Chapter 7

Functions

7.1 Introduction to Functions

Undoubtably, you have encountered the concept of function in your prior mathematical
experience. In this section, we will introduce the concept of function as a special type of
relation. As you shall see, this agrees with any previous definition of function that you
may have learned.

Up until this point, you’ve probably only encountered functions as an algebraic rule,
e.g., f(x) = x?—1, for transforming one real number into another. However, we can study
functions in a much broader context. Loosely speaking, the basic building blocks of a
function are a first set and a second sets, say X and Y, respectively, and a “correspon-
dence” that assigns each element of X to exactly one element of Y. Let’s take a look at the
actual definition.

Definition 7.1. Let X and Y be two nonempty sets. A function from set X to set Y,
denoted f : X — Y, is a relation (i.e., subset of X x Y) such that:

(a) For each x € X, there exists y € Y such that (x,y) € f, and

(b) If (x,91), (x,92) € f, then y; = p5.
Note that if (x,y) € f, we usually write y = f(x) and say that “f maps x to y.”

Part (a) of Definition 7.1 says that every element of X appears in the first coordinate
of an ordered pair in the relation. Part (b) says that each element of X only appears once
in the first coordinate of an ordered pair in the relation. It is important to note that there
are no restrictions on whether an element of Y ever appears in the second coordinate.

Furthermore, if an element of Y appears in the second coordinate, it may appear again in
a different ordered pair.

Definition 7.2. The set X from Definition 7.1 is called the domain of f and is denoted by
Dom(f). The set Y is called the codomain of f and is denoted by Codom(f). The set

Rng(f) = {y € Y | there exists x such that y = f(x)}

is called the range of f or the image of X under f. If f is a function and (x,y) € f, then
we may refer to x as the input of f and y as the output of f.
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It follows immediately from the definition that Rng(f) € Codom(f). However, it is
possible that the range of f is a proper subset of the codomain.

Exercise 7.3. Let X ={o,[J,A,®} and Y ={a,b,c,d, e}. Determine whether each of the fol-
lowing represent functions. Explain. If the relation is a function, determine the domain,
codomain, and range.

(a) f:X — Y defined via f = {(o,),(0,b),(4,c),(®,d)).
(b) g: X — Y defined via g = {(0,a), (0, b), (4,¢),(®,c)}.
(c) h: X — Y defined via = {(0,a),(0,b), (A, c), (o, d)}.
(d) k: X — Y defined via k = {(0,a), (3,b), (4,¢),(®,d), (0, e)}.
(e) 1: X — Y defined via I = {(o,¢),(,e), (A, e), (O, e)).

(f) m:X — Y defined via m = {(0,a), (s, b),(®,c)}.

(g) happy : Y — X defined via happy(y) = ® forall y € Y.
(h) id: X — X defined via id(x) = x for all x € X.

(i) nugget: X — X defined via

x, if x is a geometric shape,

nugget(x) = {

0, otherwise.

One useful representation of functions on finite sets is via bubble diagrams. To draw
a bubble diagram for a function f : X — Y, draw one circle (i.e, a “bubble”) for each of X
and Y and for each element of each set, put a dot in the corresponding set. Typically, we
draw X on the left and Y on the right. Next, draw an arrow from x e X toy e Y if f(x) =y
(i.e., (x,v) € f). Note that we can draw bubble diagrams even if f is not a function.

Example 7.4. Figure 7.1 depicts a bubble diagram for a function from domain X = {a, b, c, d}
to codomain Y = {1, 2, 3,4}. In this case, the range is equal to {1, 2,4}.

Exercise 7.5. For each of the relations in Exercise 7.3 draw the corresponding bubble
diagram.

Problem 7.6. What properties does a bubble diagram have to have in order to represent
a function?

Exercise 7.7. Provide an example of each of the following. You may draw a bubble dia-
gram, write down a list of ordered pairs, or a write a formula (as long as the domain and
codomain are clear).

(a) A function f from a set with 4 elements to a set with 3 elements such that Rng(f) =
Codom(f).
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Figure 7.1: An example of a bubble diagram for a function.

