge 2$
3. $d_i d_j d_i = d_i$, for $|i - j| = 1$

Here's the most interesting relation. The other two are also easy to check. For |i - j| = 1 (here, j = i + 1; j = i - 1 being similar), we have

 $= d_i$

Comments

- TL_n(A) as an algebra with the presentation given above was invented in 1971 by Temperley and Lieb.
- First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, TL_n(A) appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman use diagram algebra to model TL_n(A) in 1971.
- ► In 1987, Vaughan Jones recognized that TL_n(A) is isomorphic to a particular quotient of the Hecke Algebra of type A_{n-1} (the symmetric group, S_n).

Theorem

 TL_n is isomorphic to a quotient of the Hecke algebra of type A_{n-1} and has a basis indexed by the fully commutative elements of the underlying Coxeter group S_n . In particular, there exists a surjective homomorphism $\theta : \mathcal{H} \to TL_n$, where

$$\theta\left(C_{s_i}'\right)=d_i.$$

Suppose $w = s_{i_1}s_{i_2}\cdots s_{i_r}$ (reduced). Define $d_w = d_{i_1}d_{i_2}\cdots d_{i_r}$. Then

 $\theta\left(C'_{w}\right) = \begin{cases} d_{w}, & \text{if } w \text{ is fully commutative} \\ 0, & \text{otherwise.} \end{cases}$

Theorem (R.M. Green)

If y and w are fully commutative elements of S_n , then $\mu(y, w)$ can be computed (non-recursively) as follows.

- 1. Draw diagrams for d_y and $d_{w^{-1}}$.
- 2. Multiply d_y times $d_{w^{-1}}$. Do not replace any closed loops with δ .
- 3. Connect point *i* in north face to point 2n i + 1 in south face (w/o intersections).

If this forms n-1 closed loops, then $\mu(y,w) = 1$, and otherwise, $\mu(y,w) = 0$.

Let $y = s_2$ and $w = s_2 s_1 s_3 s_2$. Note that both y and w are fully commutative. We see that $w^{-1} = s_2 s_3 s_1 s_2$. Then

$$d_{w^{-1}} = d_2 d_3 d_1 d_2.$$

Finish on chalk board...

Closing Remarks

- What we are really doing when we "wrap up" dydw⁻¹ is defining a trace function on a quotient of the Hecke algebra.
- Having a diagrammatic representation of this quotient allows us to easily define and compute this trace.
- This trace function is a generalized Jones trace and satisfies the Markov property.
- When this type of trace function is known to exist, we can use it to compute µ(y, w) for y and w fully commutative.
- At this point, only when we have a diagrammatic representation of the appropriate Hecke algebra quotient have we been able to define the trace that can be used to compute μ-values (types A, B, D, H, E, and A).

Closing Remarks (continued)

- ► My Ph.D. thesis focuses on establishing a faithful representation of a generalized Temperley–Lieb algebra of type C̃ by a particular diagram algebra.
- One application of this representation is a simple construction of a trace on the corresponding Hecke algebra, which can then be used to compute µ-values in a non-recursive way.
- This is the first successful attempt at this type of construction for a Coxeter group having an infinite number of fully commutative elements and a Coxeter graph involving edge weights greater than 3.