All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei, astronomer & physicist

Chapter 5
The Real Numbers

In this chapter we will take a deep dive into structure of the real numbers by building
up the multitude of properties you are familiar with by starting with a collection of fun-
damental axioms. Recall that an axiom is a statement that is assumed to be true without
proof. These are the basic building blocks from which all theorems are proved. It is worth
pointing out that one can carefully construct the real numbers from the natural numbers.
However, that will not be the approach we take. Instead, we will simply list the axioms
that the real numbers satisfy.

5.1 Axioms of the Real Numbers

Our axioms for the real numbers fall into three categories:

1. Field Axioms: These axioms provide the essential properties of arithmetic involv-
ing addition and subtraction.

2. Order Axioms: These axioms provide the necessary properties of inequalities.

3. Completeness Axiom: This axiom ensures that the familiar number line that we
use to model the real numbers does not have any holes in it.

We begin with the Field Axioms.

Axioms 5.1 (Field Axioms). There exist operations + (addition) and - (multiplication) on
R satisfying:

(F1) (Associativity for Addition) For all a,b,c € R we have (a+b)+c=a+ (b+c);
(F2) (Commutativity for Addition) For all a,b € R, we have a+b =0 +a;

(F3) (Additive Identity) There exists 0 € R such that for alla e R, 0+a = g;

(F4) (Additive Inverses) For all a € R there exists —a € R such that a + (—a) = 0;

(F5) (Associativity for Multiplication) For all a,b,c € R we have (ab)c = a(bc);
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(F6) (Commutativity for Multiplication) For all a,b € R, we have ab = ba;

(F7) (Multiplicative Identity) There exists 1 € R such that 1 # 0 and forallaeR, la=a;
(F8) (Multiplicative Inverses) For all a € R\ {0} there exists a~' € R such that aa™! = 1.
(F9) (Distributive Property) For all a,b,c € R, a(b +c) = ab + ac;

In the language of abstract algebra, Axioms F1-F4 and F5-F8 make each of R and
R\ {0} an abelian group under addition and multiplication, respectively. Axiom F9 pro-
vides a way for the operations of addition and multiplication to interact. Collectively,
Axioms F1-F9 make the real numbers a field. It follows from the axioms that the ele-
ments 0 and 1 of R are the unique additive and multiplicative identities in R. To prove
the following theorem, suppose 0 and 0’ are both additive identities in R and then show
that 0 = 0’. This shows that there can only be one additive identity.

Theorem 5.2. The additive identity of R is unique.
To prove the next theorem, mimic the approach you used to prove Theorem 5.2.
Theorem 5.3. The multiplicative identity of R is unique.

For every a € R, the elements —a and a~! (as long as a # 0) are also the unique additive
and multiplicative inverses, respectively.

Theorem 5.4. Every real number has a unique additive inverse.
Theorem 5.5. Every nonzero real number has a unique multiplicative inverse.

Since we are taking a formal axiomatic approach to the real numbers, we should make
it clear how the natural numbers are embedded in R.

Definition 5.6. We define the natural numbers, denoted by N, to be the smallest subset
of R satisfying:

(a) 1eN, and
(b) forall ne N, we haven+1eN.

Notice the similarity between the definition of the natural numbers presented above
and the Axiom of Induction given in Section 4.1. Of course, we use the standard numeral
system to represent the natural numbers, so that N={1,2,3,4,5,6,7,8,9,10...}.

Given the natural numbers, Axiom F3/Theorem 5.2 and Axiom F4/Theorem 5.4 to-
gether with the operation of addition allow us to define the integers, denoted by Z, in
the obvious way. That is, the integers consist of the natural numbers together with the
additive identity and all of the additive inverses of the natural numbers.

We now introduce some common notation that you are likely familiar with. Take
a moment to think about why the following is a definition as opposed to an axiom or
theorem.
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Definition 5.7. For every a,b € R and n € Z, we define the following;:

(a) l[a=bi=a+(-b)

g = ab~! | (for b = 0)

n
—_—

(b)

(c)

L,

...a’

4

ifneN
ifn=0anda=0

if —-neNanda=0

1
a"

The set of rational numbers, denoted by Q, is defined to be the collection of all real

numbers having the form given in Part (b) of Definition 5.7. The irrational numbers are
defined to be R\ Q.
Using the Field Axioms, we can prove each of the statements in the following theorem.

