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Preface

You are the creators. This book is a guide.
This book will not show you how to solve all the problems that are presented, but

it should enable you to find solutions, on your own and working together. The material
you are about to study did not come together fully formed at a single moment in history.
It was composed gradually over the course of centuries, with various mathematicians
building on the work of others, improving the subject while increasing its breadth and
depth.

Mathematics is essentially a human endeavor. Whatever you may believe about the
true nature of mathematics—does it exist eternally in a transcendent Platonic realm, or
is it contingent upon our shared human consciousness?—our experience of mathematics
is temporal, personal, and communal. Like music, mathematics that is encountered only
as symbols on a page remains inert. Like music, mathematics must be created in the
moment, and it takes time and practice to master each piece. The creation of mathematics
takes place in writing, in conversations, in explanations, and most profoundly in the
mental construction of its edifices on the basis of reason and observation.

To continue the musical analogy, you might think of these notes like a performer’s
score. Much is included to direct you towards particular ideas, but much is missing that
can only be supplied by you: participation in the creative process that will make those
ideas come alive. Moreover, your success will depend on the pursuit of both individual
excellence and collective achievement. Like a musician in an orchestra, you should bring
your best work and be prepared to blend it with others’ contributions.

In any act of creation, there must be room for experimentation, and thus allowance
for mistakes, even failure. A key goal of our community is that we support each other—
sharpening each other’s thinking but also bolstering each other’s confidence—so that we
can make failure a productive experience. Mistakes are inevitable, and they should not
be an obstacle to further progress. It’s normal to struggle and be confused as you work
through new material. Accepting that means you can keep working even while feeling
stuck, until you overcome and reach even greater accomplishments.

This book is a guide. You are the creators.

5



Chapter 1

Introduction

1.1 What is This Course All About?

The foundations of mathematics refers to logic and set theory; the axioms of number and
space. Also, it refers to an introduction to the techniques of proof, and at a larger level
the process of doing Mathematics. Proof is central to doing mathematics.

Up to this point, it is likely that your experience of mathematics has been about us-
ing formulas and algorithms. That is only one part of mathematics. Mathematicians do
much more than just use formulas. Mathematicians experiment, make conjectures, write
definitions, and prove theorems. In this class, then, we will learn about doing all of these
things.

What will this class require? Daily practice. Just like learning to play an instrument or
sport, you will have to learn new skills and ideas. Sometimes you’ll feel good, sometimes
frustrated. You’ll probably go through a range of feelings from being exhilarated, to
being stuck. Figuring it out, victories, defeats, and all that is part of real life is what
you can expect. Most importantly it will be rewarding. Learning mathematics requires
dedication. It will require that you be patient despite periods of confusion. It will require
that you persevere in order to understand. As the instructor, I am here to guide you, but
I cannot do the learning for you, just as a music teacher cannot move your fingers and
your heart for you. Only you can do that. I can give suggestions, structure the course to
assist you, and try to help you figure out how to think through things. Do your best, be
prepared to put in a lot of time, and do all the work. Ask questions in class, ask questions
in office hours, and ask your classmates questions. When you work hard and you come
to understand, you feel good about yourself. In the meantime, you have to believe that
your work will pay off in intellectual development.

How will this class be organized? You have probably heard that mathematics is not
a spectator sport. Our focus in this class is on learning to DO mathematics, not learn-
ing to sit patiently while others do it. Therefore, class time will be devoted to working
on problems, and especially on students presenting conjectures and proofs to the class,
asking questions of presenters in order to understand their work and their thinking, and
sharing and clarifying our thinking and understanding of each other’s ideas.

The class is fueled by your ability to prove theorems and share your ideas. As we
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progress, you will find that you have ideas for proofs, but you are unsure of them. In that
case, you can either bring your idea to the class, or you can bring it to office hours. By
coming to office hours, you have a chance to refine your ideas and get individual feedback
before bringing them to the class. The more you use office hours, the more you will learn.
If the whole class is stuck, we can work on some ego-booster problems to get your ideas
flowing.

Finally, this is a very exciting time in your mathematical career. It’s where you learn
what mathematics is really about!

The mathematician does not
study pure mathematics
because it is useful; he studies it
because he delights in it, and he
delights in it because it is
beautiful.

Henri Poincaré

1.2 An Inquiry-Based Approach

This is not a lecture-oriented class or one in which mimicking prefabricated examples
will lead you to success. You will be expected to work actively to construct your own
understanding of the topics at hand with the readily available help of me and your class-
mates. Many of the concepts you learn and problems you work on will be new to you and
ask you to stretch your thinking. You will experience frustration and failure before you
experience understanding. This is part of the normal learning process. If you are doing
things well, you should be confused at different points in the semester. The material is
too rich for a human being to completely understand it immediately. Your viability as a
professional in the modern workforce depends on your ability to embrace this learning
process and make it work for you.

Don’t fear failure. Not failure,
but low aim, is the crime. In
great attempts it is glorious
even to fail.

Bruce Lee

In order to promote a more active participation in your learning, we will incorporate
ideas from an educational philosophy called inquiry-based learning (IBL). Loosely speak-
ing, IBL is a student-centered method of teaching mathematics that engages students in
sense-making activities. Students are given tasks requiring them to solve problems, con-
jecture, experiment, explore, create, and communicate. Rather than showing facts or a
clear, smooth path to a solution, the instructor guides and mentors students via well-
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crafted problems through an adventure in mathematical discovery. According to Laursen
and Rasmussen (2019), the Four Pillars of IBL are:

• Students engage deeply with coherent and meaningful mathematical tasks.

• Students collaboratively process mathematical ideas.

• Instructors inquire into student thinking.

• Instructors foster equity in their design and facilitation choices.

Much of the course will be devoted to students presenting their proposed solutions or
proofs on the board and a significant portion of your grade will be determined by how
much mathematics you produce. I use the word produce because I believe that the best
way to learn mathematics is by doing mathematics. Someone cannot master a musical
instrument or a martial art by simply watching, and in a similar fashion, you cannot
master mathematics by simply watching; you must do mathematics!

In any act of creation, there must be room for experimentation, and thus allowance
for mistakes, even failure. A key goal of our community is that we support each other—
sharpening each other’s thinking but also bolstering each other’s confidence—so that we
can make failure a productive experience. Mistakes are inevitable, and they should not
be an obstacle to further progress. It’s normal to struggle and be confused as you work
through new material. Accepting that means you can keep working even while feeling
stuck, until you overcome and reach even greater accomplishments.

You will become clever through
your mistakes.

German Proverb

Furthermore, it is important to understand that solving genuine problems is difficult
and takes time. You shouldn’t expect to complete each problem in 10 minutes or less.
Sometimes, you might have to stare at the problem for an hour before even understanding
how to get started.

In this course, everyone will be required to

• read and interact with course notes and textbook on your own;

• write up quality solutions/proofs to assigned problems;

• present solutions/proofs on the board to the rest of the class;

• participate in discussions centered around a student’s presented solution/proof;

• call upon your own prodigious mental faculties to respond in flexible, thoughtful,
and creative ways to problems that may seem unfamiliar on first glance.

https://www.colorado.edu/eer/sites/default/files/attached-files/laursenrasmussencommentaryauthorversion0219.pdf
https://www.colorado.edu/eer/sites/default/files/attached-files/laursenrasmussencommentaryauthorversion0219.pdf
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As the semester progresses, it should become clear to you what the expectations are.

Tell me and I forget, teach me
and I may remember, involve
me and I learn.

Benjamin Franklin

1.3 Rights of the Learner

As a student in this class, you have the right:

1. to be confused,

2. to make a mistake and to revise your thinking,

3. to speak, listen, and be heard, and

4. to enjoy doing mathematics.

You may encounter many
defeats, but you must not be
defeated.

Maya Angelou

1.4 Your Toolbox, Questions, and Observations

Throughout the semester, we will develop a list of tools that will help you understand and
do mathematics. Your job is to keep a list of these tools, and it is suggested that you keep
a running list someplace.

Next, it is of utmost importance that you work to understand every proof. (Every!)
Questions are often your best tool for determining whether you understand a proof.
Therefore, here are some sample questions that apply to any proof that you should be
prepared to ask of yourself or the presenter:

• What method(s) of proof are you using?

• What form will the conclusion take?

• How did you know to set up that [equation, set, whatever]?

• How did you figure out what the problem was asking?

• Was this the first thing you tried?
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• Can you explain how you went from this line to the next one?

• What were you thinking when you introduced this?

• Could we have . . . instead?

• Would it be possible to . . . ?

• What if . . . ?

Another way to help you process and understand proofs is to try and make obser-
vations and connections between different ideas, proof statements and methods, and to
compare approaches used by different people. Observations might sound like some of
the following:

• When I tried this proof, I thought I needed to . . . But I didn’t need that, because . . .

• I think that . . . is important to this proof, because . . .

• When I read the statement of this theorem, it seemed similar to this earlier theorem.
Now I see that it [is/isn’t] because . . .

1.5 Rules of the Game

You should not look to resources outside the context of this course for help. That is, you
should not be consulting the Internet, other texts, other faculty, or students outside of our
course. On the other hand, you may use each other, the course notes, me, and your own
intuition. In this class, earnest failure outweighs counterfeit success; you need not feel
pressure to hunt for solutions outside your own creative and intellectual reserves. For
more details, check out the Syllabus.

1.6 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It
is your responsibility to read and understand new definitions and their related concepts.
However, you will be supported in this sometimes difficult endeavor. In addition, you
will be asked to complete exercises aimed at solidifying your understanding of the mate-
rial. Most importantly, you will be asked to make conjectures, produce counterexamples,
and prove theorems.

Most items in the notes are labelled with a number. The items labelled as Definition
and Example are meant to be read and digested. However, the items labelled as Exercise,
Question, Theorem, Corollary, and Problem require action on your part. In particu-
lar, items labelled as Exercise are typically computational in nature and are aimed at
improving your understanding of a particular concept. There are very few items in the
notes labelled as Question, but in each case it should be obvious what is required of you.
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Items with the Theorem and Corollary designation are mathematical facts and the in-
tention is for you to produce a valid proof of the given statement. The main difference
between a Theorem and Corollary is that corollaries are typically statements that follow
quickly from a previous theorem. In general, you should expect corollaries to have very
short proofs. However, that doesn’t mean that you can’t produce a more lengthy yet valid
proof of a corollary. The items labelled as Problem are sort of a mixed bag. In many
circumstances, I ask you to provide a counterexample for a statement if it is false or to
provide a proof if the statement is true. Usually, I have left it to you to determine the
truth value. If the statement for a problem is true, one could relabel it as a theorem.

It is important to point out that there are very few examples in the notes. This is
intentional. One of the goals of the items labelled as Exercise is for you to produce the
examples.

Lastly, there are many situations where you will want to refer to an earlier definition or
theorem/corollary/problem. In this case, you should reference the statement by number.
For example, you might write something like, “By Theorem 2.14, we see that. . . .”

1.7 Some Minimal Guidance

Especially in the opening sections, it won’t be clear what facts from your prior experience
in mathematics we are “allowed” to use. Unfortunately, addressing this issue is difficult
and is something we will sort out along the way. However, in general, here are some
minimal and vague guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations.
You should feel free to do this whenever the need arises. But you should show sufficient
work along the way. You do not need to write down justifications for basic algebraic ma-
nipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same
amount on the same side of an equation, adding like terms, factoring, basic simplifica-
tion, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a
proof. When necessary, you should cite a previous definition, theorem, etc. by number.

Unlike the experience many of you had writing proofs in geometry, our proofs will be
written in complete sentences. You should break sections of a proof into paragraphs and
use proper grammar. There are some pedantic conventions for doing this that I will point
out along the way. Initially, this will be an issue that most students will struggle with,
but after a few weeks everyone will get the hang of it.

Ideally, you should rewrite the statements of theorems before you start the proof.
Moreover, for your sake and mine, you should label the statement with the appropriate
number. I will expect you to indicate where the proof begins by writing “Proof.” at the
beginning. Also, we will conclude our proofs with the standard “proof box” (i.e., � or�),
which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your
assumptions crystal clear. Sometimes there will be some implicit assumptions that we can
omit, but at least in the beginning, you should get in the habit of stating your assumptions
up front. Typically, these statements will start off “Assume. . . ” or “Let. . . ”.



CHAPTER 1. INTRODUCTION

This should get you started. We will discuss more as the semester progresses. Now, go
have fun and kick some butt!

If you want to sharpen a sword,
you have to remove a little
metal.

Unknown



Chapter 2

Mathematics and Logic

Before you get started, make sure you’ve read Chapter 1, which sets the tone for the work
we will begin doing here.

2.1 A Taste of Number Theory

In this section, we will work with the set of integers, Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}. The
purpose of this section is to get started with proving some theorems about numbers and
study the properties of Z. Because you are so familiar with properties of the integers,
one of the issues that we will bump into knowing which facts about the integers we can
take for granted. As a general rule of thumb, you should attempt to use the definitions
provided without relying too much on your prior knowledge. We will likely need to
discuss this further as issues arise.

It is important to note that we are diving in head first here. There are going to be some
subtle issues that you will bump into and our goal will be to see what those issues are,
and then we will take a step back and start again. See what you can do!

Recall that we use the symbol “∈” as an abbreviation for the phrase “is an element of”
or sometimes simply “in.” For example, the mathematical expression “n ∈ Z” means “n is
an element of the integers.”

Definition 2.1. An integer n is even if n = 2k for some k ∈ Z.

Definition 2.2. An integer n is odd if n = 2k + 1 for some k ∈ Z.

Notice that we framed the definition of “even” in terms of multiplication as opposed
to division. When tackling theorems and problems involving even or odd, be sure to
make use of our formal definitions and not some of the well-known divisibility proper-
ties. For now, you should avoid arguments that involve statements like, “even numbers
have no remainder when divided by 2 while odd numbers do have a remainder.” For the
remainder of this section, you may assume that every integer is either even or odd but
never both.

Theorem 2.3. The sum of two consecutive integers is odd.

13
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Theorem 2.4. If n is an even integer, then n2 is an even integer.

Problem 2.5. Prove or provide a counterexample: The sum of an even integer and an odd
integer is odd.

Question 2.6. Did Theorem 2.3 need to come before Problem 2.5? Could we have used
Problem 2.5 to prove Theorem 2.3? If so, outline how this alternate proof would go.
Perhaps your original proof utilized the approach I’m hinting at. If this is true, can you
think of a proof that does not rely directly on Problem 2.5? Is one approach better than
the other?

Problem 2.7. Prove or provide a counterexample: The product of an odd integer and an
even integer is odd.

Problem 2.8. Prove or provide a counterexample: The product of an odd integer and an
odd integer is odd.

Problem 2.9. Prove or provide a counterexample: The product of two even integers is
even.

Definition 2.10. An integer n divides the integer m, written n|m, if and only if there
exists k ∈ Z such that m = nk. In the same context, we may also write that m is divisible
by n.

Question 2.11. For integers n and m, how are the following mathematical expressions
similar and how are they different?

(a) m|n

(b)
m
n

(c) m/n

In this section on number theory, we allow addition, subtraction, and multiplication
of integers. In general, division is not allowed since an integer divided by an integer may
result in a number that is not an integer. The upshot: don’t write m

n . When you feel the
urge to divide, switch to an equivalent formulation using multiplication. This will make
your life much easier when proving statements involving divisibility.

Problem 2.12. Let n ∈ Z. Prove or provide a counterexample: If 6 divides n, then 3
divides n.

Problem 2.13. Let n ∈ Z. Prove or provide a counterexample: If 6 divides n, then 4
divides n.

Theorem 2.14. Assume n,m,a ∈ Z. If a|n, then a|mn.

A theorem that follows almost immediately from another theorem is called a corollary
(see Appendix B). See if you can prove the next result quickly using the previous theorem.
Be sure to cite the theorem in your proof.
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Corollary 2.15. Assume n,a ∈ Z. If a divides n, then a divides n2.

Problem 2.16. Assume n,a ∈ Z. Prove or provide a counterexample: If a divides n2, then
a divides n.

Theorem 2.17. Assume n,a ∈ Z. If a divides n, then a divides −n.