(b) A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

Problem 7.8. Let f : X — Y be a function and suppose that X and Y are finite sets with
n and m elements, respectively, such that n < m. Is it possible for Rng(f) = Codom(f)?
Explain.

Problem 7.9. In high school I am sure that you were told that a graph represents a func-
tion if it passes the vertical line test. Using our terminology of ordered pairs, explain
why this works.

Definition 7.10. Two functions are equal if they have the same domain, same codomain,
and the same set of ordered pairs in the relation. Thatis,if f: X - Y and g: X — Y are
functions, then f = g if and only if f(x) = g(x) for all x € X.

If two functions are defined by the same algebraic formula, but have different do-
mains, then they are not equal. For example, the function f : R — R defined via f(x) = x?
is not equal to the function g : N — N defined via g(x) = x2.

Definition 7.11. Let f : X — Y be a function.

(a) The function f is said to be one-to-one (or injective) if for all y € Rng(f), there is a
unique x € X such that y = f(x).

(b) The function f is said to be onto (or surjective) if for all y € Y, there exists x € X
such that y = f(x).

(c) If f is both one-to-one and onto, we say that f is a bijection (or one-to-one corre-
spondence).

Remark 7.12. Let f : X — Y be a function. To prove that f is one-to-one, start by as-
suming that f(x;) = f(x;) and then work to show that x; = x,. That is, a function f is
one-to-one if and only if for all xy,x; € X, if f(x1) = f(x,), then x; = x,. To show that f
is onto, you should start with an arbitrary y € Y and then work to show that there exists
x € X such that y = f(x).
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Exercise 7.13. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or write a formula (as long as the domain
and codomain are clear). Assume that X and Y are finite sets.

(a) A function f : X — Y that is one-to-one but not onto.

(b) A function f : X — Y that is onto but not one-to-one.

(c) A function f : X — Y that is a bijection.

(d) A function f : X — Y that is neither one-to-one nor onto.

Problem 7.14. Perhaps you’'ve heard of the horizontal line test (i.e., every horizontal line
hits the graph of f : R — R at most once). What is the horizontal line test testing for?

Exercise 7.15. Provide an example of each of the following. You may either draw a graph
or write down a formula. Make sure you have the correct domain.

(a) A function f : R — R that is one-to-one but not onto.

(b) A function f : R — R that is onto but not one-to-one.

(c) A function f : R — R that is a bijection.

(d) A function f : R — R that is neither one-to-one nor onto.

Exercise 7.16. Determine which of the following functions are one-to-one, onto, both, or
neither. In each case, you should provide proofs and counterexamples as appropriate.

(a) f:R — R defined via f(x) = x?

(b) g:R — [0,00) defined via g(x) = x?

(c) h:R — R defined via h(x) = x3

(d) k:R — R defined via k(x) = x3 — x

(e) 1:RxR — R defined via I(x},x;) = x? + x5
(f) N:N— Nx N defined via N(n) = (n,n)

Definition 7.17. If X is a nonempty set, then the function iy : X — X defined via ix(x) = x
is called the identity function on X.

Theorem 7.18. The identity function on a nonempty set X is a bijection.

Exercise 7.19. Let A and B be sets and let S C Ax B. Definenr;: S >Aand n,:S —> B
via 11 (a,b) = a and m,(a,b) = b. We call rt; (respectively, ;) the projections of S onto A
(respectively, B).

(a) Provide examples to show that 7t; does not need to be one-to-one or onto.
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(b) Suppose that S is a function (recall that a function is a set of ordered pairs, so this
makes sense). Is 7t; one-to-one? Is 71; onto? How about 7t,?

Theorem 7.20. Let A be a nonempty set and suppose ~ is an equivalence relation on A.
Then the function ¢ : A — A/~ defined via ¢(x) = [x] is onto.!

7.2 Images and Inverse Images of Functions

There are two important sets related to functions.
Definition 7.21. Let f : X — Y be a function.