Theorem 5.8. For all 4,b, c € R, we have the following:

(@) a=bifandonlyifa+c=b+c;

(f) If a0, then (a1)! = g;
(g) If a#0and ab =ac, then b =c.
(h) If ab = 0, then either a =0 or b = 0.

Carefully prove the next theorem by explicitly citing where you are utilizing the Field
Axioms and Theorem 5.8.

Theorem 5.9. For all a,b € R, we have (a + b)(a—b) = a® — b>.
We now introduce the Order Axioms of the real numbers.
Axioms 5.10 (Order Axioms). For a,b,c € R, there is a relation on R satisfying:
(O1) (Trichotomy Law) If a # b, then either a < b or b < a but not both;
(02) (Transitivity) If a<band b <c, thena <c;

(O3) Ifa<b,thena+c<b+c;
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(O4) If a<band 0<c, then ac < bc;

Given Axioms O1-O4, we say that the real numbers are a linearly ordered field. We
call numbers greater than zero positive and those greater than or equal to zero nonneg-
ative. There are similar definitions for negative and nonpositive.

Notice that the Order Axioms are phrased in terms of “<”. We would also like to be
able to utilize “>”, “<”, and “>".

Definition 5.11. For 4,b € R, we define:

(a) [a>b)if b <a;
(b) l[a<blifa<bora=b;
(c) laxblifb<a.

Notice that we took the existence of the inequalities “<”, “>”, “<”, and “>” on the real
numbers for granted when we defined intervals of real numbers in Definition 3.4.
Using the Order Axioms, we can prove many familiar facts.

Theorem 5.12. Forall g, b eR,if a,b>0,thena+b>0;andif a,b <0, thena+b<0.
The next result extends Axiom O3.

Theorem 5.13. For all a,b,c,d eR,ifa<band c<d, thena+c<b+d.

Theorem 5.14. For all a € R, a > 0 if and only if —a < 0.

Theorem 5.15. If 4, b, ¢, and d are positive real numbers such that a < b and ¢ < d, then
ac < bd.

Theorem 5.16. For all a,b € R, we have the following:
(a) ab>0if and only if either a,b >0 or a,b < 0;
(b) ab<0Oifandonlyifa<0<borb<0<a.
Theorem 5.17. For all positive real numbers a and b, a < b if and only if a? < b2
Consider using three cases when approaching the proof of the following theorem.
Theorem 5.18. For all 4 € R, we have a2 > 0.
It might come as a surprise that the following result requires proof.
Theorem 5.19. We have 0 < 1.

The previous theorem together with Theorem 5.14 implies that —1 < 0 as you expect.
It also follows from Axiom O3 that for all n € Z, we have n < n+ 1. We assume that there
are no integers between n and n + 1.

Theorem 5.20. ForallaeR,ifa>0, thena! >0,and ifa<0, thena™! <0.

63



CHAPTER 5. THE REAL NUMBERS

Theorem 5.21. For all 4,b € R, if a < b, then —b < —a.

The last few results allow us to take for granted our usual understanding of which
real numbers are positive and which are negative. The next theorem yields a result that
extends Theorem 5.21.

Theorem 5.22. For all a,b,ceR, if a<b and ¢ <0, then bc < ac.
There is a special function that we can now introduce.
Definition 5.23. Given a € R, we define the absolute value of a, denoted |4, via

a, ifa>0
|a| == .
—a, ifa<O.

Theorem 5.24. For all a € R, |a| > 0 with equality only if a = 0.

We can interpret |a| as the distance between a and 0 as depicted in Figure 5.1.

|al |al
/—/H /—/H
0 a a 0
(a)a>0 (b)a<0

Figure 5.1: Visual representation of |a|.

Theorem 5.25. For all a,b € R, we have |[a—b| =|b —al.

Given two points a and b, |a — b|, and hence |b — a| by the previous theorem, is the
distance between a and b as shown in Figure 5.2.

|la— bl

a b

Figure 5.2: Visual representation of |a —b|.

Theorem 5.26. For all a,b € R, |ab| = |a||b|.