Theorem 2.18. Assume n,m,a ∈ Z. If a divides m and a divides n, then a divides m+n.

Problem 2.19. Is the converse1 of Theorem 2.18 true? That is, is the following statement
true?

Assume n,m,a ∈ Z. If a divides m+n, then a divides m and a divides n.

If the statement is true, prove it. If the statement is false, provide a counterexample.

Once we’ve proved a few theorems, we should be on the look out to see if we can
utilize any of our current results to prove new results. There’s no point in reinventing the
wheel if we don’t have to. Try to use a couple of our previous results to prove the next
theorem.

Theorem 2.20. Assume n,m,a ∈ Z. If a divides m and a divides n, then a divides m−n.

Problem 2.21. Assume a,b,m ∈ Z. Determine whether the following statement holds
sometimes, always, or never.

If ab divides m, then a divides m and b divides m.

Justify with a proof or counterexample.

Theorem 2.22. If a,b,c ∈ Z such that a divides b and b divides c, then a divides c.

The previous theorem is referred to as transitivity of division of integers.

Theorem 2.23. The sum of any three consecutive integers is always divisible by three.

2.2 Introduction to Logic

After diving in head first in the last section, we’ll take a step back and do a more careful
examination of what it is we are actually doing.

Definition 2.24. A proposition (or statement) is a sentence that is either true or false.

For example, the sentence “All dogs have four legs” is a false proposition. However,
the perfectly good sentence “x = 1” is not a proposition all by itself since we don’t actually
know what x is.

Exercise 2.25. Determine whether the following are propositions or not. Explain.

1See Definition 2.39 for the formal definition of converse.



CHAPTER 2. MATHEMATICS AND LOGIC

(a) All cars are red.

(b) Every person whose name begins with J has the name Joe.

(c) x2 = 4.

(d) There exists an x such that x2 = 4.

(e) For all real numbers x, x2 = 4.

(f)
√

2 is an irrational number.

(g) p is prime.

(h) Led Zeppelin is the best band of all time.

Given two propositions, we can form more complicated propositions using logical
connectives.

Definition 2.26. Let A and B be propositions.

(a) The proposition “not A” is true if and only if2 A is false; expressed symbolically as
¬A and called the negation of A.

(b) The proposition “A and B” is true if and only if both A and B are true; expressed
symbolically as A∧B and called the conjunction of A and B.

(c) The proposition “A or B” is true if and only if at least one of A or B is true; expressed
symbolically as A∨B and called the disjunction of A and B.

(d) The proposition “If A, then B” is true if and only if both A and B are true, or A is
false; expressed symbolically as A =⇒ B and called an implication or conditional
statement. Note that A =⇒ B may also be read as “A implies B” or “A only if B”.

Each of the theorems that we proved in Section 2.1 are examples of conditional state-
ments. However, some of the statements were disguised as such. For example, Theo-
rem 2.3 states, “The sum of two consecutive integers is odd.” We can reword this theorem
as, “If x ∈ Z, then x+ (x+ 1) is odd.”

Exercise 2.27. Reword Theorem 2.23 so that it explicitly reads as a conditional statement.

The proofs of each of the theorems in Section 2.1 had the same format, which we refer
to as a direct proof.

Skeleton Proof 2.28 (Proof of A =⇒ B by direct proof). If you want to prove the impli-
cation A =⇒ B via a direct proof, then the structure of the proof is as follows.

2Throughout mathematics, the phrase “if and only if” is common enough that it is sometimes abbreviated
“iff.” Roughly speaking, this phrase/word means “exactly when.”
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Proof. Assume A.

. . . [Use definitions and known results to derive B] . . .

Therefore, B.

Exercise 2.29. Describe the meaning of ¬(A∧B) and ¬(A∨B).

Exercise 2.30. Let A represent “6 is an even number” and B represent “6 is a multiple
of 4.” Express each of the following in ordinary English sentences and state whether the
statement is true or false.

(a) A∧B

(b) A∨B

(c) ¬A

(d) ¬B

(e) ¬(A∧B)

(f) ¬(A∨B)

(g) A =⇒ B

Definition 2.31. A truth table is a table that illustrates all possible truth values for a
proposition.

Example 2.32. Let A and B be propositions. Then the truth table for the conjunction A∧B
is given by the following.

A B A∧B

T T T
T F F
F T F
F F F

Notice that we have columns for each of A and B. The rows for these two columns corre-
spond to all possible combinations for A and B. The third column gives us the truth value
of A∧B given the possible truth values for A and B.

Note that each proposition has two possible truth values: true or false. Thus, if a
compound proposition P is built from n propositions, then the truth table for P will
require 2n rows.

Exercise 2.33. Create a truth table for each of A∨B, ¬A, ¬(A∧B), and ¬A∧¬B. Feel free
to add additional columns to your tables to assist you with intermediate steps.
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Problem 2.34. A coach promises, “If we win tonight, then I will buy you pizza tomorrow.”
Determine the case(s) in which the players can rightly claim to have been lied to. Use this
to help create a truth table for A =⇒ B.

Definition 2.35. Two statements P and Q are (logically) equivalent, expressed symboli-
cally as P ⇐⇒ Q and read “P if and only if Q”, if and only if they have the same truth
table.

Each of the next three facts can be justified using truth tables.

Theorem 2.36. If A is a proposition, then ¬(¬A) is equivalent to A.

Theorem 2.37 (DeMorgan’s Law). IfA and B are propositions, then¬(A∧B) ⇐⇒ ¬A∨¬B.

Problem 2.38. Let A and B be propositions. Conjecture a statement similar to Theo-
rem 2.37 for the proposition ¬(A∨ B) and then prove it. This is also called DeMorgan’s
Law.

Definition 2.39. The converse of A =⇒ B is B =⇒ A.

Exercise 2.40. Provide an example of a true conditional proposition whose converse is
false.

Definition 2.41. The inverse of A =⇒ B is ¬A =⇒ ¬B.

Exercise 2.42. Provide an example of a true conditional proposition whose inverse is
false.

Definition 2.43. The contrapositive of A =⇒ B is ¬B =⇒ ¬A.

Exercise 2.44. Let A and B represent the statements from Exercise 2.30. Express the
following in ordinary English sentences.

(a) The converse of A =⇒ B.

(b) The contrapositive of A =⇒ B.

Exercise 2.45. Find the converse and the contrapositive of the following statement: “If a
person lives in Flagstaff, then that person lives in Arizona.”

Use a truth table to prove the following theorem.

Theorem 2.46. The implication A =⇒ B is equivalent to its contrapositive.

The upshot of Theorem 2.46 is that if you want to prove a conditional proposition,
you can prove its contrapositive instead, called proof by contraposition.

Skeleton Proof 2.47 (Proof of A =⇒ B by contraposition). If you want to prove the
implication A =⇒ B by proving its contrapositive ¬B =⇒ ¬A instead, then the structure
of the proof is as follows.
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Proof. We will prove that if A, then B by proving its contrapositive. Assume ¬B.

. . . [Use definitions and known results to derive ¬A] . . .

This proves that if ¬B, then ¬A. Therefore, if A, then B.

Problem 2.48. Consider the following statement:

Assume x ∈ Z. If x2 is odd, then x is an odd integer.

The items below can be assembled to form a proof of this statement, but they are currently
out of order. Put them in the proper order.

1. Thus, we assume that x is an even integer.

2. We will prove this by contraposition.

3. Thus, x2 is twice an integer.

4. Since x = 2k, we have that x2 = (2k)2 = 4k2.

5. Since k is an integer, 2k2 is also an integer.

6. By the definition of even, there is an integer k such that x = 2k.

7. Since the contrapositive is equivalent to the original statement and we have proved
the contrapositive, the original statement is true.

8. By the definition of even integer, x2 is an even integer.

9. The contrapositive is “If x is an even integer, then x2 is an even integer.”

10. Notice that x2 = 2(2k2).

Try proving each of the next three theorems by proving the contrapositive of the given
statement.

Theorem 2.49. Assume x ∈ Z. If x2 is even, then x is even.

Theorem 2.50. Assume x,y ∈ Z. If xy is odd, then both x and y are odd.

Theorem 2.51. Assume x,y ∈ Z. If xy is even, then x or y is even.
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2.3 Negating Implications and Proof by Contradiction

So far we have discussed how to negate propositions of the form A, A∧B, and A∨B for
propositions A and B. However, we have yet to discuss how to negate propositions of the
form A =⇒ B. To begin, try proving the following result with a truth table.

Theorem 2.52. The implication A =⇒ B is equivalent to the disjunction ¬A∨B.

The next result follows quickly from Theorem 2.52 together with DeMorgan’s Law.

Corollary 2.53. The proposition ¬(A =⇒ B) is equivalent to A∧¬B.

Exercise 2.54. Let A and B be the propositions “Darth Vader is a hippie” and “Sarah Palin
is a liberal,” respectively.

(a) Express A =⇒ B as an English sentence involving the disjunction “or.”

(b) Express ¬(A =⇒ B) as an English sentence involving the conjunction “and.”

Exercise 2.55. The proposition “If .99 = 9
10 + 9

100 + 9
1000 + · · · , then .99 , 1” is false. Write

its (true) negation, as a conjunction.

Recall that a proposition is exclusively either true or false—it can never be both.

Definition 2.56. A compound proposition that is always false is called a contradiction.
A compound proposition that is always true is called a tautology.

Theorem 2.57. For any proposition A, the proposition ¬A∧A is a contradiction.

Exercise 2.58. Provide an example of a tautology using arbitrary propositions and any of
the logical connectives ¬, ∧, and ∨. Prove that your example is in fact a tautology.

Suppose that we want to prove some proposition P (which might be something like
A =⇒ B or even more complicated). One approach, called proof by contradiction, is
to assume ¬P and then logically deduce a contradiction of the form Q ∧ ¬Q, where Q
is some proposition (possibly equal to P ). Since this is absurd, the assumption ¬P must
have been false, so P is true. The tricky part about a proof by contradiction is that it is
not usually obvious what the statement Q should be.

Skeleton Proof 2.59 (Proof of P by contradiction). Here is what the general structure for
a proof by contradiction looks like if we are trying to prove the proposition P .

Proof. For sake of a contradiction, assume ¬P .

. . . [Use definitions and known results to derive
some Q and its negation ¬Q.] . . .

This is a contradiction. Therefore, P .

Proof by contradiction can be useful for proving statements of the form A =⇒ B,
where ¬B is easier to “get your hands on,” because ¬(A =⇒ B) is equivalent to A∧¬B
(see Corollary 2.53).
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Skeleton Proof 2.60 (Proof of A =⇒ B by contradiction). If you want to prove the impli-
cation A =⇒ B via a proof by contradiction, then the structure of the proof is as follows.

Proof. For sake of a contradiction, assume A and ¬B.

. . . [Use definitions and known results to derive
some Q and its negation ¬Q.] . . .

This is a contradiction. Therefore, if A, then B.

Establish the following theorem in two ways: (i) prove the contrapositive, and (ii)
prove via contradiction.

Theorem 2.61. Assume that x ∈ Z. If x is odd, then 2 does not divide x. (Prove in two
different ways.)

Prove the following theorem via contradiction. Afterward, consider the difficulties
one might encounter when trying to prove the result more directly.

Theorem 2.62. Assume that x,y ∈ N.3 If x divides y, then x ≤ y.

2.4 Introduction to Quantification

The sentence “x > 0” is not itself a proposition because x is a free variable. A sentence
with a free variable is a predicate. To turn a predicate into a proposition, we must either
substitute values for each free variable, or else “quantify” the free variables.

Function notation is a convenient way to represent predicates. For example, each of
the following represents a predicate with the indicated free variables.

• S(x) := “x2 − 4 = 0”

• L(a,b) := “a < b”

• F(x,y) := “x is friends with y”

The notation := indicates a definition. Also, note that the use of the quotation marks
above removed some ambiguity. What would S(x) = x2 − 4 = 0 mean? It looks like S(x)
equals 0, but actually we want S(x) to represent the whole sentence “x2 − 4 = 0”.

One way we can make propositions out of predicates is by assigning specific values to
the free variables. That is, if P (x) is a predicate and x0 is specific value for x, then P (x0) is
now a proposition (and is either true or false).

Exercise 2.63. Consider S(x) and L(a,b) as defined above. Determine the truth values of
S(0), S(−2), L(2,1), and L(−3,−2). Is L(2,b) a proposition or a predicate? Explain.

3N = {1,2,3, . . .} is the set of natural numbers. Some mathematicians (set theorists, in particular) include 0
in N, but this will not be our convention. The given statement is not true if we replace N with Z. Do you
see why?
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Besides substituting specific values for free variables in a predicate, we can also make
a claim about which values of the free variables apply to the predicate.

Exercise 2.64. Both of the following sentences are propositions. Decide whether each is
true or false. What would it take to justify your answers?

(a) For all x ∈ R, x2 − 4 = 0.4

(b) There exists x ∈ R such that x2 − 4 = 0.

Definition 2.65. “For all” is the universal quantifier and “there exists. . . such that” is
the existential quantifier.

We can replace “there exists. . . such that” with phrases like “for some” (possibly with
some other tweaking to the sentence). Similarly, “for all”, “for any”, “for every” are used
interchangeably in mathematics (even though they might convey slightly different mean-
ings in colloquial language). It is important to note that the existential quantifier is mak-
ing a claim about “at least one” not “exactly one.”

Variables that are quantified with a universal or existential quantifier are said to be
bound. To be a proposition, all variables must be bound. That is, in a proposition all
variables are quantified.

We must take care to specify the universe of acceptable values for the free variables.
Consider the sentence “For all x, x > 0.” Is this sentence true or false? The answer de-
pends on what set the universal quantifier applies to. Certainly, the sentence is false if
we apply it for all x ∈ Z. However, the sentence is true for all x ∈ N. Context may resolve
ambiguities, but otherwise, we must write clearly: “For all x ∈ Z, x > 0” or “For all x ∈ N,
x > 0.” The set of acceptable values for a variable is called the universe (of discourse).

Exercise 2.66. Suppose our universe of discourse is the set of integers.

(a) Provide an example of a predicate P (x) such that “For all x, P (x)” is true.

(b) Provide an example of a predicateQ(x) such that “For all x,Q(x)” is false, but “There
exists x such that Q(x)” is true.

If a predicate has more than one free variable, then we can build propositions by
quantifying each variable. However, the order of the quantifiers is extremely important!

Exercise 2.67. Let P (x,y) be a predicate with free variables x and y in a universe of dis-
course U . One way to quantify the variables is “For all x ∈U , there exists y ∈U such that
P (x,y).” How else can the variables be quantified?

The next exercise illustrates that at least some of the possibilities listed in the previous
exercise are not equivalent to each other.

Exercise 2.68. Suppose the universe of discourse is the set of people. Consider the pred-
icate M(x,y) := “x is married to y”. Discuss the meaning of each of the following.

4The symbol R denotes the set of all real numbers.
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(a) For all x, there exists y such that M(x,y).

(b) There exists y such that for all x, M(x,y).

(c) For all x, for all y, M(x,y).

(d) There exists x such that there exists y such that M(x,y).

Exercise 2.69. Consider the predicate F(x,y) := “x = y2”. Discuss the meaning of each of
the following.

(a) There exists x such that there exists y such that F(x,y).

(b) There exists y such that there exists x such that F(x,y).

(c) For all y ∈ R, for all x ∈ R, F(x,y).

There are a couple of key points to keep in mind about quantification. To be a propo-
sition, all variables must be quantified. This can happen in at least two ways:

• The variables are explicitly bound by quantifiers in the same sentence.

• The variables are implicitly bound by preceding sentences or by context. Statements
of the form “Let x = . . .” and “Let x ∈ . . .” bind the variable x and remove ambiguity.

The order of the quantification is important. Reversing the order of the quantifiers can
substantially change the meaning of a proposition.

Quantification and logical connectives (“and,” “or,” “If. . . , then. . . ,” and “not”) enable
complex mathematical statements. For example, the formal definition of limx→c f (x) = L
is

For all ε > 0, there exists δ > 0 such that for all x, if 0 < |x − c| < δ, then
|f (x)−L| < ε.

In order to study the abstract nature of complicated mathematical statements, it is
useful to adopt some notation.

