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Coxeter Groups

Definition
A Coxeter group is a group W together with a set S of generating
involutions subject to defining relations

(sis)™ =1,
where mj; = 1 (each generator is an involution) and m;; = mj;.
We can represent a Coxeter group using a Coxeter graph I

> vertices of I are the elements of S

> connect s; to s; by an edge labeled mj;, except we omit an
edge if m;; = 2, and if m;; = 3, we omit the label.



Example

51 Cy) S3 S4

Coxeter graph of type A4

The graph tells us that

1. If |i —j] =1, then (s,-sj)3 = 1 iff sisjs; = sjs;s;. These
relations are referred to as long braid relations.
2. And if |i — j| > 1, then (s;57)* = 1 iff 5; and s; commute.

For example, sisps1 = s2515, and s;s3 = s3s7.



In this case, the underlying Coxeter group W is isomorphic to the
symmetric group Ss under the correspondence

si— (i i+1) € Ss.

Comment

In general, the underlying Coxeter group of type A, (straight line
Coxeter graph with n vertices and all edges having weight 3) is
isomorphic to S,41.



Definition
Every w € W can be written as a word in the generators:

W =SS5

r

If r is minimal, then we call this a reduced expression for w.
In this case, we define the length of w:

I(w)=r.



Example

S1 S2 S3
Coxeter graph of type As

Let wy = s153515:5351. This expression for wy is not reduced.

515351525351 = 535151525351
= 535151528351

= 53525351

The last expression above is reduced. So, /(w;) = 4. Notice that
in the last reduced expression above, we have an opportunity to
apply a long braid.

53525351 = S05352871.



Example
Now, let wy = sps1535,. This is a reduced expression for ws. So,
I (wy) = 4. However, we can apply one commutation.

52515352 = 52535152.

These are the only reduced expressions for ws. In particular, we
never have an opportunity to apply a long braid relation.



Definition

We say that w € W is fully commutative if any two reduced
expressions for w may be transformed into each other by iterated
commutations.

Theorem
w € W is fully commutative iff no reduced expression for w
contains a long braid.

Example

In the previous example, wy is not fully commutative since we were
able to apply the long braid s3sps3 = sps3s,. However, wy is fully
commutative.



Theorem

In a Coxeter group of type A,—1 (W = S,,), the number of fully
commutative elements is equal to the nth Catalan number:

Example

In Sy, there are 4! = 24 elements, of which

1/8
5<4>_14

of these are fully commutative.



Hecke Algebras

Definition

Associated to a Coxeter group W, we have an associative
Z[q,q ']-algebra H,. This is a free module on the set
{Tw : w € W}, which satisfies

o Tow, if I(sw) > I(w),
Y 1 qTaw +(g—1)T,, otherwise.

This extends uniquely to an associative algebra structure. We
extend the scalars to A := Z[v, v71], where v = g:

H=A ®7zlq,q71] Hg.
We call ‘H the Hecke algebra associated to W.



Comments

> If w=s; ---s; (reduced), then

Tw=Ts T,

» A has a ring automorphism ~ sending v — v~1. This extends
to a ring automorphism ~ : H — H satisfying

Tw=(T,) "
(~ is like inverse the revenge)
> Define T,, = v /(") T,,. Then {T,, : w € W} is an A-basis
for 'H.

> We define £ to be the free Z[v—!]-module on the set Tw.
There exists a natural map 7: £ — L/v71L.



Theorem (Kazhdan, Lusztig)

There is a unique basis {C}, : w € W} for H satisfying:
1. C,=C,
2. CleLand 7 (C)=n (’T;)

The basis {C],} has important and subtle properties (like positivity
properties).

Definition
The Kazhdan—Lusztig polynomials occur as follows. If

Cliv = Z P;/k,w:,:}//’

y<w

where < is the Bruhat order on the Coxeter group W, then

Py w = vl("")*’(y)P;k w-



Properties of K-L polynomials

SAEE RS

Pyw=1forall we W

P, w € Z[q] (Acutally, Z>o[q] ...deep!)

Py.w =0 unless y < w

If Pyw # 0, then degP, ., < 2(I(w) — I(y) — 1)

We write u(y, w) € Z for the coefficient of gt/2(/(w)=I(¥)=1) jp

Py w. Clearly, (y, w) = 0 unless both y < w and /(w) and
I(y) have different parity.



Properties of K-L polynomials (continued)

6. There is a recursive formula

PX,W — ql_CPSX,V + qCPX,V o Z M(Z’ W)q1/2(l(w)_l(z)_1)PX,27

z<v,sz<z

0, if x<sx
where sw = v < w and ¢ = ]
1, otherwise.



Comment
Here's the upshot.

» There is natural basis indexed by the elements of W for ‘H:
{Tw}.

» There is this another really nice basis that we like better:
{C.}-

» The K-L polynomials essentially occur as the entries in the
change of basis matrix from one basis to the other.

» The p-values occur as the coefficients on the highest degree
term in the corresponding K-L polynomial.

» Computing the K-L polynomials is a pain in the butt.

» Computing the p-values is helpful, but not known to be any
easier.



0-1 Conjecture
In Sy, u(y,w) is always 0 or 1.