In the next theorem, writing +a < b is an abbreviation for a <b and —a < b.
Theorem 5.27. For all a,b € R, if +a < b, then |a| < b.
Theorem 5.28. For all a € R, |a|* = a°.

Theorem 5.29. For all a € R, +a < |a.
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r r
/—/H/—/H
— 1 1

-r a 0 r

R/_/
|al

Figure 5.3: Visual representation of |a| < r.

Theorem 5.30. For all 4,7 € R with r nonnegative, |a| < r if and only if -r <a <r.

The letter r was used in the previous theorem because it is the first letter of the word
“radius”. If r is positive, we can think of the interval (-r,r) as the interior of a one-
dimensional circle with radius r centered at 0. Figure 5.3 provides a visual interpretation
of Theorem 5.30.

Corollary 5.31. For all 4,b,r € R with r nonnegative, [a—b| < rif and only if b—r <a < b+r.

Since |a — b| represents the distance between a and b, we can interpret |a — b| < r as
saying that the distance between a and b is less than or equal to r. In other words, a is
within r units of b. See Figure 5.4.

r T
b‘—r ;l I; b‘+r
W_/
la— bl

Figure 5.4: Visual representation of |[a—b| <.

Consider using Theorems 5.29 and 5.30 when attacking the next result, which is
known as the Triangle Inequality. This result can be extremely useful in some contexts.

Theorem 5.32 (Triangle Inequality). For all 4,b € R, |a + b| < |a| +|b].

Figure 5.5 depicts two of the cases for the Triangle Inequality.

la + b| la + b|
/—/H
0 a b a+b @ 0  a+bb
%/—/H/_/ \\/_/%/—/
|| |al |al b
(a)a=0,b>0 (b)a<0,b6>0

Figure 5.5: Visual representation of two of the cases for the Triangle Inequality.

Problem 5.33. Under what conditions do we have equality for the Triangle Inequality?
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Where did the Triangle Inequality get its name? Why “Triangle”? For any triangle
(including degenerate triangles), the sum of the lengths of any two sides must be greater
than or equal to the length of the remaining side. That is, if x, y, and z are the lengths
of the sides of the triangle, then z < x + y, where we have equality only in the degenerate
case of a triangle with no area. In linear algebra, the Triangle Inequality is a theorem
about lengths of vectors. If a and b are vectors in R”, then the Triangle Inequality states
that |la + b|| < [|a]| + ||b]|. Note that |[|a]| denotes the length of vector a. See Figure 5.6.
The version of the Triangle Inequality that we presented in Theorem 5.32 is precisely the
one-dimensional version of the Triangle Inequality in terms of vectors.

Y.

a+b

Figure 5.6: Triangle Inequality in terms of vectors.

The next theorem is sometimes called the Reverse Triangle Inequality.
Theorem 5.34 (Reverse Triangle Inequality). For all a,b € R, |a—b| > ||a| - |b]|.
Before we introduce the Completeness Axiom, we need some additional terminology.

Definition 5.35. Let A CR. A point b is called an upper bound of A if forallae A, a <b.
The set A is said to be bounded above if it has an upper bound.

Problem 5.36. The notion of a lower bound and the property of a set being bounded
below are defined similarly. Try defining them.

Problem 5.37. Find all upper bounds and all lower bounds for each of the following sets
when they exist.

(a) {5,11,17,42,103)
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(h) {3 |neN}
(i) {1 1neNju{0}
(j) @
Definition 5.38. A set A C R is bounded if A is bounded above and below.

Notice that a set A C R is bounded if and only if it is a subset of some bounded closed
interval.

Definition 5.39. Let A CR. A point p is a supremum (or least upper bound) of A if p is
an upper bound of A and p < b for every upper bound b of A. Analogously, a point p is
an infimum (or greatest lower bound) of A if p is a lower bound of A and p > b for every
lower bound b of A.

Our next result tells us that a supremum of a set and an infimum of a set are unique
when they exist.

Theorem 5.40. If A C R such that a supremum (respectively, infimum) of A exists, then
the supremum (respectively, infimum) of A is unique.

In light of the previous theorem, if the supremum of A exists, it is denoted by |sup(A)|.
Similarly, if the infimum of A exists, it is denoted by |inf(A) |

Problem 5.41. Find the supremum and the infimum of each of the sets in Problem 5.37
when they exist.