Definition 2.70. The universal quantifier “for all” is denoted ∀ , and the existential
quantifier “there exists. . . such that” is denoted ∃ .

Using our abbreviations for the logical connectives and quantifiers, we can symbol-
ically represent mathematical propositions. For example, the (true) proposition “There
exists x ∈ R such that x2 − 1 = 0” becomes “(∃x ∈ R)(x2 − 1 = 0),” while the (false) propo-
sition “For all x ∈ N, there exists y ∈ N such that y < x” becomes “(∀x)(x ∈ N =⇒ (∃y)(y ∈
N =⇒ y < x))” or “(∀x ∈ N)(∃y ∈ N)(y < x).”

Exercise 2.71. Convert the following statements into statements using only logical sym-
bols. Assume that the universe of discourse is the set of real numbers.

(a) There exists a number x such that x2 + 1 is greater than zero.
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(b) There exists a natural number n such that n2 = 36.

(c) For every real number x, x2 is greater than or equal to zero.

Exercise 2.72. Express the formal definition of a limit (given above Definition 2.70) in
logical symbols.

If A(x) and B(x) are predicates, then it is standard practice for the sentence A(x) =⇒
B(x) to mean (∀x)(A(x) =⇒ B(x)) (where the universe of discourse for x needs to be made
clear). In this case, we say that the universal quantifier is implicit.

Exercise 2.73. Consider the proposition “If ε > 0, then there exists N ∈ N such that 1/N <
ε.” Assume the universe of discourse is the set R.

(a) Express the statement in logical symbols. Is the statement true?

(b) Reverse the order of the quantifiers to get a new statement. Does the meaning
change? If so, how? Is the new statement true?

The symbolic expression (∀x)(∀y) can be replaced with the simpler expression (∀x,y)
as long as x and y are elements of the same universe.

Exercise 2.74. Express the statement “For all x,y ∈ R with x < y, there exists m ∈ R such
that x < m < y” using logical symbols.

Exercise 2.75. Rewrite the following statements in words and determine whether each is
true or false.

(a) (∀n ∈ N)(n2 ≥ 5)

(b) (∃n ∈ N)(n2 − 1 = 0)

(c) (∃N ∈ N)(∀n > N )(1
n < 0.01)

(d) (∀m,n ∈ Z)(2|m∧ 2|n =⇒ 2|(m+n))

(e) (∀x ∈ N)(∃y ∈ N)(x − 2y = 0)

(f) (∃x ∈ N)(∀y ∈ N)(y ≤ x)

To whet your appetite for the next section, consider how you might prove a statement
of the form “For all x. . . .” If a statement is false, then its negation is true. How would you
go about negating a statement involving quantifiers?
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2.5 More About Quantification

Mathematical proofs do not explicitly use the symbolic representation of a given state-
ment in terms of quantifiers and logical connectives. Nonetheless, having this notation at
our disposal allows us to compartmentalize the abstract nature of mathematical propo-
sitions and will provide us with a way to talk about the meta-concepts surrounding the
construction of proofs.

Definition 2.76. Two quantified propositions are equivalent in a given universe of dis-
course if and only if they have the same truth value in that universe. Two quantified
propositions are equivalent if and only if they are equivalent in every universe of dis-
course.

Exercise 2.77. Consider the propositions (∃x)(x2 − 4 = 0) and (∃x)(x2 − 2 = 0).

(a) Are these propositions equivalent if the universe of discourse is the set of real num-
bers?

(b) Give two different universes of discourse that yield different truth values for these
propositions.

(c) What can you conclude about the equivalence of these statements?

It is worth pointing out an important distinction. Consider the propositions “All cars
are red” and “All natural numbers are positive”. Both of these are instances of the log-
ical form (∀x)P (x). It turns out that the first proposition is false and the second is true;
however, it does not make sense to attach a truth value to the logical form. A logical form
is a blueprint for particular propositions. If we are careful, it makes sense to talk about
whether two logical forms are equivalent. For example, (∀x)(P (x) =⇒ Q(x)) is equivalent
to (∀x)(¬Q(x) =⇒ ¬P (x)). For fixed P (x) and Q(x), these two forms will always have the
same truth value independent of the universe of discourse. If you change P (x) and Q(x),
then the truth value may change, but the two forms will still agree.

The next theorem tell us how to negate logical forms involving quantifiers.

Theorem 2.78. Let P (x) be a predicate. Then

(a) ¬(∀x)P (x) is equivalent to (∃x)(¬P (x))

(b) ¬(∃x)P (x) is equivalent to (∀x)(¬P (x)).

Exercise 2.79. Negate each of the following. Disregard the truth value and the universe
of discourse.

(a) (∀x)(x > 3)

(b) (∃x)(x is prime∧ x is even)

(c) All cars are red.

(d) Every Wookiee is named Chewbacca.
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(e) Some hippies are Republican.

(f) For all x ∈ N, x2 + x+ 41 is prime.

(g) There exists x ∈ Z such that 1/x < Z.

(h) There is no function f such that if f is continuous, then f is not differentiable.

Using Theorem 2.78 and our previous results involving quantification, we can negate
complex mathematical propositions by working from left to right. For example, if we
negate the (false) proposition (∃x ∈ R)(∀y ∈ R)(x+y = 0), we obtain the proposition ¬(∃x ∈
R)(∀y ∈ R)(x+ y = 0), which is equivalent to (∀x ∈ R)(∃y ∈ R)(x+ y , 0).

For a more complicated example, consider the (false) proposition (∀x)[x > 0 =⇒
(∃y)(y < 0 ∧ xy > 0)]. Then its negation ¬(∀x)[x > 0 =⇒ (∃y)(y < 0 ∧ xy > 0)] is equiv-
alent to (∃x)[x > 0 ∧ ¬(∃y)(y < 0 ∧ xy > 0)], which happens to be equivalent to (∃x)[x >
0∧ (∀y)(y ≥ 0∨ xy ≤ 0)]. Can you identify the previous theorems that were used when
negating this proposition?

Exercise 2.80. Negate each of the following. Disregard the truth value and the universe
of discourse.

(a) (∀n ∈ N)(∃m ∈ N)(m < n)

(b) (∀x,y,z ∈ Z)((xy is even∧ yz is even) =⇒ xz is even)

(c) For all positive real numbers x, there exists a real number y such that y2 = x.

(d) There exists a married person x such that for all married people y, x is married to y.

At this point, we should be able to use our understanding of quantification to con-
struct counterexamples to complicated false propositions and proofs of complicated true
propositions. Here are some general proof structures for various logical forms.

Skeleton Proof 2.81 (Direct Proof of (∀x)P (x)). Here is the general structure for a direct
proof of the proposition (∀x)P (x).

Proof. Let x ∈U . [U is the universe of discourse]

. . . [Use definitions and known results.] . . .

Therefore, P (x) is true. Since x was arbitrary, for all x, P (x).

Skeleton Proof 2.82 (Proof of (∀x)P (x) by Contradiction). Here is the general structure
for a proof of the proposition (∀x)P (x) via contradiction.

Proof. For sake of a contradiction, assume that there exists x ∈ U such that ¬P (x).
[U is the universe of discourse]

. . . [Do something to derive a contradiction.] . . .

This is a contradiction. Therefore, for all x, P (x) is true.
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Skeleton Proof 2.83 (Direct Proof of (∃x)P (x)). Here is the general structure for a direct
proof of the proposition (∃x)P (x).

Proof. . . . [Use definitions and previous results to deduce that an x exists for which P (x)
is true; or if you have an x that works, just verify that it does.] . . .
Therefore, there exists x such that P (x).

Skeleton Proof 2.84 (Proof of (∃x)P (x) by Contradiction). Here is the general structure
for a proof of the proposition (∃x)P (x) via contradiction.

Proof. For sake of a contradiction, assume that for all x, ¬P (x).

. . . [Do something to derive a contradiction.] . . .

This is a contradiction. Therefore, there exists x such that P (x).

Note that if Q(x) is a proposition for which (∀x)Q(x) is false, then a counterexample
to this proposition amounts to showing (∃x)(¬Q(x)), which might be proved via the third
scenario above.

It is important to point out that sometimes we will have to combine various proof
techniques in a single proof. For example, if you wanted to prove a proposition of the
form (∀x)(P (x) =⇒ Q(x)) by contradiction, we would start by assuming that there exists
x such that P (x) and ¬Q(x).

Problem 2.85. For each of the following statements, determine its truth value. If the
statement is false, provide a counterexample. Prove at least two of the true statements.

(a) For all n ∈ N, n2 ≥ 5.

(b) There exists n ∈ N such that n2 − 1 = 0.

(c) There exists x ∈ N such that for all y ∈ N, y ≤ x.

(d) For all x ∈ Z, x3 ≥ x.

(e) For all n ∈ Z, there exists m ∈ Z such that n+m = 0.

(f) There exists integers a and b such that 2a+ 7b = 1.

(g) There do not exist integers m and n such that 2m+ 4n = 7.

(h) For all integers a,b,c, if a divides bc, then either a divides b or a divides c.

To prove the next theorem, you might want to consider two different cases.

Theorem 2.86. For all integers, 3n2 +n+ 14 is even.



Chapter 3

Set Theory and Topology

At its essence, all of mathematics is built on set theory. In this chapter, we will introduce
some of the basics of sets and their properties.

3.1 Sets

Definition 3.1. A set is a collection of objects called elements. If A is a set and x is an
element of A, we write x ∈ A. Otherwise, we write x < A. The set containing no elements
is called the empty set, and is denoted by the symbol ∅.

If we think of a set as a box potentially containing some stuff, then the empty set is a
box with nothing in it. One assumption we will make is that for any set A, A < A.

Definition 3.2. The language associated to sets is specific. We will often define sets using
the following notation, called set builder notation:

S = {x ∈ A | x satisfies some condition}

The first part “x ∈ A” denotes what type of x is being considered. The statements to the
right of the vertical bar (not to be confused with “divides”) are the conditions that x must
satisfy in order to be members of the set. This notation is read as “The set of all x in A
such that x satisfies some condition,” where “some condition” is something specific about
the restrictions on x relative to A.

There are a few sets that are commonly discussed in mathematics and have predefined
symbols to denote them. We’ve already encountered the integers, natural numbers, and
real numbers. Notice that our definition of the rational numbers uses set builder notation.

• Real Numbers: R denotes the set of real numbers.

• Integers: Z := {0,±1,±2,±3, . . .}

• Natural numbers: N := {1,2,3, . . .}. Since this set consists of the positive integers,
the natural numbers are sometimes denoted by Z+. Some books will include zero in
the set of natural numbers, but we will not do that.

28
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• Rational Numbers: Q := {a/b | a,b ∈ Z and b , 0}.

Exercise 3.3. Unpack each of the following sets and see if you can find a simple descrip-
tion of the elements that each set contains.

(a) A = {x ∈ N | x = 3k for some k ∈ N}

(b) B = {t ∈ R | t2 ≤ 2}

(c) C = {t ∈ Z | t2 ≤ 2}

(d) D = {m ∈ R |m = 1− 1
n , where n ∈ N}

Exercise 3.4. Write each of the following sentences using set builder notation.

(a) The set of all real numbers less than −
√

2.

(b) The set of all real numbers greater than −12 and less than or equal to 42.

(c) The set of all even natural numbers.

Definition 3.5. If A and B are sets, then we say that A is a subset of B, written A ⊆ B ,
provided that every element of A is also an element of B.

Observe that A ⊆ B is equivalent to “For all x (in the universe of discourse), if x ∈
A, then x ∈ B.” Since we know how to deal with “for all” statements and conditional
propositions, we know how to go about proving A ⊆ B.

Problem 3.6. Suppose A and B are sets. Describe a skeleton proof for proving that A ⊆ B.

Every set always has two rather boring subsets.

Theorem 3.7. Let S be a set. Then

(a) S ⊆ S (b) ∅ ⊆ S.

Exercise 3.8. List all of the subsets of A = {1,2,3}.

Theorem 3.9 (Transitivity of subsets). Suppose that A, B, and C are sets. If A ⊆ B and
B ⊆ C, then A ⊆ C.

Definition 3.10. If A ⊆ B, then A is called a proper subset provided that A , B. In this
case, we may write A ⊂ B or A( B .1

The following definitions should look familiar from precalculus.

Definition 3.11 (Interval Notation). For a,b ∈ R with a < b, we define the following.

1Warning: Some books use ⊂ to mean ⊆.
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(a) (a,b) = {x ∈ R | a < x < b}

(b) (a,∞) = {x ∈ R | a < x}

(c) (−∞,b) = {x ∈ R | x < b}

(d) [a,b] = {x ∈ R | a ≤ x ≤ b}

We analogously define [a,b), (a,b], [a,∞), and (−∞,b].

Definition 3.12. Let A and B be sets in some universe of discourse U .

(a) The union of the sets A and B is A∪B = {x ∈U | x ∈ A or x ∈ B}.

(b) The intersection of the sets A and B is A∩B = {x ∈U | x ∈ A and x ∈ B}.

(c) The set difference of the sets A and B is A \B = {x ∈U | x ∈ A and x < B}.

(d) The complement of A (relative to U ) is the set Ac =U \A = {x ∈U | x < A}.

Definition 3.13. If two sets A and B have the property that A∩B = ∅, then we say that A
and B are disjoint sets.

Exercise 3.14. Suppose that the universe of discourse is U = {1,2,3,4,5,6,7,8,9,10}. Let
A = {1,2,3,4,5}, B = {1,3,5}, and C = {2,4,6,8}. Find each of the following.

(a) A∩C

(b) B∩C

(c) A∪B

(d) A \B

(e) B \A

(f) C \B

(g) Bc

(h) Ac

(i) (A∪B)c

(j) Ac ∩Bc

Exercise 3.15. Suppose that the universe of discourse is U = R. Let A = [−3,−1), B =
(−2.5,2), and C = (−2,0]. Find each of the following.

(a) Ac

(b) A∩C

(c) A∩B

(d) A∪B

(e) (A∩B)c

(f) (A∪B)c

(g) A \B

(h) A \ (B∪C)

(i) B \A

Theorem 3.16. Let A and B be sets. If A ⊆ B, then Bc ⊆ Ac.

Definition 3.17. Two sets A and B are equal, denoted A = B , if and only if A ⊆ B and
B ⊆ A.

Given two sets A and B, if we want to prove A = B, then we have to do two separate
mini-proofs: one for A ⊆ B and one for B ⊆ A. It is common to label each mini-proof with
“(⊆)” and “(⊇)”, respectively.
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Theorem 3.18. Let A and B be sets. Then A \B = A∩Bc.

For each of the next two theorems, you can choose to prove either part (a) or part (b).
Of course, you are welcome to prove both parts, but you do not have to.

Theorem 3.19 (DeMorgan’s Law). Let A and B be sets. Then

(a) (A∪B)c = Ac ∩Bc (b) (A∩B)c = Ac ∪Bc.

Theorem 3.20 (Distribution of Union and Intersection). Let A, B, and C be sets. Then

(a) A∪ (B∩C) = (A∪B)∩ (A∪C) (b) A∩ (B∪C) = (A∩B)∪ (A∩C).

3.2 Power Sets and Paradoxes

We’ve already seen that using union, intersection, set difference, and complement we
can create new sets (in the same universe) from existing sets. In this section, we will
describe another way to generate new sets; however, the new sets will not “live” in the
same universe this time.

Definition 3.21. If S is a set, then the power set of S is the set of subsets of S. The power
set of S is denoted P (S) .

It follows immediately from the definition that A ⊆ S if and only if A ∈ P (S). For
example, if S = {a,b}, then P = {∅, {a}, {b},S}.

Exercise 3.22. For each of the following sets, find the power set.

(a) A = {◦,4,�}

(b) B = {a, {a}}

(c) C = ∅

(d) D = {∅}

Conjecture 3.23. How many subsets do you think that a set with n elements has? What
if n = 0? You do not need to prove your conjecture at this time. We will prove this later
using mathematical induction.

It is important to realize that the concepts of element and subset need to be carefully
delineated. For example, consider the set A = {x,y}. The object x is an element of A, but
the object {x} is both a subset of A and an element of P (A). This can get confusing rather
quickly. Consider the set B from Exercise 3.22. The set {a} happens to be an element of
B, a subset of B, and an element of P (B). The upshot is that it is important to pay close
attention to whether “⊆” or “∈” is the proper symbol to use.

