Diagram algebras and Kazhdan-Lusztig polynomials

Dana Ernst

University of Colorado at Boulder
Department of Mathematics
http://math.colorado.edu/~ernstd

NAU Departmental Colloquium January 17, 2008

Coxeter Groups

Definition

A Coxeter group is a group W together with a set S of generating involutions subject to defining relations

$$
\left(s_{i} s_{j}\right)^{m_{i j}}=1
$$

where $m_{i i}=1$ (each generator is an involution) and $m_{i j}=m_{j i}$.
We can represent a Coxeter group using a Coxeter graph Γ :

- vertices of Γ are the elements of S
- connect s_{i} to s_{j} by an edge labeled $m_{i j}$, except we omit an edge if $m_{i j}=2$, and if $m_{i j}=3$, we omit the label.

Example

Coxeter graph of type A_{4}

The graph tells us that

1. If $|i-j|=1$, then $\left(s_{i} s_{j}\right)^{3}=1$ iff $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$. These relations are referred to as long braid relations.
2. And if $|i-j|>1$, then $\left(s_{i} s_{j}\right)^{2}=1$ iff s_{i} and s_{j} commute.

For example, $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$ and $s_{1} s_{3}=s_{3} s_{1}$.

In this case, the underlying Coxeter group W is isomorphic to the symmetric group S_{5} under the correspondence

$$
s_{i} \mapsto(i i+1) \in S_{5} .
$$

Comment

In general, the underlying Coxeter group of type A_{n} (straight line Coxeter graph with n vertices and all edges having weight 3) is isomorphic to S_{n+1}.

Definition

Every $w \in W$ can be written as a word in the generators:

$$
w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}
$$

If r is minimal, then we call this a reduced expression for w. In this case, we define the length of w :

$$
I(w)=r .
$$

Example

Coxeter graph of type A_{3}
Let $w_{1}=s_{1} s_{3} s_{1} s_{2} s_{3} s_{1}$. This expression for w_{1} is not reduced.

$$
\begin{aligned}
S_{1} S_{3} S_{1} S_{2} S_{3} S_{1} & =S_{3} S_{1} S_{1} S_{2} S_{3} S_{1} \\
& =S_{3} S_{1} S_{1} S_{2} S_{3} S_{1} \\
& =S_{3} S_{2} S_{3} S_{1}
\end{aligned}
$$

The last expression above is reduced. So, $I\left(w_{1}\right)=4$. Notice that in the last reduced expression above, we have an opportunity to apply a long braid.

$$
S_{3} S_{2} S_{3} S_{1}=S_{2} S_{3} S_{2} S_{1}
$$

Example

Now, let $w_{2}=s_{2} s_{1} s_{3} s_{2}$. This is a reduced expression for w_{2}. So, $I\left(w_{2}\right)=4$. However, we can apply one commutation.

$$
s_{2} s_{1} s_{3} s_{2}=s_{2} s_{3} s_{1} s_{2}
$$

These are the only reduced expressions for w_{2}. In particular, we never have an opportunity to apply a long braid relation.

Definition

We say that $w \in W$ is fully commutative if any two reduced expressions for w may be transformed into each other by iterated commutations.

Theorem
$w \in W$ is fully commutative iff no reduced expression for w contains a long braid.

Example

In the previous example, w_{1} is not fully commutative since we were able to apply the long braid $s_{3} s_{2} s_{3}=s_{2} s_{3} s_{2}$. However, w_{2} is fully commutative.

Theorem

In a Coxeter group of type $A_{n-1}\left(W \cong S_{n}\right)$, the number of fully commutative elements is equal to the nth Catalan number:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}
$$

Example

In S_{4}, there are $4!=24$ elements, of which

$$
\frac{1}{5}\binom{8}{4}=14
$$

of these are fully commutative.

Hecke Algebras

Definition

Associated to a Coxeter group W, we have an associative $\mathbb{Z}\left[q, q^{-1}\right]$-algebra \mathcal{H}_{q}. This is a free module on the set $\left\{T_{w}: w \in W\right\}$, which satisfies

$$
T_{s} T_{w}= \begin{cases}T_{s w}, & \text { if } I(s w)>I(w) \\ q T_{s w}+(q-1) T_{w}, & \text { otherwise }\end{cases}
$$

This extends uniquely to an associative algebra structure. We extend the scalars to $\mathcal{A}:=\mathbb{Z}\left[v, v^{-1}\right]$, where $v^{2}=q$:

$$
\mathcal{H}:=\mathcal{A} \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathcal{H}_{q}
$$

We call \mathcal{H} the Hecke algebra associated to W.