It is important to recognize that the supremum or infimum of a set may or may not be
contained in the set. In particular, we have the following theorem concerning suprema
and maximums. The analogous result holds for infima and minimums.

Theorem 5.42. Let A CR. Then A has a maximum if and only if A has a supremum and
sup(A) € A, in which case the max(A) = sup(A).

Intuitively, a point is the supremum of a set A if and only if no point smaller than the
supremum can be an upper bound of A. The next result makes this more precise.

Theorem 5.43. Let A C R. An upper bound b is the supremum of A if and only if for
every ¢ > 0, there exists a € A such that b— ¢ <a.

Problem 5.44. State and prove the analogous result to Theorem 5.43 involving infimum.

The following axiom states that every nonempty subset of the real numbers that has
an upper bound has a least upper bound.

Axiom 5.45 (Completeness Axiom). If A is a nonempty subset of R that is bounded above,
then sup(A) exists.
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Given the Completeness Axiom, we say that the real numbers satisfy the least upper
bound property. It is worth mentioning that we do not need the Completeness Axiom to
conclude that every nonempty subset of the integers that is bounded above has a supre-
mum, as this follows from Theorem 4.39 (a generalized version of the Well-Ordering
Principle).

Certainly, the real numbers also satisfy the analogous result involving infimum.

Theorem 5.46. If A is a nonempty subset of R that is bounded below, then inf(A) exists.

Our next result, called the Archimedean Property, tells us that for every real number,
we can always find a natural number that is larger. To prove this theorem, consider a
proof by contradiction and then utilize the Completeness Axiom and Theorem 5.43.

Theorem 5.47 (Archimedean Property). For every x € R, there exists n € N such that x < n.

More generally, we can “squeeze” every real number between a pair of integers. The
next result is sometimes referred to at the Generalized Archimedean Property.

Theorem 5.48 (Generalized Archimedean Property). For every x € R, there exists k,n € Z
such that k <x <n.

Theorem 5.49. For any positive real number x, there exists N € N such that 0 < % < x.

The next theorem strengthens the Generalized Archimedean Property and says that
every real number is either an integer or lies between a pair of consecutive integers.
To prove this theorem, let x € R and define L = {k € Z | k < x}. Use the Generalized
Archimedean Property to conclude that L is nonempty and then utilize Theorem 4.39.

Theorem 5.50. For every x € R, there exists n € Nsuch that n <x <n+1.

To prove the next theorem, let a < b, utilize Theorem 5.49 on b—a to obtain N € N such
that % < b-a, and then apply Theorem 5.50 to Na to conclude that there exists n € N such

that n < Na <n+1. Lastly, argue that ”Ni is the rational number you seek.

Theorem 5.51. If (a,b) is an open interval, then there exists a rational number p such that
p € (a,b).

Recall that the real numbers consist of rational and irrational numbers. Two examples
of an irrational number that you are likely familiar with are 7z and V2. In Section 6.2, we
will prove that V2 is irrational, but for now we will take this fact for granted. It turns
out that V2 ~ 1.41421356237 € (1,2). This provides an example of an irrational number
occurring between a pair of distinct rational numbers. The following theorem is a good
challenge to generalize this.

Theorem 5.52. If (a,b) is an open interval, then there exists an irrational number p such
that p € (a,b).
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Repeated applications of the previous two theorems implies that every open interval
contains infinitely many rational numbers and infinitely many irrational numbers. In
light of these two theorems, we say that both the rationals and irrationals are dense in
the real numbers.

If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

John von Neumann, mathematician

5.2 Standard Topology of the Real Line

In this section, we will introduce the notions of open, closed, compact, and connected as
they pertain to subsets of the real numbers. These properties form the underpinnings of
a branch of mathematics called topology (derived from the Greek words tépos, meaning
“place, location’, and ology, meaning ‘study of’). Topology, sometimes called “rubber sheet
geometry,” is concerned with properties of spaces that are invariant under any continu-
ous deformation (e.g., bending, twisting, and stretching like rubber while not allowing
tearing apart or gluing together). The fundamental concepts in topology are continuity,
compactness, and connectedness, which rely on ideas such as “arbitrary close” and “far
apart”. These ideas can be made precise using open sets.

