The Temperley-Lieb Algebras of Types A and B and Their Associated Diagram Algebras

Dana Ernst

University of Colorado, Boulder

Department of Mathematics
Slow Pitch: October 10, 2007

Definition

Let n be a positive integer. The Temperley-Lieb Algebra of Type $A, \mathrm{TL}_{n}(A)$, with parameter δ is defined to be the associative, unital algebra over the ring $\mathbb{Z}[\delta]$ generated by elements $e_{1}, e_{2}, \ldots, e_{n-1}$ subject only to the relations

$$
\begin{aligned}
& e_{i}^{2}=\delta e_{i}, \text { for all } i \\
& e_{i} e_{j}=e_{j} e_{i}, \text { for }|i-j| \geq 2 \\
& e_{i} e_{j} e_{i}=e_{i}, \text { for }|i-j|=1
\end{aligned}
$$

Theorem

$\mathrm{TL}_{n}(A)$ is a finite dimensional associative algebra over $\mathbb{Z}[\delta]$. A basis may be described in terms of "reduced words" in the algebra generators e_{i}. The rank of $\mathrm{TL}_{n}(A)$ is the nth Catalan number:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}
$$

Some Remarks:

- $\mathrm{TL}_{n}(A)$ was invented in 1971 by Temperley and Lieb.
- First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, $\mathrm{TL}_{n}(A)$ appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman use diagram algebra to model $\mathrm{TL}_{n}(A)$ in 1971.
- In 1987, Vaughan Jones recognized that $\mathrm{TL}_{n}(A)$ is isomorphic to a particular quotient of the Hecke Algebra of type A_{n-1} (the symmetric group, S_{n}).

Definition

A standard n-box is a rectangle with $2 n$ nodes, labeled as follows:

An n-diagram is a graph drawn on the nodes of a standard n-box such that

- Every node is connected to exactly one other node by a single edge.
- All edges must be drawn inside the n-box.
- The graph can be drawn so that no edges cross.

Example

Here is an example of a 5-diagram.

Here is another.

Example

Here is an example that is not a diagram.

Definition

The associative diagram algebra, $\mathcal{D}_{n}(A)$, is the free $\mathbb{Z}[\delta]$-module having the set of n-diagrams as a basis with multiplication defined as follows.

If d and d^{\prime} are n-diagrams, then $d d^{\prime}$ is obtained by identifying the "south face" of d with the "north face" of d^{\prime}, and then replacing any closed loops with a factor of δ.

Example

Multiplication of two 5-diagrams.

Example

Here's another example.

Example
And here's one more.

$$
=\delta^{3}
$$

Theorem

The rank of the diagram algebra $\mathcal{D}_{n}(A)$ is C_{n}.

Proof.

The number of sequences of n pairs of well-formed parentheses is C_{n}. There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

Now, we define a few "simple" n-diagrams. Let

Claim 1: The diagrams $d_{1}, d_{2}, \ldots, d_{n-1}$ generate $\mathcal{D}_{n}(A)$.
Claim 2: The generators $d_{1}, d_{2}, \ldots, d_{n-1}$ satisfy the relations of $\mathrm{TL}_{n}(A)$.

For all i, we have

For $|i-j| \geq 2$, we have

$=d_{j} d_{i}$

For $|i-j|=1$ (here, $j=i+1 ; j=i-1$ being similar), we have

Claim 1 and Claim 2, along with the fact that $\mathrm{TL}_{n}(A)$ and $\mathcal{D}_{n}(A)$ have the same dimension, suggest the following theorem.

Theorem
$\mathrm{TL}_{n}(A)$ and $\mathcal{D}_{n}(A)$ are isomorphic as $\mathbb{Z}[\delta]$-algebras under the correspondence

$$
e_{i} \mapsto d_{i}
$$

Now, consider the group algebra of the symmetric group S_{n} over \mathbb{Z} :

$$
\mathbb{Z}\left[S_{n}\right]
$$

Recall that S_{n} is generated by the adjacent transpositions:

$$
(12),(23), \ldots,(n-1 n) .
$$

Define

$$
s_{i}=(i i+1)
$$

Next, take the (principal) ideal, J, of $\mathbb{Z}\left[S_{n}\right]$ generated by all elements of the form

$$
1+s_{i}+s_{j}+s_{i} s_{j}+s_{j} s_{i}+s_{i} s_{j} s_{i}
$$

where $|i-j|=1$ (i.e., s_{i} and s_{j} are noncommuting generators).

Definition

Let $\sigma=s_{i_{1}} \ldots s_{i_{r}} \in S_{n}$ be reduced. We say that σ is fully commutative, or $F C$, if any two reduced expressions for σ may be obtained from each other by repeated commutation of adjacent generators. In other words, σ has no reduced expression containing $s_{i} s_{j} s_{i}$ for $|i-j|=1$.

Example

$s_{1} s_{2} s_{4} s_{1}=(12)(23)(45)(12)$ is a reduced expression for an element in S_{5}. This element is not FC.

$$
s_{1} s_{2} s_{4} s_{1}=s_{1} s_{2} s_{1} s_{4}
$$

Now, let

$$
b_{s_{i}}=\left(1+s_{i}\right)+J \in \mathbb{Z}\left[S_{n}\right] / J .
$$

Theorem
As a unital algebra, $\mathbb{Z}\left[S_{n}\right] / J$ is generated by $b_{s_{1}}, \ldots, b_{s_{n-1}}$.
Definition
If $\sigma=s_{i_{1}} \ldots s_{i_{r}}$ is reduced and FC, then

$$
b_{\sigma}=b_{s_{i_{1}}} \ldots b_{s_{i r}}
$$

is a well-defined element of $\mathbb{Z}\left[S_{n}\right] / J$.
Theorem
The set $\left\{b_{\sigma}: \sigma F C\right\}$ is a free \mathbb{Z}-basis for $\mathbb{Z}\left[S_{n}\right] / J$.

That is, $\mathbb{Z}\left[S_{n}\right] / J$ has a basis indexed by the fully commutative elements of S_{n}.

If we let $\delta=2$, we have the following result.
Theorem
The algebras $\mathbb{Z}\left[S_{n}\right] / J$ and $\mathrm{TL}_{n}(A)$ (with $\delta=2$) are isomorphic as \mathbb{Z}-algebras under the correspondence

$$
b_{s_{i}}=\left(1+s_{i}\right)+J \mapsto d_{i}
$$