(a) If S € X, the image of S under f is defined via
f(S):=1{f(x)[x€S).
(b) If T C Y, the inverse image (or preimage) of T under f is defined via
FUT):={xeX|f(x)eT).

You’ve likely encountered inverse functions before. But in this context, we are dis-
cussing inverse images. It’s important to point out that the use of the notation f~! does
not make any assumptions about whether the inverse function exists. We will tackle in-
version functions in the next section.

Note that the image of the domain is the same as its range. That is, f(X) = Rng(f).
Moreover, the inverse image of the codomain is the domain. That is, f‘1 (Y)=X.

Exercise 7.22. Define f : Z — Z via f(x) = x%. Find f({-2,-1,0,1,2}) and f~({0,1,4}).
Exercise 7.23. Define f : R — R via f(x) = 3x? — 4. Find each of the following.

(a) f([-2,4])

(b) f((=2,4))

(c) f7H([-10,1])

(d) f71((=3,3))

'Recall that A/~ is the set of equivalence classes induced by the equivalence relation ~.
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(i) Find two non-empty subsets A, B of R such that ANB =0 but f(A) = f~1(B)
(j) Find two non-empty subsets A, B of R such that ANB =0but f(A) = f(B)

Problem 7.24. Find examples of functions f and g together with sets S and T such that
f(fYT)) = T and g7'(g(S)) = S.

Problem 7.25. Let f : X — Y be a function and suppose A,BC X and C,D C Y. Determine
whether each of the following statements is true or false. If the statement is true, prove
it. Otherwise, provide a counterexample.

(a) If ACB, then f(A)C f(B).
(b) If C C D, then f~1(C) C f~(D).
(c) f(AUB)C f(A)U f(B).

(d) f(AUB)2 f(A)Uf(B).

(e) f(ANB)Cf(A)Nf(B).

(f) fF(ANB)2 f(A)N f(B).

(g) fi(CuD)cfH(C)Uf (D).

(h) f7H(CuUD)2fH(C)Uf (D).

(i) fFCnD)cfH(C)nf (D).

(G) f/HCnD)2 fHC)NnfHD).

(k) AC fH(f(A)).

() A2 fH(f(A).

Exercise 7.26. For each of the statements in previous problem that were false, determine
conditions—if any—on the corresponding sets that would make the statement true.
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7.3 Compositions and Inverse Functions

Definition 7.27. If f : X - Y and ¢ : Y — Z are functions, then a new function go f :
X — Z can be defined by (g o f)(x) = g(f(x)) for all x € Dom(f).

It is important to notice that the function on the right is the one that “goes first.”

Exercise 7.28. In each case, give examples of finite sets X, Y, and Z, and functions f :
X — Y and g: Y — Z that satisfy the given conditions. Drawing bubble diagrams is
sufficient.

(a) f isonto, but go f is not onto.

(b) g is onto, but go f is not onto.

(c) f is one-to-one, but go f is not one-to-one.
(d) g is one-to-one, but go f is not.

Theorem 7.29. If f : X — Y and g: Y — Z are both functions that are onto, then go f is
also onto.

Theorem 7.30. If f : X — Y and g: Y — Z are both functions that are one-to-one, then
go f is also one-to-one.

Corollary 7.31. If f : X —» Y and g: Y — Z are both bijections, then gof is also a bijection.

Problem 7.32. Assume that f : X — Y and g: Y — Z are both functions. Determine
whether each of the following statements is true or false. If the statement is true, prove
it. Otherwise, provide a counterexample.

(a) If go f is one-to-one, then f is one-to-one.
(b) If go f is one-to-one, then g is one-to-one.
(c) If go f is onto, then f is onto.
(d) If go f is onto, then g is onto.
The next theorem tells us that function composition is associative.

Theorem 7.33. If f : X > Y, ¢:Y - Z,and h: Z — W are functions, then (ho g)o f =
ho(gof).

Theorem 7.34. Let f : X — Y be a function. Then f is one-to-one if and only if there
exists a function g: Y — X such that go f =iy, where iyx is the identity function on X.