Once considered an abstract branch of pure mathematics, topology now has applica-
tions in biology, computer science, physics, and robotics. The goal of this section is to
introduce you to the basics of the set-theoretic definitions used in topology and to pro-
vide you with an opportunity to tinker with open and closed subsets of the real numbers.
In Section 8.5, we will revisit these concepts and explore continuous functions.

For this entire section, our universe of discourse is the set of real numbers. You may
assume all the usual basic algebraic properties of the real numbers (addition, subtraction,
multiplication, division, commutative property, distribution, etc.). We will often refer to
an element in a subset of real numbers as a point.

Definition 5.53. A set U is called an open set if for every x € U, there exists a bounded
open interval (a,b) containing x such that (a,b) C U.

It follows immediately from the definition that every open set is a union of bounded
open intervals.

Problem 5.54. Determine whether each of the following sets is open. Justify your asser-
tions.

(a) (1,2) (d) [1,2]
(b) (1,00) (e) (=o0,V2]
(c) (1,2)U(5,5) (f) {4,17,42)
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(8) {z1neN) () Q
(h) {5 1neNjU o} (k) Z
(i) R (1) 0

As expected, every open interval (i.e., intervals of the form interval of the form (a,b),
(—00,b), (a,0), or (—c0,0)) is an open set.

Theorem 5.55. Every open interval is an open set.

However, it is important to point out that open sets can be more complicated than a
single open interval.

Problem 5.56. Provide an example of an open set that is not a single open interval.
Theorem 5.57. If U and V are open sets, then

(a) UUYV is an open set, and

(b) UNV is an open set.

According to the next two theorems, the union of arbitrarily many open sets is open
while the intersection of a finite number of open sets is open.

Theorem 5.58. If {U,},cn is a collection of open sets, then | J, 5 U, is an open set.
Consider using induction to prove the next theorem.

Theorem 5.59. If {U;}"_; is a finite collection of open sets for n € N, then (i_, U; is an
open set.

Problem 5.60. Explain why we cannot utilize induction to prove that the intersection of
infinitely many open sets indexed by the natural numbers is open.

Problem 5.61. Give an example of each of the following.
(a) A collection of open sets {U,},ca such that () ,ca U, is an open set.
(b) A collection of open sets {U,}4ea such that (,cp U, is not an open set.

According to the previous problem, the intersection of infinitely many open sets may
or may not be open. So, we know that there is no theorem that states that the intersection
of arbitrarily many open sets is open. We only know for certain that the intersection of
finitely many open sets is open by Theorem 5.59.

Definition 5.62. Suppose A CR. A point p € R is an accumulation point of A if for every
bounded open interval (g, b) containing p, there exists a point q € (a,b) N A such that g = p.

Notice that if p is an accumulation point of A, then p may or may not be in A. Loosely
speaking, p is an accumulation point of a set A if there are points in A arbitrarily close to
p. That is, if we zoom in on p, we should always see points in A nearby.
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Problem 5.63. Consider the open interval I = (1,2). Prove each of the following.
(a) The points 1 and 2 are accumulation points of I.
(b) If p €I, then p is an accumulation point of I.
(c) If p<1orp>2,then pisnotan accumulation point of I.

Theorem 5.64. A point p is an accumulation point of the intervals (a,b), (a,b], [a,b), and
[a,b] if and only if p € [a, b].

Problem 5.65. Prove that the point p = 0 is an accumulation point of A = {% | n e N}. Are
there any other accumulation points of A?

Problem 5.66. Provide an example of a set A with exactly two accumulation points.
Consider using Theorems 5.51 and 5.52 when proving the next result.

Theorem 5.67. If p € R, then p is an accumulation point of Q.

Definition 5.68. A set A C R is called closed if A contains all of its accumulation points.

Problem 5.69. Determine whether each of the sets in Problem 5.54 is closed. Justify your
assertions.

The upshot of Parts (i) and (1) of Problems 5.54 and 5.69 is that R and 0 are both open
and closed. It turns out that these are the only two subsets of the real numbers with this
property. One issue with the terminology that could potentially create confusion is that
the open interval (—co, o) is both an open and a closed set.

Problem 5.70. Provide an example of each of the following. You do not need to prove
that your answers are correct.