Theorem 3.24. Let S and T be sets. Then S ⊆ T if and only if P (S) ⊆ P (T ).2

Theorem 3.25. Let S and T be sets. Then P (S)∩P (T ) = P (S ∩ T ).
2To prove this theorem, you have to write two distinct subproofs: A =⇒ B and B =⇒ A.
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Theorem 3.26. Let S and T be sets. Then P (S)∪P (T ) ⊆ P (S ∪ T ).

Problem 3.27. Provide a counterexample to show that it is not necessarily true that P (S)∪
P (T ) = P (S ∪ T ). This verifies that the converse of Theorem 3.26 is not true in general. Is
it ever true that P (S)∪P (T ) and P (S ∪ T ) are equal?

We now turn our attention to the issue of whether there is one mother of all universal
sets. Before reading any further, consider this for a moment. That is, is there one largest
set that all other sets are a subset of? Or, in other words, is there a set of all sets? To help
wrap our heads around this issue, consider the following riddle, known as the Barber of
Seville Paradox.

In Seville, there is a barber who shaves all those men, and only those men,
who do not shave themselves. Who shaves the barber?

Problem 3.28. In the Barber of Seville Paradox, does the barber shave himself or not?

Problem 3.28 is an example of a paradox. What do you think paradox means? Now,
suppose that there is a set of all sets and call it U . That is, U := {A | A is a set}.

Problem 3.29. Given our definition of U , explain why U is an element of itself.

If we continue with this line of reasoning, it must be the case that some sets are ele-
ments of themselves and some are not. Let X be the set of all sets that are elements of
themselves and let Y be the set of all sets that are not elements of themselves.

Problem 3.30. Does Y belong to X or Y ? Explain why this is a paradox.

The above paradox is one way of phrasing a paradox referred to as Russell’s Paradox.
Okay, how did we get into this mess in the first place?! By assuming the existence of a set
of all sets, we can produce all sorts of paradoxes. The only way to avoid these types of
paradoxes is to conclude that there is no set of all sets. That is, the collection of all sets is
not a set itself.

Problem 3.31. Pick any two of the paradoxes below and for each one explain why it is a
paradox.

(a) Librarian’s Paradox. A librarian is given the unenviable task of creating two new
books for the library. Book A contains the names of all books in the library that
reference themselves and Book B contains the names of all books in the library that
do not reference themselves. But the librarian just created two new books for the
library, so their titles must be in either Book A or Book B. Clearly Book A can be
listed in Book B, but where should the librarian list Book B?

(b) Liar’s Paradox. Consider the statement: this sentence is false. Is it true or false?
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(c) Berry Paradox. Consider the claim: every natural number can be unambiguously
described in fourteen words or less. It seems clear that this statement is false, but if
that is so, then there is some smallest natural number which cannot be unambigu-
ously described in fourteen words or less. Let’s call it n. But now n is “the smallest
natural number that cannot be unambiguously described in fourteen words or less.”
This is a complete and unambiguous description of n in fourteen words, contradict-
ing the fact that n was supposed not to have such a description. Therefore, all
natural numbers can be unambiguously described in fourteen words or less!

(d) The Naming Numbers Paradox. Consider the claim: every natural number can be
unambiguously described using no more than 50 characters (where a character is a–
z, 0–9, and a “space”). For example, we can describe 9 as “9” or “nine” or “the square
of the second prime number.” There are only 37 characters, so we can describe at
most 3750 numbers, which is very large, but not infinite. So the statement is false.
However, here is a “proof” that it is true. Let S be the set of natural numbers that
can be unambiguously described using no more than 50 characters. For the sake of
contradiction, suppose it is not all of N. Then there is a smallest number t ∈ N \ S.
We can describe t as: the smallest natural number not in S. Thus t can be described
using no more than 50 characters. So t ∈ S, a contradiction.

(e) Euathlus and Protagoras. Euathlus wanted to become a lawyer but could not pay
Protagoras. Protagoras agreed to teach him under the condition that if Euathlus
won his first case, he would pay Protagoras, otherwise not. Euathlus finished his
course of study and did nothing. Protagoras sued for his fee. He argued:

If Euathlus loses this case, then he must pay (by the judgment of the court).
If Euathlus wins this case, then he must pay (by the terms of the contract).
He must either win or lose this case.
Therefore Euathlus must pay me.

But Euathlus had learned well the art of rhetoric. He responded:

If I win this case, I do not have to pay (by the judgment of the court).
If I lose this case, I do not have to pay (by the contract).
I must either win or lose the case.
Therefore, I do not have to pay Protagoras.

3.3 Indexing Sets

Suppose we consider the following collection of open intervals:

(0,1), (0,1/2), (0,1/4), . . . , (0,1/2n−1), . . .
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This collection has a natural way for us to “index” the sets:

I1 = (0,1), I2 = (0,1/2), . . . , In = (0,1/2n−1), . . .

In this case the sets are indexed by the set N. The subscripts are taken from the index
set. If we wanted to talk about an arbitrary set from this indexed collection, we could use
the notation In.

Let’s consider another example:

{a}, {a,b}, {a,b,c}, . . . , {a,b,c, . . . , z}

An obvious way to index these sets is as follows:

A1 = {a},A2 = {a,b},A3 = {a,b,c}, . . . ,A26 = {a,b,c, . . . , z}

In this case, the collection of sets is indexed by {1,2, . . . ,26}.
Using indexing sets in mathematics is an extremely useful notational tool, but it is

important to keep straight the difference between the sets that are being indexed, the
elements in each set being indexed, the indexing set, and the elements of the indexing
set.

Any set (finite or infinite) can be used as an indexing set. Often capital Greek letters
are used to denote arbitrary indexing sets and small Greek letters to represent elements
of these sets. If the indexing set is a subset of R, then it is common to use Roman letters
as individual indices. Of course, these are merely conventions, not rules.

• If ∆ is a set and we have a collection of sets indexed by ∆, then we may write {Sα}α∈∆
to refer to this collection. We read this as “the set of S-alphas over alpha in Delta.”

• If a collection of sets is indexed by N, then we may write {Un}n∈N or {Un}∞n=1.

• Borrowing from this idea, a collection {A1, . . . ,A26}may be written as {An}26
n=1.

Definition 3.32. Suppose we have a collection {Aα}α∈∆.

(a) The union of the entire collection is defined via⋃
α∈∆

Aα = {x | x ∈ Aα for some α ∈ ∆}.

(b) The intersection of the entire collection is defined via⋂
α∈∆

Aα = {x | x ∈ Aα for all α ∈ ∆}.

In the special case that ∆ = N, we write

∞⋃
n=1

An = {x | x ∈ An for some n ∈ N} = A1 ∪A2 ∪A3 ∪ · · ·
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and ∞⋂
n=1

An = {x | x ∈ An for all n ∈ N} = A1 ∩A2 ∩A3 ∩ · · ·

Similarly, if ∆ = {1,2,3,4}, then

4⋃
n=1

An = A1 ∪A2 ∪A3 ∪A4 and
4⋂
n=1

An = A1 ∩A2 ∩A3 ∩A4.

Notice the difference between “
⋃

” and “∪” (respectively, “
⋂

” and “∩”).

Exercise 3.33. Let {In}n∈N be the collection of open intervals from the beginning of the
section. Find each of the following.

(a)
⋃
n∈N

In (b)
⋂
n∈N

In

Exercise 3.34. Let {An}26
n=1 be the collection from earlier in the section. Find each of the

following.

(a)
26⋃
n=1

An (b)
26⋂
n=1

An

Exercise 3.35. Let Sn = {x ∈ R | n− 1 < x < n}, where n ∈ N. Find each of the following.

(a)
∞⋃
n=1

Sn (b)
∞⋂
n=1

Sn

Exercise 3.36. Let Tn = {x ∈ R | −1
n < x <

1
n }, where n ∈ N. Find each of the following.

(a)
∞⋃
n=1

Tn (b)
∞⋂
n=1

Tn

Exercise 3.37. For each r ∈ Q (the rational numbers), let Nr be the set containing all real
numbers except r. Find each of the following.

(a)
⋃
r∈Q

Nr (b)
⋂
r∈Q

Nr

Definition 3.38. A collection of sets {Aα}α∈∆ is pairwise disjoint if Aα ∩Aβ = ∅ for α , β.

Exercise 3.39. Draw a Venn diagram of a collection of 3 sets that are pairwise disjoint.

Exercise 3.40. Provide an example of a collection of three sets, say {A1,A2,A3}, such that
the collection is not pairwise disjoint, but

⋂3
n=1An = ∅.

For each of the next two theorems, you can choose to prove either part (a) or part (b).

Theorem 3.41 (Generalized Distribution of Union and Intersection). Let {Aα}α∈∆ be a
collection of sets and let B be any set. Then
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(a) B∪

⋂
α∈∆

Aα

 =
⋂
α∈∆

(B∪Aα), (b) B∩

⋃
α∈∆

Aα

 =
⋃
α∈∆

(B∩Aα).

Theorem 3.42 (Generalized DeMorgan’s Law). Let {Aα}α∈∆ be a collection of sets. Then

(a)

⋃
α∈∆

Aα

C =
⋂
α∈∆

ACα , (b)

⋂
α∈∆

Aα

C =
⋃
α∈∆

ACα .

3.4 Topology of R
For this entire section, our universe of discourse is the set of real numbers. You may
assume all the usual basic algebraic properties of the real numbers (addition, subtraction,
multiplication, division, commutative property, distribution, etc.).

Recall that an axiom is a statement that we assume to be true. Here are some useful
axioms of the real numbers.

Axiom 3.43. If p and q are two different real numbers in R, then there is a number be-
tween them.

Exercise 3.44. Given real numbers p and q with p < q, construct a real number x such
that p < x < q. We know such a point must exist by the previous axiom, but this exercise
is asking you to produce an actual candidate.

Axiom 3.45. (Linear ordering) If a, b, and c are real numbers, then:

(a) If a < b and b < c, then a < c;

(b) Exactly one of the following is true: (i) a < b, (ii) a = b, or (iii) a > b.

Axiom 3.46. If p is a real number, then there exists q,r ∈ R such that q < p < r.

Axiom 3.47. (Archimedean Property) If x is a real number, then either (i) x is an integer
or (ii) there exists an integer n, such that n < x < n+ 1.

Definition 3.48. Suppose a,b ∈ R such that a < b. The intervals (a,b), (−∞,b), (a,∞) are
called open intervals while the interval [a,b] is called a closed interval. An interval like
[a,b) is neither open nor closed.

We will always assume that any time we write (a,b), [a,b], (a,b], or [a,b) that a < b.

Exercise 3.49. Give an example of each of the following.

(a) An open interval.

(b) A closed interval.

(c) An interval that is neither open nor closed.
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(d) An infinite set that is not an interval.

Definition 3.50. A set U is called an open set if and only if for every t ∈ U , there exists
an open interval containing t such that the open interval is a subset of U . We define the
empty set to be open.

Problem 3.51. Prove that the set I = (1,2) is an open set.

Theorem 3.52. Every open interval is an open set.

Theorem 3.53. The set of real numbers forms an open set.

Exercise 3.54. Provide an example of an open set that is not a single open interval.

Theorem 3.55. Every closed interval is not an open set.

Theorem 3.56. If x ∈ R, then the set {x} is not open.

Exercise 3.57. Determine whether {4,17,42} is an open set. Briefly justify your assertion.

Theorem 3.58. Let A and B be open sets. Then

(a) A∪B is an open set

(b) A∩B is an open set.

Theorem 3.59. Let {Uα}α∈∆ be a collection of open sets. Then
⋃
α∈∆Uα is an open set.

Exercise 3.60.

(a) Find a collection of open sets {Uα}α∈∆ such that
⋂
α∈∆Uα is not an open set.

(b) Find a collection of open sets {Bα}α∈∆ such that
⋂
α∈∆Bα is an open set.

Remark 3.61. Taken together, Theorems 3.58–3.59 and Exercise 3.60 tell us that the
union of any collection of open sets is open, but that the intersection of open sets may
or may not be open. However, if we are taking the intersection of finitely many open sets,
then the intersection will be open.

Exercise 3.62. Determine whether each of the following sets is open or not open.

(a) W =
∞⋃
n=2

(
n− 1

2
,n

)
(b) X =

∞⋂
n=1

(
−1
n
,
1
n

)
Definition 3.63. A point p is a limit point of the set S if and only if for every open
interval I containing p, there exists a point q ∈ I such that q ∈ S with q , p.

Problem 3.64. Consider the open interval S = (1,2). Prove each of the following.

(a) The points 1 and 2 are limit points of S.

(b) If p ∈ S, then p is a limit point of S.
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(c) If p < 1 or p > 2, then p is not a limit point of S.

Theorem 3.65. A point p is a limit point of (a,b) if and only if p ∈ [a,b].

Problem 3.66. Prove that the point p = 0 is a limit point of S = {1n : n ∈ N}. Are there any
other limit points?

Exercise 3.67. Provide an example of a set S such that 1 is a limit point of S, 1 , S, and S
contains no intervals.

Exercise 3.68. Provide an example of a set T with exactly two limit points.

Theorem 3.69. If p ∈ R, then p is a limit point of Q.

Definition 3.70. A set is called closed if and only if it contains all of its limit points.

Exercise 3.71. Provide an example of each of the following. You do not need to prove
that your answers are correct.

(a) A closed set.

(b) A set that is not closed.

(c) A set that is open and closed.

(d) A set that neither open nor closed.

Theorem 3.72. The set [a,b] is closed.

Theorem 3.73. The set U is open if and only if UC is closed.

Theorem 3.74. Every finite set is closed.

Problem 3.75. Prove or provide a counterexample: If a set S is not open, then it is closed.

Theorem 3.76. The set of real numbers is both open and closed.

Theorem 3.77. The set of rational numbers is neither open nor closed.

Theorem 3.78. The empty set is both open and closed.

Theorem 3.79. Let {Aα}α∈∆ be a collection of closed sets. Then
⋂
α∈∆Aα is a closed set.

Problem 3.80. Prove or provide a counterexample: If A and B are closed sets, then A∪B
is also closed.

Exercise 3.81. Provide an example of a collection of closed sets {Aα}α∈∆ such that
⋃
α∈∆Aα

is a not closed set.

Remark 3.82. You should compare what happened in Theorem 3.79 and Exercise 3.81 to
what we stated in Remark 3.61.



Chapter 4

Induction

In this chapter, we introduce mathematical induction, which is a proof technique that is
useful for proving statements of the form (∀n ∈ N)P (n), or more generally (∀n ∈ Z)(n ≥
a =⇒ P (n)), where P (n) is some predicate and a ∈ Z.

4.1 Introduction to Induction

Consider the claims:

(a) For all n ∈ N, 1 + 2 + 3 + · · ·+n =
n(n+ 1)

2
.

(b) For all n ∈ N, n2 +n+ 41 is prime.

Let’s take a look at potential proofs.

“Proof” of (a). If n = 1, then 1 = 1(1+1)
2 . If n = 2, then 1 + 2 = 3 = 2(2+1)

2 . If n = 3, then

1 + 2 + 3 = 6 = 3(3+1)
2 , and so on.

“Proof” of (b). If n = 1, then n2 +n+41 = 43, which is prime. If n = 2, then n2 +n+41 = 47,
which is prime. If n = 3, then n2 +n+ 41 = 53, which is prime, and so on.

Are these actual proofs? NO! In fact, the second claim isn’t even true. If n = 41, then
n2 + n+ 41 = 412 + 41 + 41 = 41(41 + 1 + 1), which is not prime since it has 41 as a factor.
It turns out that the first claim is true, but what we wrote cannot be a proof since the
same type of reasoning when applied to the second claim seems to prove something that
isn’t actually true. We need a rigorous way of capturing “and so on” and a way to verify
whether it really is “and so on.”

Axiom 4.1 (Axiom of Induction). Let S ⊆ N such that both

(i) 1 ∈ S, and

(ii) if k ∈ S, then k + 1 ∈ S.

