The Temperley-Lieb Algebras of Types A and B and Their Associated Diagram Algebras

Dana Ernst

University of Colorado, Boulder Department of Mathematics

Slow Pitch: October 10, 2007

Let *n* be a positive integer. The *Temperley-Lieb Algebra of Type A*, $TL_n(A)$, with parameter δ is defined to be the associative, unital algebra over the ring $\mathbb{Z}[\delta]$ generated by elements $e_1, e_2, \ldots, e_{n-1}$ subject only to the relations

 $e_i^2 = \delta e_i$, for all i $e_i e_j = e_j e_i$, for $|i - j| \ge 2$ $e_i e_j e_i = e_i$, for |i - j| = 1

Theorem

 $TL_n(A)$ is a finite dimensional associative algebra over $\mathbb{Z}[\delta]$. A basis may be described in terms of "reduced words" in the algebra generators e_i . The rank of $TL_n(A)$ is the nth Catalan number:

$$C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n+1)!n!}.$$

Some Remarks:

- $TL_n(A)$ was invented in 1971 by Temperley and Lieb.
- First arose in the context of integrable Potts models in statistical mechanics.
- As well as having applications in physics, TL_n(A) appears in the framework of knot theory, braid groups, Coxeter groups and their corresponding Hecke algebras, and subfactors of von Neumann algebras.
- Penrose/Kauffman use diagram algebra to model TL_n(A) in 1971.
- ► In 1987, Vaughan Jones recognized that TL_n(A) is isomorphic to a particular quotient of the Hecke Algebra of type A_{n-1} (the symmetric group, S_n).

A standard n-box is a rectangle with 2n nodes, labeled as follows:

An *n*-diagram is a graph drawn on the nodes of a standard *n*-box such that

- Every node is connected to exactly one other node by a single edge.
- All edges must be drawn inside the n-box.
- The graph can be drawn so that no edges cross.

Here is an example of a 5-diagram.

Here is another.

Here is an example that is *not* a diagram.

The associative *diagram algebra*, $\mathcal{D}_n(A)$, is the free $\mathbb{Z}[\delta]$ -module having the set of *n*-diagrams as a basis with multiplication defined as follows.

If d and d' are *n*-diagrams, then dd' is obtained by identifying the "south face" of d with the "north face" of d', and then replacing any closed loops with a factor of δ .

Multiplication of two 5-diagrams.

Here's another example.

And here's one more.

Theorem

The rank of the diagram algebra $\mathcal{D}_n(A)$ is C_n .

Proof.

The number of sequences of n pairs of well-formed parentheses is C_n . There is a one-to-one correspondence between n-diagrams and sequences of n pairs of well-formed parentheses.

Now, we define a few "simple" n-diagrams. Let

Claim 1: The diagrams $d_1, d_2, \ldots, d_{n-1}$ generate $\mathcal{D}_n(A)$.

Claim 2: The generators $d_1, d_2, \ldots, d_{n-1}$ satisfy the relations of $TL_n(A)$.

For all *i*, we have

 $= \delta d_i$

For $|i - j| \ge 2$, we have

 $= d_j d_i$

For |i - j| = 1 (here, j = i + 1; j = i - 1 being similar), we have

 $= d_i$

Claim 1 and Claim 2, along with the fact that $TL_n(A)$ and $\mathcal{D}_n(A)$ have the same dimension, suggest the following theorem.

Theorem

 $\mathrm{TL}_n(A)$ and $\mathcal{D}_n(A)$ are isomorphic as $\mathbb{Z}[\delta]$ -algebras under the correspondence

$$e_i \mapsto d_i$$
.

Now, consider the group algebra of the symmetric group S_n over \mathbb{Z} : $\mathbb{Z}[S_n]$

Recall that S_n is generated by the adjacent transpositions:

$$(1 2), (2 3), \ldots, (n-1 n).$$

Define

$$s_i = (i \ i + 1).$$

Next, take the (principal) ideal, J, of $\mathbb{Z}[S_n]$ generated by all elements of the form

$$1+s_i+s_j+s_is_j+s_js_i+s_is_js_i,$$

where |i - j| = 1 (i.e., s_i and s_j are noncommuting generators).

Let $\sigma = s_{i_1} \dots s_{i_r} \in S_n$ be reduced. We say that σ is fully commutative, or FC, if any two reduced expressions for σ may be obtained from each other by repeated commutation of adjacent generators. In other words, σ has no reduced expression containing $s_i s_j s_i$ for |i - j| = 1.

Example

 $s_1s_2s_4s_1 = (1\ 2)(2\ 3)(4\ 5)(1\ 2)$ is a reduced expression for an element in S_5 . This element is *not* FC.

 $s_1 s_2 s_4 s_1 = s_1 s_2 s_1 s_4$

Now, let

$$b_{s_i} = (1+s_i) + J \in \mathbb{Z}[S_n]/J.$$

Theorem As a unital algebra, $\mathbb{Z}[S_n]/J$ is generated by $b_{s_1}, \ldots, b_{s_{n-1}}$.

Definition

If $\sigma = s_{i_1} \dots s_{i_r}$ is reduced and FC, then

$$b_{\sigma} = b_{s_{i_1}} \dots b_{s_{i_r}}$$

is a well-defined element of $\mathbb{Z}[S_n]/J$.

Theorem

The set $\{b_{\sigma} : \sigma \ FC\}$ is a free \mathbb{Z} -basis for $\mathbb{Z}[S_n]/J$.

That is, $\mathbb{Z}[S_n]/J$ has a basis indexed by the fully commutative elements of S_n .

If we let $\delta = 2$, we have the following result.

Theorem

The algebras $\mathbb{Z}[S_n]/J$ and $\mathrm{TL}_n(A)$ (with $\delta = 2$) are isomorphic as \mathbb{Z} -algebras under the correspondence

$$b_{s_i} = (1 + s_i) + J \mapsto d_i.$$