The function g in the previous theorem is often called a left inverse of f.

Theorem 7.35. Let f : X — Y be a function. Then f is onto if and only if there exists a
function g : Y — X such that f o g =iy, where iy is the identity function on Y.
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The function g in the previous theorem is often called a right inverse of f.

Exercise 7.36. Provide an example of a function that has a left inverse but does not have
a right inverse. Find the left inverse of your proposed function.

Exercise 7.37. Provide an example of a function that has a right inverse but does not have
a left inverse. Find the right inverse of your proposed function.

Corollary 7.38. If f : X — Y and g: Y — X are functions satisfying gof =iy and fog =iy,
then f is a bijection.

In the previous result, the functions f and g “cancel” each other out. We say that g is
a two-sided inverse of f.

Definition 7.39. Let f : X — Y be a function. The relation f‘l, called f inverse, is defined
via
Fl={(f(x),x) e Y xX | x € X}.

Notice that we called f~! a relation and not a function. In some circumstances f~!
will be a function and sometimes it will not be.

Exercise 7.40. Provide an example of a function f : X — Y such that f~! is not a function.
A bubble diagram is sufficient.

Exercise 7.41. Provide an example of a function f : X — Y such that f~! is a function. A
bubble diagram is sufficient.

Theorem 7.42. Let f : X — Y be a function. Then f~! is a function if and only if f is a
bijection.

Theorem 7.43. If f : X — Y is a bijection, then
(a) f'of =iy, and

(b) fof=iy.
Theorem 7.44. Let f : X — Y and g: Y — X be functions such that f is a bijection. If
gof =ixand fog=iy,theng=fl.
The upshot of the previous two theorems is that if f~! is a function, then it is the

only one satisfying the two-sided inverse property exhibited in Corollary 7.38 and Theo-
rem 7.43.

Theorem 7.45. If f : X — Y is a bijection, then f~! : Y — X is a bijection and (f~!)~! = f.
Theorem 7.46. If f : X — Y and g: Y — Z are both bijections, then (go f)™! = f~lo gl

The previous theorem is sometimes referred to as the “socks and shoes theorem”. Do
you see how it got this name?

Theorem 7.47. Let f : X — Y be a function and define ~ on X via a ~ b if and only if
fla)=f(b).

(a) The relation ~ is an equivalence relation,
(b) Each equivalence class [a] is equal to f~1(f(a)),
(c) The function g: X/~ — f(X) defined via g([a]) = f(a) is a bijection.



	 Preface
	1 Introduction
	1.1 What is This Course All About?
	1.2 An Inquiry-Based Approach
	1.3 Rights of the Learner
	1.4 Your Toolbox, Questions, and Observations
	1.5 Rules of the Game
	1.6 Structure of the Notes
	1.7 Some Minimal Guidance

	2 Mathematics and Logic
	2.1 A Taste of Number Theory
	2.2 Introduction to Logic
	2.3 Negating Implications and Proof by Contradiction
	2.4 Introduction to Quantification
	2.5 More About Quantification

	3 Set Theory and Topology
	3.1 Sets
	3.2 Power Sets and Paradoxes
	3.3 Indexing Sets
	3.4 Topology of R

	4 Induction
	4.1 Introduction to Induction
	4.2 More on Induction
	4.3 Complete Induction

	5 Three Famous Theorems
	5.1 The Fundamental Theorem of Arithmetic
	5.2 The Irrationality of 2
	5.3 The Infinitude of Primes

	6 Relations
	6.1 Introduction to Relations
	6.2 Equivalence Relations
	6.3 Partitions
	6.4 Modular Arithmetic

	7 Functions
	7.1 Introduction to Functions
	7.2 Images and Inverse Images of Functions
	7.3 Compositions and Inverse Functions

	8 Cardinality
	8.1 Introduction to Cardinality
	8.2 Finite Sets
	8.3 Infinite Sets
	8.4 Countable Sets
	8.5 Uncountable Sets

	A Elements of Style for Proofs
	B Fancy Mathematical Terms
	C Definitions in Mathematics