Then S = N.

39
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Recall that an axiom is a basic mathematical assumption. That is, we are assuming
that the Axiom of Induction is true, which I’m hoping that you can agree is a pretty
reasonable assumption. We can think of the first hypothesis as saying that we have a first
rung of a ladder. The second hypothesis says that if we have any arbitrary rung of the
ladder, then we can always get to the next rung. Taken together, this says that we can get
from the first rung to the second, from the second to the third, and in general, from any
kth rung to the (k + 1)st rung.

Theorem 4.2 (Principle of Mathematical Induction). Let P (1), P (2), P (3), . . . be a sequence
of statements, one for each natural number.1 Assume

(i) P (1) is true, and

(ii) if P (k) is true, then P (k + 1) is true.

Then P (n) is true for all n ∈ N.2

The Principle of Mathematical Induction (PMI) provides us with a process for proving
statements of the form: “For all n ∈ N, P (n),” where P (n) is some predicate involving n.
Hypothesis (i) above is called the base step while (ii) is called the inductive step.

You should not confuse mathematical induction with inductive reasoning associated
with the natural sciences. Inductive reasoning is a scientific method whereby one in-
duces general principles from observations. On the other hand, mathematical induction
is a deductive form of reasoning used to establish the validity of a proposition.

Skeleton Proof 4.3 (Proof of (∀n ∈ N)P (n) by Induction). Here is the general structure for
a proof by induction.

Proof. We proceed by induction.

(i) Base step: [Verify that P (1) is true. This often, but not always, amounts to plug-
ging n = 1 into two sides of some claimed equation and verifying that both sides
are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k ∈ N, if P (k) is true, then P (k + 1)
is true.”] Let k ∈ N and assume that P (k) is true. [Do something to derive that
P (k + 1) is true.] Therefore, P (k + 1) is true.

Thus, by the PMI, P (n) is true for all n ∈ N.

Prove the next few theorems using induction.

Theorem 4.4. For all n ∈ N,
n∑
i=1

i =
n(n+ 1)

2
.3

1Think of P (n) as a predicate, where P (1) is the statement that corresponds to substituting in the value 1
for n.

2Hint: Let S = {k ∈ N | P (k) is true} and use the Axiom of Induction. The set S is sometimes called the truth
set. Your job is to show that the truth set is all of N.

3Recall that
n∑
i=1

i = 1 + 2 + 3 + · · ·+n, by definition. Also, this theorem should look familiar from calculus.
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Theorem 4.5. For all n ∈ N, 3 divides 4n − 1.

Theorem 4.6. For all n ∈ N, 6 divides n3 −n.

Theorem 4.7. Let p1,p2, . . . ,pn be n distinct points arranged on a circle. Then the number
of line segments joining all pairs of points is n2−n

2 .

Problem 4.8. Consider a grid of squares that is 2n squares wide by 2n squares long, where
n ∈ N. One of the squares has been cut out, but you don’t know which one! You have a
bunch of L-shapes made up of 3 squares. Prove that you can perfectly cover this chess-
board with the L-shapes (with no overlap) for any n ∈ N. Figure 4.1 depicts one possible
covering for the case involving n = 2.

Figure 4.1: One possible covering for the case involving n = 2 for Problem 4.8.

4.2 More on Induction

In the previous section, we discussed proving statements of the form (∀n ∈ N)P (n). Math-
ematical induction can actually be used to prove a broader family of results; namely,
those of the form

(∀n ∈ Z)(n ≥ a =⇒ P (n))

for any value a ∈ Z. Theorem 4.2 handles the special case when a = 1. The ladder analogy
from the previous section holds for this more general situation, too.

Theorem 4.9 (Principle of Mathematical Induction). Let P (a), P (a + 1), P (a + 2), . . . be a
sequence of statements, one for each integer greater than or equal to a. Assume that

(i) P (a) is true, and

(ii) if P (k) is true, then P (k + 1) is true.
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Then P (n) is true for all integers n ≥ a.4

Theorem 4.9 gives a process for proving statements of the form: “For all integers n ≥ a,
P (n).” As before, hypothesis (i) is called the base step, and (ii) is called the inductive step.

Skeleton Proof 4.10 (Proof of (∀n ∈ Z)(n ≥ a =⇒ P (n)) by Induction). Here is the general
structure for a proof by induction when the base case does not necessarily involve a = 1.

Proof. We proceed by induction.

(i) Base step: [Verify that P (a) is true. This often, but not always, amounts to plug-
ging n = a into two sides of some claimed equation and verifying that both sides
are actually equal.]

(ii) Inductive step: [Your goal is to prove “For all k ∈ Z, if P (k) is true, then P (k + 1)
is true.”] Let k ≥ a be an integer and assume that P (k) is true. [Do something
to derive that P (k + 1) is true.] Therefore, P (k + 1) is true.

Thus, by the PMI, P (n) is true for all integers n ≥ a.

Theorem 4.11. Let A be a finite set with n elements. Then P (A) is a set with 2n elements.5

Theorem 4.12. For all integers n ≥ 0, 4 divides 9n − 5.

Theorem 4.13. For all integers n ≥ 0, 4 divides 6 · 7n − 2 · 3n.

Theorem 4.14. For all integers n ≥ 2, 2n > n+ 1.

Theorem 4.15. For all integers n ≥ 0, 1 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

Theorem 4.16. Fix a real number r , 1. For all integers n ≥ 0,

1 + r1 + r2 + · · ·+ rn =
rn+1 − 1
r − 1

.

Theorem 4.17. For all integers n ≥ 3, 2 · 3 + 3 · 4 + · · ·+ (n− 1) ·n =
(n− 2)(n2 + 2n+ 3)

3
.

Theorem 4.18. For all integers n ≥ 1,
1

1 · 2
+

1
2 · 3

+ · · ·+ 1
n(n+ 1)

=
n

n+ 1
.

Theorem 4.19. For all integers n ≥ 1,
1

1 · 3
+

1
3 · 5

+
1

5 · 7
+ · · ·+ 1

(2n− 1)(2n+ 1)
=

n
2n+ 1

.

Theorem 4.20. For all integers n ≥ 0, 32n − 1 is divisible by 8.
4Hint: Mimic the proof of Theorem 4.2, but this time use the set S = {k ∈ N | P (a+ k − 1) is true}.
5We encountered this theorem back in Section 3.2 (see Conjecture 3.23), but we didn’t prove it. If you prove
this theorem using induction, at some point, you will need to argue that if you add one more element to a
finite set, then you end up with twice as many subsets. Also, notice that A may have 0 elements.
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Theorem 4.21. For all integers n ≥ 2, 2n < (n+ 1)!.

Theorem 4.22. For all integers n ≥ 2, 2 · 9n − 10 · 3n is divisible by 4.

Now consider an induction problem of a different sort, where you have to begin with
some experimentation.

Problem 4.23. For any n ∈ N, say that n straight lines are “safely drawn in the plane” if
no two of them are parallel and no three of them meet in a single point. Let S(n) be the
number of regions formed when n straight lines are safely drawn in the plane.

(a) Compute S(1), S(2), S(3), and S(4).

(b) Conjecture a recursive formula for S(n); that is, a formula for S(n) which may in-
volve some of the previous terms {S(n− 1),S(n− 2), . . .}. (If necessary, first compute
a few more values of S(n).)

(c) Prove your conjecture.

4.3 Complete Induction

There is another formulation of induction, where the inductive step begins with a set of
assumptions rather than one single assumption. This method is sometimes called com-
plete induction or strong induction.

Theorem 4.24 (Principle of Complete Mathematical Induction). Let P (1), P (2), P (3), . . . be
a sequence of statements, one for each natural number. Assume that

(i) P (1) is true, and

(ii) For all k ∈ N, if P (j) is true for all j ∈ N such that j ≤ k, then P (k + 1) is true.

Then P (n) is true for all n ∈ N.

Note the difference between ordinary induction (Theorems 4.2 and 4.9) and complete
induction. For the induction step of complete induction, we are not only assuming that
P (k) is true, but rather that P (j) is true for all j from 1 to k. Despite the name, complete
induction is not any stronger or more powerful than ordinary induction. It is worth
pointing out that anytime ordinary induction is an appropriate proof technique, so is
complete induction. So, when should we use complete induction?

In the inductive step, you need to reach P (k + 1), and you should ask yourself which
of the previous cases you need to get there. If all you need, is the statement P (k), then
ordinary induction is the way to go. If two preceding cases, P (k−1) and P (k), are necessary
to reach P (k+1), then complete induction is appropriate. In the extreme, if one needs the
full range of preceding cases (i.e., all statements P (1), P (2), . . . , P (k)), then again complete
induction should be utilized.

Note that in situations where complete induction is appropriate, it might be the case
that you need to verify more than one case in the base step. The number of base cases to
be checked depends on how one needs to “look back” in the induction step.
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Skeleton Proof 4.25 (Proof of (∀n ∈ N)P (n) by Complete Induction). Here is the general
structure for a proof by complete induction.

Proof. We proceed by induction.

(i) Base step: [Verify that P (1) is true. Depending on the statement, you may also
need to verify that P (k) is true for other specific values of k.]

(ii) Inductive step: [Your goal is to prove “For all k ∈ N, if for each k ∈ N, P (j) is true
for all j ∈ N such that j ≤ k, then P (k + 1) is true.”] Let k ∈ N. Suppose P (j)
is true for all j ≤ k. [Do something to derive that P (k + 1) is true.] Therefore,
P (k + 1) is true.

Thus, by the PCMI, P (n) is true for all integers n ≥ a.

Recall that Theorem 4.9 generalized Theorem 4.2 and allowed us to handle situations
where the base case was something other than P (1). We can generalize complete induction
in the same way, but we won’t write this down as a formal theorem.

Theorem 4.26. Define a sequence of numbers by a1 = 1, a2 = 3, and an = 3an−1 −2an−2 for
all natural numbers n ≥ 3. Then an = 2n − 1 for all n ∈ N.

Theorem 4.27. Define a sequence of numbers by a1 = 3, a2 = 5, a3 = 9 and an = 2an−1 +
an−2 − 2an−3 for all natural numbers n ≥ 4. Then an = 2n + 1 for all n ∈ N.

Theorem 4.28. Define a sequence of numbers by a1 = 1, a2 = 3, and an = an−1 +an−2 for all
natural numbers n ≥ 3. Then an <

(
7
4

)n
for all n ∈ N.

Theorem 4.29. Define a sequence of numbers by a1 = 1, a2 = 2, a3 = 3 and an = an−1 +
an−2 + an−3 for all natural numbers n ≥ 4. Then an < 2n for all n ∈ N.

Theorem 4.30. Define a sequence of numbers by a1 = 1, a2 = 1, and an = an−1 +an−2 for all
natural numbers n ≥ 3. Then an <

(
5
3

)n
for all n ∈ N.

Problem 4.31. Prove that every amount of postage that is at least 12 cents can be made
from 4-cent and 5-cent stamps.

Problem 4.32. Prove that for any n ≥ 4, one can obtain n dollars using only $2 bills and
$5 bills.

Problem 4.33. Consider a grid of squares that is 2 squares wide and n squares long. Using
n dominoes that are 1 square by 2 squares, there are many ways to perfectly cover this
chessboard with no overlap. How many? Prove your answer.

The final theorem of this chapter is known as the Well-Ordering Principle (WOP).
As you shall see, this seemingly obvious theorem requires a bit of work to prove. It is
worth noting that in some axiomatic systems, the WOP is sometimes taken as an axiom.
However, in our case, the result follows from complete induction.
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Theorem 4.34 (Well-Ordering Principle). Every nonempty subset of the natural numbers
contains a least element.6

It turns out that the Well-Ordering Principle (Theorem 4.34) and the Axiom of In-
duction (Axiom 4.1) are equivalent. In other words, one can prove the Well-Ordering
Principle from the Axiom of Induction, as we have done, but one can also prove the Ax-
iom of Induction if the Well-Ordering Principle is assumed.

6Hint: Towards a contradiction, suppose S is a nonempty subset of N that does not have a least element.
Define the proposition P (n) :=“n is not an element of S”. Use complete induction.



Chapter 5

Three Famous Theorems

As the title suggests, we tackle three famous theorems in this chapter.

5.1 The Fundamental Theorem of Arithmetic

The goal of this section is to prove The Fundamental Theorem of Arithmetic, which is
a theorem that you have been intimately familiar with since grade school, but perhaps
don’t recognize by name. The Fundamental Theorem of Arithmetic (sometimes called
the Unique Factorization Theorem) states that every natural number greater than 1 is
either prime or is the product of prime numbers, where this product is unique up to the
order of the factors. For example, the natural number 12 has prime factorization 22 · 3,
where the order in which we write the prime factors (i.e., 2, 2, and 3) is irrelevant. That
is, 22 · 3, 2 · 3 · 2, and 3 · 22 are all the same prime factorization of 12. The requirement
that the factors be prime is necessary since factorizations containing composite numbers
may not be unique. For example, 12 = 2 · 6 and 12 = 3 · 4, but these factorizations into
composite numbers are distinct. We’ve just thrown around a few fancy terms; we should
make sure we understand their precise meaning.

Definition 5.1. Let n ∈ Z.

(a) If a ∈ Z such that a divides n, then we say that a is a factor of n.

(b) If n ∈ N such that n has exactly two distinct positive factors (namely, 1 and n itself),
then n is called prime.

(c) If n > 1 such that n is not prime, then n is called composite.

Exercise 5.2. Is 1 a prime number or composite number? Explain your answer.

Exercise 5.3. List the first 10 prime numbers.

The next theorem makes up half of the Fundamental Theorem of Arithmetic.

Lemma 5.4. Let n be a natural number greater than 1. Then n can be expressed as a
product of primes. That is, we can write

n = p1p2 · · ·pk ,

46
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where each of p1,p2, . . . ,pk is a prime number (not necessarily distinct).1

Lemma 5.4 states that we can write every natural number greater than 1 as a product
of primes, but it does not say that the primes and the number of times each prime appears
are unique. To prove uniqueness, we will need Euclid’s Lemma (Theorem 5.12). To prove
Euclid’s Lemma, we will utilize a special case of Bezout’s Lemma (Lemma 5.10), the proof
of which relies on the following result, known as the Division Algorithm. One can prove
the Division Algorithm using the Well-Ordering Principle (Theorem 4.34) and we have
the necessary tools to do this, but we will skip proving the Division Algorithm for now. If
you are interested in the proof of the Division Algorithm, I encourage you to give it a try
yourself or to look up the proof in a textbook or an online resource. It’s worth pointing
out that we are stating the Division Algorithm for natural numbers, but the theorem holds
more generally for integers, but we must replace 0 ≤ r < n with 0 ≤ r < |n|.

Theorem 5.5 (Division Algorithm). If m,n ∈ N, then there exists unique q,r ∈ N∪{0} such
that m = nq+ r with 0 ≤ r < n.

The numbers q and r from the Division Algorithm are referred to as quotient and
remainder, respectively.

Exercise 5.6. Suppose m = 27 and n = 5. Find the quotient and remainder that are guar-
anteed to exists by the Division Algorithm. That is, find the unique q,r ∈ N such that
0 ≤ r < n and m = nq+ r.

It’s useful to have some additional terminology.

Definition 5.7. Let m,n ∈ Z such that at least one of m or n is nonzero. The greatest
common divisor (gcd) ofm and n, denoted gcd(m,n), is the largest positive integer that is
a factor of both m and n. If gcd(m,n) = 1, we say that m and n are relatively prime.

Exercise 5.8. Find gcd(54,72).

Exercise 5.9. Provide an example of two natural numbers that are relatively prime.

The next result is a special case of a theorem known as Bézout’s Lemma (or Bézout’s
Identity). Ultimately, we will need this theorem to prove Euclid’s Lemma (Theorem 5.12),
which we then use to prove uniqueness for the Fundamental Theorem of Arithmetic (The-
orem 5.14).

1Hint: Use a proof by contradiction. Let S be the set of natural numbers for which the theorem fails. For
sake of a contradiction, assume S , ∅. By the Well-Ordering Principle (Theorem 4.34), S contains a least
element, say n. Then n cannot be prime since this would satisfy the theorem. So, it must be the case that
n has a divisor other than 1 and itself. This implies that there exists natural numbers a and b greater than
1 such that n = ab. Since n was our smallest counterexample, what can you conclude about both a and b?
Use this information to derive a counterexample for n.