Comments

- If $w=s_{i_{r}} \cdots s_{i_{r}}$ (reduced), then

$$
T_{w}=T_{s_{i_{1}}} \cdots T_{s_{i_{r}}} .
$$

$-\mathcal{A}$ has a ring automorphism ${ }^{-}$sending $v \mapsto v^{-1}$. This extends to a ring automorphism ${ }^{-}: \mathcal{H} \rightarrow \mathcal{H}$ satisfying

$$
\overline{T_{w}}=\left(T_{w^{-1}}\right)^{-1}
$$

(${ }^{-}$is like inverse the revenge)

- Define $\widetilde{T_{w}}=v^{-l(w)} T_{w}$. Then $\left\{\widetilde{T_{w}}: w \in W\right\}$ is an \mathcal{A}-basis for \mathcal{H}.
- We define \mathcal{L} to be the free $\mathbb{Z}\left[v^{-1}\right]$-module on the set $\widetilde{T_{w}}$. There exists a natural map $\pi: \mathcal{L} \rightarrow \mathcal{L} / v^{-1} \mathcal{L}$.

Theorem (Kazhdan, Lusztig)
There is a unique basis $\left\{C_{w}^{\prime}: w \in W\right\}$ for \mathcal{H} satisfying:

1. $\overline{C_{w}^{\prime}}=C_{w}^{\prime}$
2. $C_{w}^{\prime} \in \mathcal{L}$ and $\pi\left(C_{w}^{\prime}\right)=\pi\left(\widetilde{T_{w}}\right)$.

The basis $\left\{C_{w}^{\prime}\right\}$ has important and subtle properties (like positivity properties).

Definition

The Kazhdan-Lusztig polynomials occur as follows. If

$$
C_{w}^{\prime}=\sum_{y \leq w} P_{y, w}^{*} \widetilde{T_{y}}
$$

where \leq is the Bruhat order on the Coxeter group W, then

$$
P_{y, w}:=v^{I(w)-I(y)} P_{y, w}^{*}
$$

Properties of K-L polynomials

1. $P_{w, w}=1$ for all $w \in W$
2. $P_{y, w} \in \mathbb{Z}[q]$ (Acutally, $\mathbb{Z}_{\geq 0}[q] \ldots$ deep!)
3. $P_{y, w}=0$ unless $y \leq w$
4. If $P_{y, w} \neq 0$, then $\operatorname{deg} P_{y, w} \leq \frac{1}{2}(I(w)-I(y)-1)$
5. We write $\mu(y, w) \in \mathbb{Z}$ for the coefficient of $q^{1 / 2(I(w)-l(y)-1)}$ in $P_{y, w}$. Clearly, $\mu(y, w)=0$ unless both $y<w$ and $I(w)$ and $I(y)$ have different parity.

Properties of K-L polynomials (continued)

6. There is a recursive formula

$$
P_{x, w}=q^{1-c} P_{s x, v}+q^{c} P_{x, v}-\sum_{z \prec v, s z<z} \mu(z, w) q^{1 / 2(I(w)-l(z)-1)} P_{x, z},
$$

where $s w=v<w$ and $c= \begin{cases}0, & \text { if } x<s x \\ 1, & \text { otherwise. }\end{cases}$

Comment

Here's the upshot.

- There is natural basis indexed by the elements of W for \mathcal{H} : $\left\{T_{w}\right\}$.
- There is this another really nice basis that we like better: $\left\{C_{w}^{\prime}\right\}$.
- The K-L polynomials essentially occur as the entries in the change of basis matrix from one basis to the other.
- The μ-values occur as the coefficients on the highest degree term in the corresponding K-L polynomial.
- Computing the K-L polynomials is a pain in the butt.
- Computing the μ-values is helpful, but not known to be any easier.

0-1 Conjecture

In $S_{n}, \mu(y, w)$ is always 0 or 1 .
Theorem (Maclarnan, Warrington, 2003)
Conjecture fails in S_{10} and up.

Comment

Conjecture does hold for some special classes of elements.
Theorem
In S_{n}, if y is fully commutative, then $\mu(y, w)$ is always 0 or 1 .
Current Research
There are quite a few people (like me) trying to find non-recursive ways to compute $\mathrm{K}-\mathrm{L}$ polynomials and/or μ-values for various Coxeter groups.

Diagram algebras

Definition

A standard n-box is a rectangle with $2 n$ nodes, labeled as follows:

An n-diagram is a graph drawn on the nodes of a standard n-box such that

- Every node is connected to exactly one other node by a single edge.
- All edges must be drawn inside the n-box.
- The graph can be drawn so that no edges cross.

Example

Here is an example of a 5-diagram.

Here is another.

