Indefinite Integrals

Goal

In this section, we will introduce antiderivatives and indefinite integrals.

Antiderivatives

Loosely speaking, antidifferentiation is the opposite of differentiation.

Example 1. Find a function whose derivative is f(x) = 2x + 5.

Definition 2. A function F is an *antiderivative* of the function f (on an interval I) if

$$F'(x) = f(x)$$

(on I) whenever f is defined.

Note 3. Notice that we said an antiderivative and not the antiderivative. Why?

Example 4. Find an antiderivative of $f(x) = \frac{3}{\sqrt{1-x^2}}$.

Example 5. If f(-1) = 2 and $f'(x) = 5x^4 - 3x^2 + 4$, find f.

Indefinite integrals

For a given continuous function f, there is an entire family of antiderivatives: G(x) = F(x) + C, where F is any antiderivative of f. We call C the constant of integration.

The Picture:

Definition 6. The collection of antiderivatives of a function f is called the *indefinite integral of* f with respect to x and is denoted by

$$\int f(x) \, dx = F(x) + C,$$

where F'(x) = f(x).

Note 7. There is a very good reason why the notation for definite integrals (i.e., net signed area under a curve) is similar to the notation for the collection of antiderivatives. In the next section, we will make this connection explicit.

Example 8. Compute $\int 5x^4 dx$.

Theorem 9. We have the following basic integral formulas.

Important Note 10.

- 1. Each of the above are easily proved by just differentiating the right hand side.
- 2. Warning:

$$\int f(x) \cdot g(x) \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx \quad \text{and} \quad \int \frac{f(x)}{g(x)} \, dx \neq \frac{\int f(x) \, dx}{\int g(x) \, dx}$$

Example 11. Compute each of the following indefinite integrals.

(a)
$$\int 5 dx$$

(b)
$$\int 2x^3 + x^2 - 5x + 5 \, dx$$

(c)
$$\int -2\sqrt{x} \, dx$$

(d)
$$\int \frac{x+1}{\sqrt{x}} dx$$

(e)
$$\int \frac{1}{x^3} dx$$

(f)
$$\int \frac{x+5}{x^2} dx$$

(g)
$$\int \frac{\sin(x)}{\cos^2(x)} dx$$