CHAPTER 5. THREE FAMOUS THEOREMS

Lemma 5.10 (Special Case of Bézout’s Lemma). If p,a ∈ Z such that p is prime and p and
a are relatively prime, then there exists s, t ∈ Z such that ps+ at = 1.2

Exercise 5.11. Consider the natural numbers 2 and 7, which happen to be relatively
prime. Find integers s and t guaranteed to exist according to Lemma 5.10. That is, find
s, t ∈ Z such that 2s+ 7t = 1.

The following theorem is known as Euclid’s Lemma. See if you can prove it using
Lemma 5.10.

Theorem 5.12 (Euclid’s Lemma). Assume that p is prime. If p divides ab, where a,b ∈ N,
then either p divides a or p divides b.3

In Euclid’s Lemma, it is crucial that p be prime as illustrated by the next problem.

Problem 5.13. Provide an example of integers a,b,d such that d divides ab yet d does not
divide a and d does not divide b.

Alright, we are finally ready to tackle the proof of the Fundamental Theorem of Arith-
metic.

Theorem 5.14 (Fundamental Theorem of Arithmetic). Every natural number greater than
1 can be expressed uniquely (up to the order in which they appear) as the product of one
or more primes.4

The Fundamental Theorem of Arithmetic is one of the many reasons why 1 is not
considered a prime number. If 1 were prime, prime factorizations would not be unique.

5.2 The Irrationality of
√

2

In this section we will prove one of the oldest and most important theorems in mathe-
matics:

√
2 is irrational (see Theorem 5.16). First, we need to know what this means.

2Hint: Consider the set S := {ps + at > 0 | s, t ∈ Z}. First, observe that p ∈ S (choose s = 1 and t = 0). It
follows that S is nonempty. By the Well-Ordering Principle (Theorem 4.34), S contains a least element,
say d. Then there exists s1, t1 ∈ Z such that d = ps1 + at1. Our goal is to show that d = 1. Now, choose
m ∈ S. Then there exists s2, t2 ∈ Z such that m = ps2 + at2. By the definition of d, we know d ≤ m. By
the Division Algorithm, there exists unique q,r ∈ N∪ {0} such that m = qd + r with 0 ≤ r < d. Now, solve
for r and then replace m and d with ps1 + at1 and ps2 + at2, respectively. You should end up with an
expression for r involving p,a, s1, s2, t1, and t2. Next, rearrange this expression to obtain something of the
form r = p(junk) + a(stuff). What does the minimality of d imply about r? You should be able to conclude
that m is a multiple of d. That is, every element of S is a multiple of d. However, recall that p ∈ S, p is
prime, and p and a are relatively prime. What can you conclude about d?

3Hint: If p divides a, we are done. So, assume otherwise. That is, assume that p does not divide a, so that p
and a are relatively prime. Apply Lemma 5.10 to p and a and then multiply the resulting equation by b.
Try to conclude that p divides b.

4Hint: Let n be a natural number greater than 1. By Lemma 5.4, we know that n can be expressed as a
product of primes. All that remains is to prove that this product is unique (up to the order in which they
appear). For sake of a contradiction, suppose p1p2 · · ·pk and q1q2 · · ·ql are both prime factorizations of n.
Your goal is to prove that k = l and that each pi is equal to some qj . Make repeated use of Euclid’s Lemma.
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Definition 5.15. Let r ∈ R.

(a) We say that r is rational if and only if r = m
n , where m,n ∈ Z and n , 0.

(b) In contrast, we say that r is irrational if and only if it is not rational.

The Pythagoreans were an ancient secret society that followed their spiritual leader:
Pythagoras of Samos (c. 570–495 BCE). The Pythagoreans believed that the way to spiri-
tual fulfillment and to an understanding of the universe was through the study of math-
ematics. They believed that all of mathematics, music, and astronomy could be described
via whole numbers and their ratios. In modern mathematical terms they believed that all
numbers are rational. Attributed to Pythagoras is the saying, “Beatitude is the knowledge
of the perfection of the numbers of the soul.” And their motto was “All is number.”

Thus they were stunned when one of their own—Hippasus of Metapontum (c. 5th
century BCE)—discovered that the side and the diagonal of a square are incommensu-
rable. That is, the ratio of the length of the diagonal to the length of the side is irrational.
Indeed, if the side of the square has length a, then the diagonal will have length a

√
2; the

ratio is
√

2 (see Figure 5.1).

Figure 5.1: The side and diagonal of a square are incommensurable.

Theorem 5.16. The real number
√

2 is irrational.5

As one might expect, the Pythagoreans were unhappy with this discovery. Legend
says that Hippasus was expelled from the Pythagoreans and was perhaps drowned at sea.
Ironically, this result, which angered the Pythagoreans so much, is probably their greatest
contribution to mathematics: the discovery of irrational numbers.

See if you can generalize the technique in the proof of Theorem 5.16 to prove the next
two theorems.

Theorem 5.17. Let p be a prime number. Then
√
p is irrational.

Theorem 5.18. Let p and q be distinct primes. Then
√
pq is irrational.

Problem 5.19. State a generalization of Theorem 5.18 and briefly describe how its proof
would go. Be as general as possible.

5Hint: Use a proof by contradiction. That is, suppose that there exist m,n ∈ Z such that n , 0 and
√

2 =
m
n . How many factors of 2 are on each side of this equation according to the Fundamental Theorem of
Arithmetic? Don’t actually try to find the exact number of 2’s, but rather see if you can figure out if there
is an odd or even number of 2’s on each side.
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It is important to point out that not every positive irrational number is equal to the
square root of some natural number. For example, π is irrational, but is not equal to
the square root of a natural number. It is also worth pointing out that our approach for
proving that

√
2 was irrational was not the most efficient. However, our technique was

easy to generalize to handle results like Theorem 5.17.

5.3 The Infinitude of Primes

The highlight of this section is Theorem 5.22, which states that there are infinitely many
primes. The first known proof of this theorem is in Euclid’s Elements (c. 300 BCE). Euclid
stated it as follows:

Proposition IX.20. Prime numbers are more than any assigned multitude of
prime numbers.

There are a few interesting observations to make about Euclid’s proposition and his proof.
First, notice that the statement of the theorem does not contain the word “infinity.” The
Greek’s were skittish about the idea of infinity. Thus, he proved that there were more
primes than any given finite number. Today we’d say that they are infinite. In fact, Euclid
proved that there are more than three primes and concluded that there were more than
any finite number. While you would lose points for such a proof in this class, we can
forgive Euclid for this less-than-rigorous proof; in fact, it is easy to turn his proof into the
general one that you will give below. Lastly, Euclid’s proof was geometric. He was viewing
his numbers as line segments with integral length. The modern concept of number was
not developed yet.

Prior to tackling a proof of Theorem 5.22, we need to prove a couple lemmas. The
proof of the first lemma is provided for you.

Lemma 5.20. The only natural number that divides 1 is 1.

Proof. Let m be a natural number that divides 1. We know that m ≥ 1 because 1 is the
smallest positive integer. Since m divides 1, there exists k ∈ N such that 1 = mk. Since
k ≥ 1, we see that mk ≥ m. But 1 = mk, and so 1 ≥ m. Thus, we have 1 ≤ m ≤ 1, which
implies that m = 1, as desired.

Lemma 5.21. Let p be a prime number and let n ∈ Z. If p divides n, then p does not divide
n+ 1.6

We are now ready to prove the following important theorem.

Theorem 5.22. There are infinitely many prime numbers.7

6Hint: Use a proof by contradiction and utilize the previous lemma.
7Hint: Use a proof by contradiction. That is, assume that there are finitely many primes, say p1,p2, . . . ,pk .
Consider the product of all of them and then add 1.
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Relations

6.1 Introduction to Relations

Definition 6.1. An ordered pair is an object of the form (x,y). Two ordered pairs (x,y)
and (a,b) are equal if and only if x = a and y = b.

Definition 6.2. An n-tuple is an object of the form (x1,x2, . . . ,xn). Each xi is referred to as
the ith component.

Note that an ordered pair is just a 2-tuple.

Definition 6.3. If X and Y are sets, the Cartesian product of X and Y is defined by

X ×Y = {(x,y) | x ∈ X,y ∈ Y }.

That is, X × Y is the set of all ordered pairs where the first element is from X and the
second element is from Y . The set X×X is sometimes denoted by X2. We similarly define
the Cartesian product of n sets, say X1, . . . ,Xn, by

n∏
i=1

Xi = X1 × · · · ×Xn = {(x1, . . . ,xn) | each xi ∈ Xi}.

Example 6.4. Let A = {a,b,c} and B = {,,/}. Then

A×B = {(a,,), (a,/), (b,,), (b,/), (c,,), (c,/)}.

Exercise 6.5. Using the sets A and B from the previous example, find B×A.

Exercise 6.6. Using the set B from the previous examples, find B×B.

Exercise 6.7. What general conclusion can you make about X × Y versus Y ×X? When
will they be equal?

Exercise 6.8. If X and Y are both finite sets, then how many elements will X×Y have? Be
as specific as possible.
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Exercise 6.9. LetA = {1,2,3}, B = {1,2}, and C = {1,3}. List the elements of the setA×B×C.

Exercise 6.10. Let A = N and B = R. Describe the elements of the set A×B.

Exercise 6.11. Let A be the set of all differentiable functions on the open interval (0,1),
and let B equal the set of all derivatives of functions in A evaluated at x = 1

2 . Describe the
elements of the set A×B.

Exercise 6.12. Three space, R3, is a Cartesian product. Unpack the meaning of R3 using
the Cartesian product, and write the complete set notation version.

Exercise 6.13. Let X = [0,1] and let Y = {1}. Describe geometrically (e.g., draw a picture)
what X ×Y , Y ×X, X ×X, and Y ×Y look like.

Definition 6.14. Let X and Y be sets. A relation from a set X to a set Y is a subset of
X ×Y . A relation on X is a subset of X ×X.

Example 6.15. You may not realize it, but you are familiar with many relations. For
example, on the real numbers, we have the relation ≤. We could say that (3,π) is in the
relation ≤ since 3 ≤ π. However, (1,−1) is not in the relation since 1� −1. Order matters!

Different notations for relations are used in different contexts. When talking about
relations in the abstract, we indicate that a pair (a,b) is in the relation by some notation
like a ∼ b, which is read “a is related to b.”

Example 6.16. Let Pf denote the set of all people with accounts on Facebook. Define F
via xFy if and only if x is friends with y. Then F is a relation on Pf .

We can often represent relations using graphs or digraphs. Given a finite set X and a
relation ∼ on X, a digraph (short for directed graph) is a discrete graph having the mem-
bers of X as vertices and a directed edge from x to y if and only if x ∼ y.

Example 6.17. Figure 6.1 depicts a digraph that represents a relation R given by

R = {(a,b), (a,c), (b,b), (b,c), (c,d), (c,e), (d,d), (d,a), (e,a)}.

Exercise 6.18. Let A = {a,b,c} and define ∼= {(a,a), (a,b), (b,c), (c,b), (c,a)}. Draw the di-
graph for ∼.

Exercise 6.19. Let A = {1,2,3,4,5,6}. Define | on A via x|y if and only if x divides y. Draw
the digraph for | on A.

WhenX or Y is infinite, it is not practical to draw a digraph. However, you are familiar
with the graphs of some relations involving infinite sets.

Example 6.20. When we write x2 +y2 = 1, we are implicitly defining a relation. In partic-
ular, the relation is the set of ordered pairs (x,y) satisfying x2 + y2 = 1. In set notation:

{(x,y) | x2 + y2 = 1}

The graph of this relation in R2 is the standard unit circle.
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a

b

d

c

e

Figure 6.1: An example of a digraph for a relation.

Exercise 6.21. Define ∼ on R via x ∼ y if and only if x ≤ y. Draw a picture of this relation
in R2. In other words, draw all points (x,y) where x ∼ y.

Definition 6.22. Let ∼ be a relation on a set A.

(a) ∼ is reflexive if for all x ∈ A, x ∼ x (every element is related to itself).

(b) ∼ is symmetric if for all x,y ∈ A, if x ∼ y, then y ∼ x.

(c) ∼ is transitive if for all x,y,z ∈ A, if x ∼ y and y ∼ z, then x ∼ z.

Example 6.23.

(a) ≤ on R is reflexive and transitive, but not symmetric. < on R is transitive, but not
symmetric and not reflexive.

(b) If S is a set, then ⊆ on P (S) is reflexive and transitive, but not symmetric.

(c) = on R is reflexive, symmetric, and transitive.

Exercise 6.24. Given a finite set A and a relation ∼, describe what each of reflexive, sym-
metric, and transitive look like in terms of a digraph. That is, draw a picture that repre-
sents reflexive, symmetric, and transitive.

Exercise 6.25. Let P be the set of people at a party and define N via (x,y) ∈N if and only
if x knows the name of y. Describe what it would mean for N to be reflexive, symmetric,
and transitive.

Exercise 6.26. Determine whether each of the following relations is reflexive, symmetric,
or transitive.
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(a) Let Pf denote the set of all people with accounts on Facebook. Define F via xFy if
and only if x is friends with y.

(b) Let P be the set of all people and define H via xHy if and only if x and y have the
same height.

(c) Let P be the set of all people and define T via xT y if and only if x is taller than y.

(d) Consider the relation “divides” on N.

(e) Let L be the set of lines and define || via l1||l2 if and only if l1 is parallel to l2.

(f) Let C[0,1] be the set of continuous functions on [0,1]. Define f ∼ g iff∫ 1

0
|f (x)| dx =

∫ 1

0
|g(x)| dx.

(g) Define ∼ on N via n ∼m if and only if n+m is even.

(h) Define D on R via (x,y) ∈D if and only if x = 2y.

6.2 Equivalence Relations

Let ∼ be a relation on a set A. Recall the following definitions:

(a) ∼ is reflexive if for all x ∈ A, x ∼ x (every element is related to itself).

(b) ∼ is symmetric if for all x,y ∈ A, if x ∼ y, then y ∼ x.

(c) ∼ is transitive if for all x,y,z ∈ A, if x ∼ y and y ∼ z, then x ∼ z.

As we’ve seen in the previous section of notes, these conditions are independent. That
is, a relation may have some combination of these properties, but not necessarily all of
them. However, we have a special name for when a relation does satisfy all three.

Definition 6.27. Let ∼ be a relation on a set A. Then ∼ is called an equivalence relation
if and only if ∼ is reflexive, symmetric, and transitive.

Exercise 6.28. Given a finite set A and a relation ∼ on A, describe what the corresponding
digraph would have to look like in order for ∼ to be an equivalence relation.

Exercise 6.29. Let A = {a,b,c,d,e}. Make up an equivalence relation on A by drawing a
digraph such that a is not related to b and c is not related to b.

Exercise 6.30. Let S = {1,2,3,4,5,6} and define

∼= {(1,1), (1,6), (2,2), (2,3), (2,4), (3,3), (3,2), (3,4), (4,4), (4,2), (4,3), (5,5), (6,6), (6,1)}.

Justify that this is an equivalence relation.
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Exercise 6.31. Determine which of the following are equivalence relations. Some of these
occurred in the last section of notes and you are welcome to use your answers from those
problems.

(a) Let Pf denote the set of all people with accounts on Facebook. Define F via xFy if
and only if x is friends with y.

(b) Let P be the set of all people and define H via xHy if and only if x and y have the
same height.

(c) Let P be the set of all people and define T via xT y if and only if x is taller than y.

(d) Consider the relation “divides” on N.

(e) Let L be the set of lines and define || via l1||l2 if and only if l1 is parallel to l2.

(f) Let C[0,1] be the set of continuous functions on [0,1]. Define f ∼ g if and only if∫ 1

0
|f (x)| dx =

∫ 1

0
|g(x)| dx.

(g) Define ∼ on N via n ∼m if and only if n+m is even.

(h) Define D on R via (x,y) ∈D if and only if x = 2y.

(i) Define ∼ on Z via a ∼ b if and only if a− b is a multiple of 5.