Theorem (Maclarnan, Warrington, 2003)
Conjecture fails in S19 and up.

Comment
Conjecture does hold for some special classes of elements.

Theorem
In S, if y is fully commutative, then p(y,w) is always 0 or 1.

Current Research

There are quite a few people (like me) trying to find non-recursive
ways to compute K-L polynomials and/or p-values for various
Coxeter groups.



Diagram algebras

Definition

A standard n-box is a rectangle with 2n nodes, labeled as follows:
1 2 3 7
& a1 ez s wh

An n-diagram is a graph drawn on the nodes of a standard n-box

such that
» Every node is connected to exactly one other node by a single
edge.
» All edges must be drawn inside the n-box.
» The graph can be drawn so that no edges cross.



Example
Here is an example of a 5-diagram.

1 2 ) 4 L

10 b g 7 8
Here is another.

1 2 3 4 )




Example
Here is an example that is not a diagram.




Comment
There is a one-to-one correspondence between n-diagrams and
sequences of n pairs of well-formed parentheses.

o~
oo
® >
PN

It is well-known that the number of sequences of n pairs of
well-formed parentheses is C,. Therefore, the number of
n-diagrams is C,,.



Definition

The Temperley-Lieb algebra of type A, TL,(A), is the free
A-module having the set of n-diagrams as a basis with
multiplication defined as follows.

If d and d’ are n-diagrams, then dd’ is obtained by identifying the
“south face” of d with the “north face” of d’, and then replacing
any closed loops with a factor of § = v 4+ v1.

TL, is an associative algebra.



Example
Multiplication of two 5-diagrams.




Example
Here's another example.

N A N

LN g

B =

N N

=0 A =




Example
And here's one more.

e b
A
" i, S il ¥




Now, we define a few “simple” n-diagrams. Let

l E 3 4 71 ”
) Nt
1 pm—
FEER
1 1 i z'tl +2 n
di = N~
P =
N
1 2 73 72 77;1 f
d P
n—1—
N




Claim
The set of “simple” diagrams generate TL, as a unital algebra.

Theorem
TL, has a presentation (as a unital algebra):

1. d,-2 = dd;, for all i
2. d,'dj:djd,', for|i—j|22
3. d,'djd,':d;, for ’I'*_j'| =1



Here's the most interesting relation. The other two are also easy to
check. For |i — j| =1 (here, j =i+ 1; j =i — 1 being similar), we
have

did;d; =




Comments

» TL,(A) as an algebra with the presentation given above was
invented in 1971 by Temperley and Lieb.

» First arose in the context of integrable Potts models in
statistical mechanics.

» As well as having applications in physics, TL,(A) appears in
the framework of knot theory, braid groups, Coxeter groups
and their corresponding Hecke algebras, and subfactors of von
Neumann algebras.

» Penrose/Kauffman use diagram algebra to model TL,(A) in
1971.

» In 1987, Vaughan Jones recognized that TL,(A) is isomorphic
to a particular quotient of the Hecke Algebra of type A,—1
(the symmetric group, S,).



Theorem

TL,, is isomorphic to a quotient of the Hecke algebra of type A,_1
and has a basis indexed by the fully commutative elements of the
underlying Coxeter group S,,. In particular, there exists a surjective
homomorphism 6 : H — TL,,, where

0(C;) = di.

Suppose w = s;;s;, - - - 5, (reduced). Define d,, = dj,d;, - - - dj,.
Then
0 (qv) _ dy, ifwis .fuIIy commutative
0, otherwise.



Theorem (R.M. Green)

If y and w are fully commutative elements of S, then pu(y, w) can
be computed (non-recursively) as follows.

1. Draw diagrams for d, and d,,-1.

2. Multiply d, times d,,—1. Do not replace any closed loops with
J.

3. Connect point 7 in north face to point 2n — i + 1 in south face
(w/o intersections).

If this forms n — 1 closed loops, then p(y, w) = 1, and otherwise,
uly,w) = 0.



Example

S1 S2 S3
Coxeter graph of type As

Let y = sp and w = spsys3s,. Note that both y and w are fully
commutative. We see that w1 = sps35155. Then

d, -1 = dadsdy db.

Finish on chalk board. ..



Closing Remarks

» What we are really doing when we “wrap up” d,d,,—1 is
defining a trace function on a quotient of the Hecke algebra.

» Having a diagrammatic representation of this quotient allows
us to easily define and compute this trace.

» This trace function is a generalized Jones trace and satisfies
the Markov property.

» When this type of trace function is known to exist, we can use
it to compute p(y, w) for y and w fully commutative.

» At this point, only when we have a diagrammatic
representation of the appropriate Hecke algebra quotient have
we been able to define the trace that can be used to compute
u-values (types A, B, D, H, E, and A).



Closing Remarks (continued)

» My Ph.D. thesis focuses on establishing a faithful
representation of a generalized Temperley—Lieb algebra of
type C by a particular diagram algebra.

» One application of this representation is a simple construction
of a trace on the corresponding Hecke algebra, which can then
be used to compute pu-values in a non-recursive way.

» This is the first successful attempt at this type of construction
for a Coxeter group having an infinite number of fully
commutative elements and a Coxeter graph involving edge
weights greater than 3.



