Quiz 3

Your Name:

Instructions

This quiz consists of two parts. In each part complete **two** problems for a total of four problems. You should provide detailed solutions on your own paper to the problems you choose to complete. I expect your solutions to contain sufficient justification. I also expect your solutions to be *well-written*, *neat*, *and organized*. Incomplete thoughts, arguments missing details, and scattered symbols and calculations are not sufficient. Each problem is worth 4 points for a total of 16 points. Good luck and have fun!

Part A

Complete \mathbf{two} of the following problems.

- A1. An overfull prison has decided to terminate some prisoners. The jailer comes up with a game for selecting who gets terminated. Here is his scheme. 10 prisoners are to be lined up all facing the same direction. On the back of each prisoner's head, the jailer places either a black or a red dot. Each prisoner can only see the color of the dot for all of the prisoners in front of them and the prisoners do not know how many of each color there are. The jailer may use all black dots, or perhaps he uses 3 red and 7 black, but the prisoners do not know. The jailer tells the prisoners that if a prisoner can guess the color of the dots, their head, they will live, but if they guess incorrectly, they will be terminated. The jailer will call on them in order starting at the back of the line. Before lining up the prisoners and placing the dots, the jailer allows the prisoners 5 minutes to come up with a plan that will maximize their survival. What plan can the prisoner can hear the answer of the prisoner behind them and they will know whether the prisoner behind them has lived or died. Also, each prisoner can only respond with the word "black" or "red."
- A2. Suppose you randomly cut a stick into 3 pieces. What is the probability that you can form a triangle out of these 3 pieces?
- A3. You have 14 coins, dated 1901 through 1914. Seven of these coins are real and weigh 1.000 ounce each. The other seven are counterfeit and weigh 0.999 ounces each. You do not know which coins are real or counterfeit. You also cannot tell which coins are real by look or feel. Fortunately for you, Zoltar the Fortune-Weighing Robot is capable of making very precise measurements. You may place any number of coins in each of Zoltar's two hands and Zoltar will do the following:
 - If the weights in each hand are equal, Zoltar tells you so and returns all of the coins.
 - If the weight in one hand is heavier than the weight in the other, then Zoltar takes one coin, at random, from the heavier hand as tribute. Then Zoltar tells you which hand was heavier, and returns the remaining coins to you.

Your objective is to identify a single real coin that Zoltar has not taken as tribute.

Part B

Complete **two** of the following problems.

B1. Let t_n denote the *n*th triangular number. Find both an algebraic proof and a visual proof of the following fact.

For all $a, b \in \mathbb{N}$, $t_{a+b} = t_a + t_b + ab$.

- B2. A certain store sells a product called widgets in boxes of 7, 9, and 11. A number n is called *widgetable* if one can buy exactly n widgets by buying some number of boxes. What is the largest non-widgetable number?
- B3. How many ways can 42 be written as the sum of 8 different positive integers?