(j) Define ∼ on R2 via (x1, y1) ∼ (x2, y2) if and only if x2
1 + y2

1 = x2
2 + y2

2 .

(k) Define ∼ on R via x ∼ y if and only if bxc = byc, where bxc is the greatest integer less
than or equal to x (e.g., bπc = 3, b−1.5c = −2, and b4c = 4).

(l) Define ∼ on R via x ∼ y if and only if |x − y| < 1.

Definition 6.32. Let ∼ be a relation on a set A (not necessarily an equivalence relation)
and let x ∈ A. Then we define the set of relatives of x with respect to ∼ via

[x]∼ = {y ∈ A | x ∼ y}.

We also define
Ω∼ = {[x] | x ∈ A}.

If ∼ is clear from the context, we will often write [x] in place of [x]∼. Another common
notation for the set of relatives of x is x. Notice that Ω∼ is a set of sets. In particular, an
element in Ω∼ is a subset of A—equivalently, an element of P (A).

Exercise 6.33. Let Pf and F be as in part (a) of Exercise 6.31. Describe [Bob] (assume you
know which Bob we’re talking about). What is ΩF?

Exercise 6.34. Using your digraph in Exercise 6.29, find Ω∼.
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Exercise 6.35. Consider the relation ≤ on R. If x ∈ R, what is [x]?

Exercise 6.36. Find [1] and [2] for the relation given in part (i) of Exercise 6.31. How
many different sets of relatives are there? What are they?

Exercise 6.37. Find [x] for all x ∈ S for S and ∼ from Exercise 6.30. Any observations?

Theorem 6.38. Suppose ∼ is an equivalence relation on a set A and let a,b ∈ A. Then
[a] = [b] if and only if a ∼ b.

Theorem 6.39. Suppose ∼ is an equivalence relation on a set A. Then

(a)
⋃
x∈A

[x] = A, and

(b) For all x,y ∈ A, either [x] = [y] or [x]∩ [y] = ∅.

In light of Theorem 6.39, we have the following definition.

Definition 6.40. If ∼ is an equivalence relation on a set A, then we refer to each [x] as the
equivalence class of x.

When ∼ is an equivalence relation on a set A, the collection of equivalence classes is
denoted by A/∼, which is read as “A modulo ∼” or “A mod ∼”. The collection A/∼ is
sometimes referred to as the quotient set of A by ∼. Note that Ω∼ equals A/∼ whenever
∼ is an equivalence relation.

The upshot of Theorem 6.39 is that given an equivalence relation, every element lives
in exactly one equivalence class. We’ll see in the next section of notes that we can run
this in reverse. That is, if we separate out the elements of a set so that every element is
an element of exactly one subset (like the bins of my kid’s toys), then this determines an
equivalence relation. More on this later.

Example 6.41. The collection of sets of relatives that you found in part (i) of Exercise 6.31
is the set of equivalence classes modulo 5.

Exercise 6.42. If ∼ is an equivalence relation on a finite set A, then what is the connection
between the equivalence classes and the corresponding digraph?

Exercise 6.43. For each of the equivalence relations in Exercise 6.31, describe the equiv-
alence classes as best as you can.

6.3 Partitions

Theorems 6.38 and 6.39 imply that if ∼ is an equivalence relation on a setA, then ∼ breaks
A up into pairwise disjoint chunks, where each chunk is some [a] for a ∈ A. Furthermore,
each pair of elements in the same set of relatives are related via ∼.

As you’ve probably already noticed, equivalence relations are intimately related to the
following concept.
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Definition 6.44. A collection Ω of subsets of a set A is said to be a partition of A if the
elements of Ω satisfy:

(a) Each X ∈Ω is nonempty,

(b) Given X,Y ∈Ω, either X = Y or X ∩Y = ∅, and

(c)
⋃
X∈Ω

X = A.

That is, the elements of Ω are pairwise disjoint and their union is all of A.

Notice that in the second condition of Definition 6.44, we cannot have both X = Y and
X ∩Y = ∅ at the same time.

Example 6.45. The following are all examples of partitions of the given set. Perhaps you
can find exceptions in these examples, but please take them at face value.

(a) Democrat, Republican, Independent, Green Party, Libertarian, etc. (set of registered
voters)

(b) freshman, sophomore, junior, senior (set of high school students)

(c) evens, odds (set of integers)

(d) rationals, irrationals (set of real numbers)

Example 6.46. Let A = {a,b,c,d,e, f } and Ω = {{a}, {b,c,d}, {e, f }}. Then Ω is a partition of
A since the elements of Ω are nonempty subsets of A, pairwise disjoint, and their union
is all of A.

Exercise 6.47. Consider the set A from Example 6.46.

(a) Find a partition of A that has 4 subsets in the partition.

(b) Find a collection of subsets of A that does not form a partition.

Exercise 6.48. Find a partition of N that consists of 3 subsets, where one of the sets is
finite and the remaining two sets are infinite.

Exercise 6.49. Let P be the set of prime numbers, N be the set of odd natural numbers
that are not prime, and E be the set of even natural numbers. Explain why this is not a
partition of N.

The next theorem spells out half of the close connection between partitions and equiv-
alence relations. Hopefully you were anticipating this.

Theorem 6.50. Let ∼ be an equivalence relation on a set A. Then Ω∼ forms a partition
of A.
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Exercise 6.51. Consider the equivalence relation

∼ = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6), (5,6), (6,5), (4,6), (6,4)}

on the set A = {1,2,3,4,5,6}. Find the partition determined by Ω∼.

It turns out that we can reverse the situation, as well. That is, given a partition, we
can form an equivalence relation. Before proving this, we need a definition.

Definition 6.52. Let A be a set and Ω any collection of subsets of A (not necessarily a
partition). If a,b ∈ A, we will define a to be Ω-related to b if there exists an R ∈ Ω that
contains both a and b. This relation is denoted by ∼Ω and is called the relation on A
associated to Ω.

This definition may look more awkward than the actual underlying concept. The idea
is that if two elements are in the same subset, then they are related. For example, when
my kids pick up all their toys and put them in the appropriate toy bins, we say that two
toys are related if they are in the same bin.

Notice that we have two notations that look similar: Ω∼ and ∼Ω.

(a) Ω∼ is the collection of subsets of A determined by the relation ∼.

(b) ∼Ω is the relation determined by the collection of subsets Ω.

Exercise 6.53. Let A = {a,b,c,d,e, f } and let Ω = {X1,X2,X3}, where X1 = {a,c}, X2 = {b,c},
and X3 = {d,f }. List the elements of ∼Ω by listing ordered pairs or drawing a digraph.

Exercise 6.54. Let A and Ω be as in Example 6.46. List the elements of ∼Ω by listing
ordered pairs or drawing a digraph.

Theorem 6.55. Let A be a set and let Ω be a collection of subsets of A (not necessarily a
partition). Then ∼Ω is symmetric.

Exercise 6.56. Give an example of a set A and a collection Ω from P (A) such that the
relation ∼Ω is not reflexive.

Theorem 6.57. Let A be a set and let Ω be a collection of subsets of A (not necessarily a
partition). If ⋃

R∈Ω
R = A,

then ∼Ω is reflexive.

Theorem 6.58. Let A be a set and let Ω be a collection of subsets of A (not necessarily a
partition). If the elements of Ω are pairwise disjoint, then ∼Ω is transitive.

Corollary 6.59. Let A be a set and let Ω be a partition of A. Then ∼Ω is an equivalence
relation.

The previous corollary says that every partition determines a natural equivalence re-
lation. Namely, two elements are related if and only if they are elements of the same set
in the partition.

Exercise 6.60. Let A = {◦,4,N,�,�,F,,,/}. Make up a partition Ω on A and then draw
the digraph corresponding to ∼Ω.
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6.4 Modular Arithmetic

In this section, we look at a particular family of equivalence relations on the integers and
explore the way in which arithmetic interacts with them.

Definition 6.61. For each m ∈ N, define mZ to be the set of all integers that are divisible
by m; in set-builder notation, we have mZ = {n ∈ Z | n =mk for some k ∈ Z}.

For example, 5Z = {. . . ,−10,−5,0,5,10, . . .} (the integers divisible by 5), and 2Z is the
set of even integers. What is 3Z? What about 1Z?

Exercise 6.62. Consider the sets 3Z, 5Z, 15Z, and 20Z.

(a) List at least five elements in each of the above sets.

(b) Notice that 3Z∩5Z =mZ for some m; what is m? Describe 15Z∩20Z a similar way.

(c) Draw a Venn diagram illustrating how the sets 3Z, 5Z, and 15Z intersect.

(d) Draw a Venn diagram illustrating how the sets 5Z, 15Z, and 20Z intersect.

Theorem 6.63. Let m ∈ N. If a,b ∈mZ, then −a, a+ b, and ab are also in mZ.1

Definition 6.64. For eachm ∈ N, define a relation onZ via a ≡m b if and only if (a−b) ∈mZ.
We read a ≡m b as “a is congruent to b modulo m.”

Theorem 6.65. For m ∈ N, the relation ≡m is an equivalence relation on Z.

Since we know that ≡m is an equivalence relation, we introduce some more notation.

Definition 6.66. For m ∈ N, let [a]m denote the equivalence class of a with respect to ≡m
(see Definitions 6.32 and 6.40). The class [a]m is called the class of a modulo m. The set
of all equivalence classes determined by ≡m is denoted Z/mZ.

Example 6.67. You computed [1]5 and [2]5 in Exercise 6.36. Now, let’s compute [2]7
together. Tracing back through the definitions, we find that

n ∈ [2]7 ⇐⇒ n ≡7 2 ⇐⇒ (n− 2) ∈ 7Z ⇐⇒ n− 2 = 7k for some k ∈ Z.

Thus, n ∈ [2]7 ⇐⇒ n = 7k + 2 for some k ∈ Z, so the elements of [2]7 are those numbers
that are 2 more than a multiple of 7. The multiples of 7 are 7Z = {. . . ,−14,−7,0,7,14, . . .},
so we can find [2]7 by adding 2 to each element of 7Z to get [2]7 = {. . . ,−12,−5,2,9,16, . . .}.

Exercise 6.68. Find five elements in [4]7 with at least one greater than 70 and one less
than 70. Repeat for [−3]7 and [7]7.

Exercise 6.69. Describe [0]3, [1]3, [2]3, [4]3, and [−2]3 with lists as in Example 6.67. Which
of these are equal? How many (different) classes are in Z/3Z? (Theorem 6.39 is helpful.)
1You are encouraged to make use of what you proved in Chapter 2.
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Theorem 6.70. For m ∈ N and a,b ∈ Z, [a]m = [b]m if and only if (a− b) is divisible by m.2

Theorem 6.71. For m ∈ N and a ∈ Z, [a]m = [0]m if and only if a is divisible by m.

Theorem 6.72. Let m ∈ N, and let a1, a2,b1,b2 ∈ Z. If [a1]m = [a2]m and [b1]m = [b2]m, then

(a) [a1 + b1]m = [a2 + b2]m,3 and

(b) [a1 · b1]m = [a2 · b2]m.4

The previous theorem allows us to define addition and multiplication for Z/mZ.

Definition 6.73. Letm ∈ N. For [a]m, [b]m ∈ Z/mZ, define the sum [a]m+[b]m to be [a+b]m,
and define the product [a]m · [b]m to be [a · b]m.

Example 6.74. By Definition 6.73, [2]7 + [6]7 = [2 + 6]7 = [8]7. Since [8]7 = [1]7 (by Theo-
rem 6.70), we can write this as [2]7 +[6]7 = [1]7. Similarly, [2]7 ·[6]7 = [2 ·6]7 = [12]7 = [5]7.

Addition and multiplication for Z/mZ has many familiar (and some not so familiar)
properties. For example, addition and multiplication are both associative and commuta-
tive. But, it is possible for [a]m · [b]m = [0]m even when [a]m , [0]m and [b]m , [0]m.

Exercise 6.75. Find a and b such that [a]6 · [b]6 = [0]6 but [a]6 , [0]6 and [b]6 , [0]6. Do the
same in Z/15Z: find a and b such that [a]15 · [b]15 = [0]15 but [a]15 , [0]15 and [b]15 , [0]15.

Theorem 6.76. Let m ∈ N. If m is not prime, then there exists [a]m, [b]m ∈ Z/mZ such that
[a]m · [b]m = [0]m but [a]m , [0]m and [b]m , [0]m.

Theorem 6.77. Let m ∈ N. Then addition in Z/mZ is associative and commutative.5

Theorem 6.78. Let m ∈ N. Then multiplication in Z/mZ is associative and commutative.

Exercise 6.79. Notice that 2x = 1 has no solution in Z. Show that [2]7[x]7 = [1]7 does have
a solution with x in Z. What about [14]7[x]7 = [1]7?

Theorem 6.80. Let m ∈ N. For all k ∈ N, if [a1]m, [a2]m, . . . , [ak]m ∈ Z/mZ, then

(a) [a1]m + [a2]m + · · ·+ [ak]m = [a1 + a2 + · · ·+ ak]m, and

(b) [a1]m[a2]m · · · [ak]m = [a1a2 · · ·ak]m.

Remark 6.81. Part (b) of Theorem 6.80 implies that ([a]m)k = [ak]m.

Exercise 6.82. For each of the following, find a number a with 0 ≤ a ≤ 6 such that the
given quantity is equal to [a]7. The first one is done as an example.

(a) [8179]7 Solution: [8179]7 = ([8]7)179 = ([1]7)179 = [1179]7 = [1]7. Thus, a = 1. 6

2Theorem 6.38 is very helpful.
3Consider using Theorem 6.70.
4Hint: note that a1b1 − a2b2 = a1b1 − a2b1 + a2b1 − a2b2.
5This means for all [a]m, [b]m, [c]m ∈ Z/mZ, ([a]m+[b]m)+[c]m = [a]m+([b]m+[c]m) and [a]m+[b]m = [b]m+[a]m.
6Remark 6.81 was used twice. We also used that [8]7 = [1]7.
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(b) [6179]7 (There is a hint in the footnotes.7)

(c) [2300]7 (There is a hint in the footnotes.8)

(d) [2301 + 5]7

Theorem 6.83. Let n ∈ N, and let ak , ak−1, . . . , a1, a0 be the digits of n, i.e. n = ak10k +
ak−110k−1 + · · ·+ a110 + a0. Then [n]3 = [ak + ak−1 + · · ·+ a1 + a0]3.

Theorem 6.84. An integer is divisible by 3 if and only if the sum of its digits is divisible
by 3.9

Exercise 6.85. Using modular arithmetic, prove that for all integers n ≥ 0, 32n−1 is divis-
ible by 8.10 Did you find this easier than, harder than, or the same as using induction?

7Hint: [6]7 = [−1]7.
8Hint: [23]7 = [1]7.
9Consider using Theorem 6.71.
10By Theorem 6.71, you just need to show that [32n − 1]8 = [0]8.



Chapter 7

Functions

7.1 Introduction to Functions

Undoubtably, you have encountered the concept of function in your prior mathematical
experience. In this section, we will introduce the concept of function as a special type of
relation. As you shall see, this agrees with any previous definition of function that you
may have learned.

Up until this point, you’ve probably only encountered functions as an algebraic rule,
e.g., f (x) = x2 −1, for transforming one real number into another. However, we can study
functions in a much broader context. Loosely speaking, the basic building blocks of a
function are a first set and a second sets, say X and Y , respectively, and a “correspon-
dence” that assigns each element of X to exactly one element of Y . Let’s take a look at the
actual definition.

Definition 7.1. Let X and Y be two nonempty sets. A function from set X to set Y ,
denoted f : X→ Y , is a relation (i.e., subset of X ×Y ) such that:

(a) For each x ∈ X, there exists y ∈ Y such that (x,y) ∈ f , and

(b) If (x,y1), (x,y2) ∈ f , then y1 = y2.

Note that if (x,y) ∈ f , we usually write y = f (x) and say that “f maps x to y.”

Part (a) of Definition 7.1 says that every element of X appears in the first coordinate
of an ordered pair in the relation. Part (b) says that each element of X only appears once
in the first coordinate of an ordered pair in the relation. It is important to note that there
are no restrictions on whether an element of Y ever appears in the second coordinate.
Furthermore, if an element of Y appears in the second coordinate, it may appear again in
a different ordered pair.

