Indefinite Integrals

Goal

In this section, we will introduce antiderivatives and indefinite integrals.

Antiderivatives

Loosely speaking, antidifferentiation is the opposite of differentiation.
Example 1. Find a function whose derivative is $f(x)=2 x+5$.

Definition 2. A function F is an antiderivative of the function f (on an interval I) if

$$
F^{\prime}(x)=f(x)
$$

(on I) whenever f is defined.
Note 3. Notice that we said an antiderivative and not the antiderivative. Why?

Example 4. Find an antiderivative of $f(x)=\frac{3}{\sqrt{1-x^{2}}}$.

Example 5. If $f(-1)=2$ and $f^{\prime}(x)=5 x^{4}-3 x^{2}+4$, find f.

Indefinite integrals

For a given continuous function f, there is an entire family of antiderivatives: $G(x)=F(x)+C$, where F is any antiderivative of f. We call C the constant of integration.

The Picture:

Definition 6. The collection of antiderivatives of a function f is called the indefinite integral of f with respect to x and is denoted by

$$
\int f(x) d x=F(x)+C
$$

where $F^{\prime}(x)=f(x)$.
Note 7. There is a very good reason why the notation for definite integrals (i.e., net signed area under a curve) is similar to the notation for the collection of antiderivatives. In the next section, we will make this connection explicit.

Example 8. Compute $\int 5 x^{4} d x$.

Theorem 9. We have the following basic integral formulas.

$$
\begin{array}{lc}
\int f(x) \pm g(x) d x= & \int k \cdot f(x) d x= \\
\int x^{n} d x= & \int e^{x} d x= \\
\int \frac{1}{x} d x= \\
\int \cos (x) d x= & \int \sin (x) d x= \\
\int \sec (x) \tan (x) d x= & \int \sec ^{2}(x) d x= \\
\int \frac{1}{1+x^{2}} d x= & \int \frac{1}{\sqrt{1-x^{2}}} d x= \\
\hline
\end{array}
$$

Important Note 10.

1. Each of the above are easily proved by just differentiating the right hand side.
2. Warning:

$$
\int f(x) \cdot g(x) d x \neq \int f(x) d x \cdot \int g(x) d x \quad \text { and } \quad \int \frac{f(x)}{g(x)} d x \neq \frac{\int f(x) d x}{\int g(x) d x}
$$

Example 11. Compute each of the following indefinite integrals.
(a) $\int 5 d x$
(b) $\int 2 x^{3}+x^{2}-5 x+5 d x$
(c) $\int-2 \sqrt{x} d x$
(d) $\int \frac{x+1}{\sqrt{x}} d x$
(e) $\int \frac{1}{x^{3}} d x$
(f) $\int \frac{x+5}{x^{2}} d x$
(g) $\int \frac{\sin (x)}{\cos ^{2}(x)} d x$