(a) A set that is open but not closed.
(b) A set that is closed but not open.
(c) A set that neither open nor closed.

Another potentially annoying feature of the terminology illustrated by Problem 5.70
is that if a set is not open, it may or may not be closed. Similarly, if a set is not closed, it
may or may not be open. That is, open and closed are not opposites of each other.

The next result justifies referring to [a,b] as a closed interval.

Theorem 5.71. Every interval of the form [a, b], (-0, b], [a,0), Or (—00, ) is a closed set.
Theorem 5.72. Every finite subset of R is closed.

Despite the fact that open and closed are not opposites of each other, there is a nice
relationship between open and closed sets in terms of complements.

Theorem 5.73. Let U C R. Then U is open if and only if U is closed.
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Theorem 5.74. If A and B are closed sets, then
(a) AUB s a closed set, and
(b) AN Bis a closed set.
The next two theorems are analogous to Theorems 5.58 and 5.59.
Theorem 5.75. If {A,},eca is a collection of closed sets, then () ,cp A, 1s a closed set.

Theorem 5.76. If {A;}", is a finite collection of closed sets for n € N, then |Ji_, U; is a
closed set.

Problem 5.77. Provide an example of a collection of closed sets {A,},ea such that | J,ep Ag
is not a closed set.

Problem 5.78. Determine whether each of the following sets is open, closed, both, or
neither.

(a) V:O(n—%,n)

n=2

_\(n-L
(b) W_Q(n ,n)
054

() Z=(0,1)NQ

Problem 5.79. Prove or provide a counterexample: Every non-closed set has at least one
accumulation point.

We now introduce three special classes of subsets of R: compact, connected, and dis-
connected.

Definition 5.80. A set K C R is called compact if K is both closed and bounded.

It is important to point out that there is a more general definition of compact in an ar-
bitrary topological space. However, using our notions of open and closed, it is a theorem
that a subset of the real line is compact if and only if it is closed and bounded.

Problem 5.81. Determine whether each of the following sets is compact. Briefly justify
your assertions.
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(a) [0,1)U[2,3] (8) Z

(b) [0,1)U(1,2] (h) {neN

(c) [0,1)U[1,2] (i) [0,1]U{l+1|neN}
(d) R (j) (17,42}

(e) Q (k) {17}

(f) R\Q (1) 0

Problem 5.82. Is every finite set compact? Justify your assertion.

The next theorem says that every nonempty compact set contains its greatest lower
bound and its least upper bound. That is, every nonempty compact set attains a minimum
and a maximum value.

Theorem 5.83. If K is a nonempty compact subset of R, then sup(K),inf(K) € K.

Definition 5.84. A set A C R is disconnected if there exists two disjoint open sets U;
and U, such that AN U; and AN U, are nonempty but A C U; U U, (equivalently, A =
(ANU;)U(ANU,)). If a set is not disconnected, then we say that it is connected.

In other words, a set is disconnected if it can be partitioned into two nonempty sub-
sets such that each subset does not contain points of the other and does not contain any
accumulation points of the other. Showing that a set is disconnected is generally easier
than showing a set is connected. To prove that a set is disconnected, you simply need
to exhibit two open sets with the necessary properties. However, to prove that a set is
connected, you need to prove that no such pair of open sets exists.

Problem 5.85. Determine whether each of the sets in Problem 5.81 is is connected or
disconnected. Briefly justify your assertions.

Theorem 5.86. If a € R, then {a} is connected.

The proof of the next theorem is harder than you might expect. Consider a proof by
contradiction and try to make use of the Completeness Axiom.

Theorem 5.87. Every closed interval [4, b] is connected.

It turns out that every connected set in R is either a singleton or an interval. We have
not officially proved this claim, but we do have the tools to do so. Feel free to try your
hand at proving this fact.
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If you learn how to learn, it’s the ultimate meta
skill and I believe you can learn how to be
healthy, you can learn how to be fit, you can
learn how to be happy, you can learn how to
have good relationships, you can learn how to
be successful. These are all things that can be
learned. So if you can learn that is a trump card,
it’s an ace, it’s a joker, it’s a wild card. You can
trade it for any other skill.

Naval Ravikant, entrepreneur & investor
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