Example

Here is an example that is not a diagram.

Comment

There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

It is well-known that the number of sequences of n pairs of well-formed parentheses is C_{n}. Therefore, the number of n-diagrams is C_{n}.

Definition

The Temperley-Lieb algebra of type $A, \mathrm{TL}_{n}(A)$, is the free \mathcal{A}-module having the set of n-diagrams as a basis with multiplication defined as follows.

If d and d^{\prime} are n-diagrams, then $d d^{\prime}$ is obtained by identifying the "south face" of d with the "north face" of d^{\prime}, and then replacing any closed loops with a factor of $\delta=v+v^{-1}$.
TL_{n} is an associative algebra.

Example

Multiplication of two 5-diagrams.

Example

Here's another example.

Example
And here's one more.

$$
=\delta^{3}
$$

Now, we define a few "simple" n-diagrams. Let

Claim

The set of "simple" diagrams generate TL_{n} as a unital algebra.
Theorem
TL_{n} has a presentation (as a unital algebra):

1. $d_{i}^{2}=\delta d_{i}$, for all i
2. $d_{i} d_{j}=d_{j} d_{i}$, for $|i-j| \geq 2$
3. $d_{i} d_{j} d_{i}=d_{i}$, for $|i-j|=1$

Here's the most interesting relation. The other two are also easy to check. For $|i-j|=1$ (here, $j=i+1 ; j=i-1$ being similar), we have

Comments

- $\mathrm{TL}_{n}(A)$ as an algebra with the presentation given above was invented in 1971 by Temperley and Lieb.
- First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, $\mathrm{TL}_{n}(A)$ appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman use diagram algebra to model $\mathrm{TL}_{n}(A)$ in 1971.
- In 1987, Vaughan Jones recognized that $\mathrm{TL}_{n}(A)$ is isomorphic to a particular quotient of the Hecke Algebra of type A_{n-1} (the symmetric group, S_{n}).

Theorem

TL_{n} is isomorphic to a quotient of the Hecke algebra of type A_{n-1} and has a basis indexed by the fully commutative elements of the underlying Coxeter group S_{n}. In particular, there exists a surjective homomorphism $\theta: \mathcal{H} \rightarrow \mathrm{TL}_{n}$, where

$$
\theta\left(C_{s_{i}}^{\prime}\right)=d_{i}
$$

Suppose $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ (reduced). Define $d_{w}=d_{i_{1}} d_{i_{2}} \cdots d_{i_{r}}$. Then

$$
\theta\left(C_{w}^{\prime}\right)= \begin{cases}d_{w}, & \text { if } w \text { is fully commutative } \\ 0, & \text { otherwise }\end{cases}
$$

Theorem (R.M. Green)

If y and w are fully commutative elements of S_{n}, then $\mu(y, w)$ can be computed (non-recursively) as follows.

1. Draw diagrams for d_{y} and $d_{w^{-1}}$.
2. Multiply d_{y} times $d_{w^{-1}}$. Do not replace any closed loops with δ.
3. Connect point i in north face to point $2 n-i+1$ in south face (w/o intersections).
If this forms $n-1$ closed loops, then $\mu(y, w)=1$, and otherwise, $\mu(y, w)=0$.

Example

Coxeter graph of type A_{3}
Let $y=s_{2}$ and $w=s_{2} s_{1} s_{3} s_{2}$. Note that both y and w are fully commutative. We see that $w^{-1}=s_{2} s_{3} s_{1} s_{2}$. Then

$$
d_{w^{-1}}=d_{2} d_{3} d_{1} d_{2}
$$

Finish on chalk board...

Closing Remarks

- What we are really doing when we "wrap up" $d_{y} d_{w^{-1}}$ is defining a trace function on a quotient of the Hecke algebra.
- Having a diagrammatic representation of this quotient allows us to easily define and compute this trace.
- This trace function is a generalized Jones trace and satisfies the Markov property.
- When this type of trace function is known to exist, we can use it to compute $\mu(y, w)$ for y and w fully commutative.
- At this point, only when we have a diagrammatic representation of the appropriate Hecke algebra quotient have we been able to define the trace that can be used to compute μ-values (types A, B, D, H, E, and \widetilde{A}).

Closing Remarks (continued)

- My Ph.D. thesis focuses on establishing a faithful representation of a generalized Temperley-Lieb algebra of type \widetilde{C} by a particular diagram algebra.
- One application of this representation is a simple construction of a trace on the corresponding Hecke algebra, which can then be used to compute μ-values in a non-recursive way.
- This is the first successful attempt at this type of construction for a Coxeter group having an infinite number of fully commutative elements and a Coxeter graph involving edge weights greater than 3.