Definition 7.2. The set X from Definition 7.1 is called the domain of f and is denoted by
Dom(f ). The set Y is called the codomain of f and is denoted by Codom(f ). The set

Rng(f ) = {y ∈ Y | there exists x such that y = f (x)}

is called the range of f or the image of X under f . If f is a function and (x,y) ∈ f , then
we may refer to x as the input of f and y as the output of f .
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It follows immediately from the definition that Rng(f ) ⊆ Codom(f ). However, it is
possible that the range of f is a proper subset of the codomain.

Exercise 7.3. Let X = {◦,�,4,,} and Y = {a,b,c,d,e}. Determine whether each of the fol-
lowing represent functions. Explain. If the relation is a function, determine the domain,
codomain, and range.

(a) f : X→ Y defined via f = {(◦, a), (�,b), (4, c), (,,d)}.

(b) g : X→ Y defined via g = {(◦, a), (�,b), (4, c), (,, c)}.

(c) h : X→ Y defined via h = {(◦, a), (�,b), (4, c), (◦,d)}.

(d) k : X→ Y defined via k = {(◦, a), (�,b), (4, c), (,,d), (�, e)}.

(e) l : X→ Y defined via l = {(◦, e), (�, e), (4, e), (,, e)}.

(f) m : X→ Y defined via m = {(◦, a), (4,b), (,, c)}.

(g) happy : Y → X defined via happy(y) = , for all y ∈ Y .

(h) id : X→ X defined via id(x) = x for all x ∈ X.

(i) nugget : X→ X defined via

nugget(x) =

x, if x is a geometric shape,
�, otherwise.

One useful representation of functions on finite sets is via bubble diagrams. To draw
a bubble diagram for a function f : X→ Y , draw one circle (i.e, a “bubble”) for each of X
and Y and for each element of each set, put a dot in the corresponding set. Typically, we
draw X on the left and Y on the right. Next, draw an arrow from x ∈ X to y ∈ Y if f (x) = y
(i.e., (x,y) ∈ f ). Note that we can draw bubble diagrams even if f is not a function.

Example 7.4. Figure 7.1 depicts a bubble diagram for a function from domainX = {a,b,c,d}
to codomain Y = {1,2,3,4}. In this case, the range is equal to {1,2,4}.

Exercise 7.5. For each of the relations in Exercise 7.3 draw the corresponding bubble
diagram.

Problem 7.6. What properties does a bubble diagram have to have in order to represent
a function?

Exercise 7.7. Provide an example of each of the following. You may draw a bubble dia-
gram, write down a list of ordered pairs, or a write a formula (as long as the domain and
codomain are clear).

(a) A function f from a set with 4 elements to a set with 3 elements such that Rng(f ) =
Codom(f ).
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Figure 7.1: An example of a bubble diagram for a function.

(b) A function g from a set with 4 elements to a set with 3 elements such that Rng(g) is
strictly smaller than Codom(g).

Problem 7.8. Let f : X → Y be a function and suppose that X and Y are finite sets with
n and m elements, respectively, such that n < m. Is it possible for Rng(f ) = Codom(f )?
Explain.

Problem 7.9. In high school I am sure that you were told that a graph represents a func-
tion if it passes the vertical line test. Using our terminology of ordered pairs, explain
why this works.

Definition 7.10. Two functions are equal if they have the same domain, same codomain,
and the same set of ordered pairs in the relation. That is, if f : X → Y and g : X → Y are
functions, then f = g if and only if f (x) = g(x) for all x ∈ X.

If two functions are defined by the same algebraic formula, but have different do-
mains, then they are not equal. For example, the function f : R→ R defined via f (x) = x2

is not equal to the function g : N→ N defined via g(x) = x2.

Definition 7.11. Let f : X→ Y be a function.

(a) The function f is said to be one-to-one (or injective) if for all y ∈ Rng(f ), there is a
unique x ∈ X such that y = f (x).

(b) The function f is said to be onto (or surjective) if for all y ∈ Y , there exists x ∈ X
such that y = f (x).

(c) If f is both one-to-one and onto, we say that f is a bijection (or one-to-one corre-
spondence).

Remark 7.12. Let f : X → Y be a function. To prove that f is one-to-one, start by as-
suming that f (x1) = f (x2) and then work to show that x1 = x2. That is, a function f is
one-to-one if and only if for all x1,x2 ∈ X, if f (x1) = f (x2), then x1 = x2. To show that f
is onto, you should start with an arbitrary y ∈ Y and then work to show that there exists
x ∈ X such that y = f (x).
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Exercise 7.13. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or write a formula (as long as the domain
and codomain are clear). Assume that X and Y are finite sets.

(a) A function f : X→ Y that is one-to-one but not onto.

(b) A function f : X→ Y that is onto but not one-to-one.

(c) A function f : X→ Y that is a bijection.

(d) A function f : X→ Y that is neither one-to-one nor onto.

Problem 7.14. Perhaps you’ve heard of the horizontal line test (i.e., every horizontal line
hits the graph of f : R→ R at most once). What is the horizontal line test testing for?

Exercise 7.15. Provide an example of each of the following. You may either draw a graph
or write down a formula. Make sure you have the correct domain.

(a) A function f : R→ R that is one-to-one but not onto.

(b) A function f : R→ R that is onto but not one-to-one.

(c) A function f : R→ R that is a bijection.

(d) A function f : R→ R that is neither one-to-one nor onto.

Exercise 7.16. Determine which of the following functions are one-to-one, onto, both, or
neither. In each case, you should provide proofs and counterexamples as appropriate.

(a) f : R→ R defined via f (x) = x2

(b) g : R→ [0,∞) defined via g(x) = x2

(c) h : R→ R defined via h(x) = x3

(d) k : R→ R defined via k(x) = x3 − x

(e) l : R×R→ R defined via l(x1,x2) = x2
1 + x2

2

(f) N : N→ N×N defined via N (n) = (n,n)

Definition 7.17. If X is a nonempty set, then the function iX : X→ X defined via iX(x) = x
is called the identity function on X.

Theorem 7.18. The identity function on a nonempty set X is a bijection.

Exercise 7.19. Let A and B be sets and let S ⊆ A × B. Define π1 : S → A and π2 : S → B
via π1(a,b) = a and π2(a,b) = b. We call π1 (respectively, π2) the projections of S onto A
(respectively, B).

(a) Provide examples to show that π1 does not need to be one-to-one or onto.
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(b) Suppose that S is a function (recall that a function is a set of ordered pairs, so this
makes sense). Is π1 one-to-one? Is π1 onto? How about π2?

Theorem 7.20. Let A be a nonempty set and suppose ∼ is an equivalence relation on A.
Then the function φ : A→ A/∼ defined via φ(x) = [x] is onto.1

7.2 Images and Inverse Images of Functions

There are two important sets related to functions.

Definition 7.21. Let f : X→ Y be a function.

(a) If S ⊆ X, the image of S under f is defined via

f (S) := {f (x) | x ∈ S}.

(b) If T ⊆ Y , the inverse image (or preimage) of T under f is defined via

f −1(T ) := {x ∈ X | f (x) ∈ T }.

You’ve likely encountered inverse functions before. But in this context, we are dis-
cussing inverse images. It’s important to point out that the use of the notation f −1 does
not make any assumptions about whether the inverse function exists. We will tackle in-
version functions in the next section.

Note that the image of the domain is the same as its range. That is, f (X) = Rng(f ).
Moreover, the inverse image of the codomain is the domain. That is, f −1(Y ) = X.

Exercise 7.22. Define f : Z→ Z via f (x) = x2. Find f ({−2,−1,0,1,2}) and f −1({0,1,4}).

Exercise 7.23. Define f : R→ R via f (x) = 3x2 − 4. Find each of the following.

(a) f ([−2,4])

(b) f ((−2,4))

(c) f −1([−10,1])

(d) f −1((−3,3))

(e) f (∅)

(f) f (R)

(g) f −1(∅)

(h) f −1(R)

1Recall that A/∼ is the set of equivalence classes induced by the equivalence relation ∼.
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(i) Find two non-empty subsets A, B of R such that A∩B = ∅ but f −1(A) = f −1(B)

(j) Find two non-empty subsets A, B of R such that A∩B = ∅ but f (A) = f (B)

Problem 7.24. Find examples of functions f and g together with sets S and T such that
f (f −1(T )) , T and g−1(g(S)) , S.

Problem 7.25. Let f : X→ Y be a function and supposeA,B ⊆ X and C,D ⊆ Y . Determine
whether each of the following statements is true or false. If the statement is true, prove
it. Otherwise, provide a counterexample.

(a) If A ⊆ B, then f (A) ⊆ f (B).

(b) If C ⊆D, then f −1(C) ⊆ f −1(D).

(c) f (A∪B) ⊆ f (A)∪ f (B).

(d) f (A∪B) ⊇ f (A)∪ f (B).

(e) f (A∩B) ⊆ f (A)∩ f (B).

(f) f (A∩B) ⊇ f (A)∩ f (B).

(g) f −1(C ∪D) ⊆ f −1(C)∪ f −1(D).

(h) f −1(C ∪D) ⊇ f −1(C)∪ f −1(D).

(i) f −1(C ∩D) ⊆ f −1(C)∩ f −1(D).

(j) f −1(C ∩D) ⊇ f −1(C)∩ f −1(D).

(k) A ⊆ f −1(f (A)).

(l) A ⊇ f −1(f (A)).

(m) f (f −1(C)) ⊆ C.

(n) f (f −1(C)) ⊇ C.

Exercise 7.26. For each of the statements in previous problem that were false, determine
conditions—if any—on the corresponding sets that would make the statement true.



CHAPTER 7. FUNCTIONS

7.3 Compositions and Inverse Functions

Definition 7.27. If f : X → Y and g : Y → Z are functions, then a new function g ◦ f :
X→ Z can be defined by (g ◦ f )(x) = g(f (x)) for all x ∈Dom(f ).

It is important to notice that the function on the right is the one that “goes first.”

Exercise 7.28. In each case, give examples of finite sets X, Y , and Z, and functions f :
X → Y and g : Y → Z that satisfy the given conditions. Drawing bubble diagrams is
sufficient.

(a) f is onto, but g ◦ f is not onto.

(b) g is onto, but g ◦ f is not onto.

(c) f is one-to-one, but g ◦ f is not one-to-one.

(d) g is one-to-one, but g ◦ f is not.

Theorem 7.29. If f : X → Y and g : Y → Z are both functions that are onto, then g ◦ f is
also onto.

Theorem 7.30. If f : X → Y and g : Y → Z are both functions that are one-to-one, then
g ◦ f is also one-to-one.

Corollary 7.31. If f : X→ Y and g : Y → Z are both bijections, then g◦f is also a bijection.

Problem 7.32. Assume that f : X → Y and g : Y → Z are both functions. Determine
whether each of the following statements is true or false. If the statement is true, prove
it. Otherwise, provide a counterexample.

(a) If g ◦ f is one-to-one, then f is one-to-one.

(b) If g ◦ f is one-to-one, then g is one-to-one.

(c) If g ◦ f is onto, then f is onto.

(d) If g ◦ f is onto, then g is onto.

The next theorem tells us that function composition is associative.

Theorem 7.33. If f : X → Y , g : Y → Z, and h : Z → W are functions, then (h ◦ g) ◦ f =
h ◦ (g ◦ f ).

Theorem 7.34. Let f : X → Y be a function. Then f is one-to-one if and only if there
exists a function g : Y → X such that g ◦ f = iX , where iX is the identity function on X.

The function g in the previous theorem is often called a left inverse of f .

Theorem 7.35. Let f : X → Y be a function. Then f is onto if and only if there exists a
function g : Y → X such that f ◦ g = iY , where iY is the identity function on Y .
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The function g in the previous theorem is often called a right inverse of f .

Exercise 7.36. Provide an example of a function that has a left inverse but does not have
a right inverse. Find the left inverse of your proposed function.

Exercise 7.37. Provide an example of a function that has a right inverse but does not have
a left inverse. Find the right inverse of your proposed function.

Corollary 7.38. If f : X→ Y and g : Y → X are functions satisfying g◦f = iX and f ◦g = iY ,
then f is a bijection.

In the previous result, the functions f and g “cancel” each other out. We say that g is
a two-sided inverse of f .

Definition 7.39. Let f : X→ Y be a function. The relation f −1, called f inverse, is defined
via

f −1 = {(f (x),x) ∈ Y ×X | x ∈ X}.
Notice that we called f −1 a relation and not a function. In some circumstances f −1

will be a function and sometimes it will not be.

Exercise 7.40. Provide an example of a function f : X→ Y such that f −1 is not a function.
A bubble diagram is sufficient.

Exercise 7.41. Provide an example of a function f : X→ Y such that f −1 is a function. A
bubble diagram is sufficient.

Theorem 7.42. Let f : X → Y be a function. Then f −1 is a function if and only if f is a
bijection.

Theorem 7.43. If f : X→ Y is a bijection, then

(a) f −1 ◦ f = iX , and

(b) f ◦ f −1 = iY .

Theorem 7.44. Let f : X → Y and g : Y → X be functions such that f is a bijection. If
g ◦ f = iX and f ◦ g = iY , then g = f −1.

The upshot of the previous two theorems is that if f −1 is a function, then it is the
only one satisfying the two-sided inverse property exhibited in Corollary 7.38 and Theo-
rem 7.43.

Theorem 7.45. If f : X→ Y is a bijection, then f −1 : Y → X is a bijection and (f −1)−1 = f .

Theorem 7.46. If f : X→ Y and g : Y → Z are both bijections, then (g ◦ f )−1 = f −1 ◦ g−1.

The previous theorem is sometimes referred to as the “socks and shoes theorem”. Do
you see how it got this name?

Theorem 7.47. Let f : X → Y be a function and define ∼ on X via a ∼ b if and only if
f (a) = f (b).

(a) The relation ∼ is an equivalence relation,

(b) Each equivalence class [a] is equal to f −1(f (a)),

(c) The function g : X/∼→ f (X) defined via g([a]) = f (a) is a bijection.
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Cardinality

In this chapter, we will explore the notion of cardinality, which formalizes what it means
for two sets to be the same “size”.

8.1 Introduction to Cardinality

What does it mean for two sets to have the same “size”? If the sets are finite, this is easy:
just count how many elements are in each set. Another approach would be to pair up the
elements in each set and see if there are any left over. In other words, check to see if there
is a one-to-one correspondence (i.e., bijection) between the two sets.

But what if the sets are infinite? For example, consider the set of natural numbers N
and the set of even natural numbers 2N := {2n | n ∈ N}. Clearly, 2N is a proper subset of
N. Moreover, both sets are infinite. In this case, you might be thinking that N is “larger
than” 2N However, it turns out that there is a one-to-one correspondence between these
two sets. In particular, consider the function f : N→ 2N defined via f (n) = 2n. It is easily
verified that f is both one-to-one and onto. In this case, mathematics has determined
that the right viewpoint is that N and 2N do have the same “size”. However, it is clear
that “size” is a bit too imprecise when it comes to infinite sets. We need something more
rigorous.

Definition 8.1. Let A and B be sets. We say that A and B have the same cardinality if
and only if there exists a bijection between A and B. If A and B have the same cardinality,
then we write card(A) = card(B) .

Note that we have not defined card(A) by itself. Doing so would not be too difficult
for finite sets, but making such a notation precise in general is tricky business. When
we write card(A) = card(B) (and later card(A) ≤ card(B) and card(A) < card(B)), we are
asserting the existence of a certain type of function from A to B.

Problem 8.2. Prove each of the following. In each case, you should create a bijection
between the two sets. Briefly justify that your functions are in fact bijections.

(a) If A = {a,b,c} and B = {x,y,z}, then card(A) = card(B).

70
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(b) If O is the set of odd natural numbers, then card(N) = card(O).

(c) card(N) = card(Z).

(d) Let a,b,c,d ∈ R with a < b and c < d. Then card((a,b)) = card((c,d)).1

(e) If R = { 1
2n | n ∈ N}, then card(N) = card(R).

(f) If F is the set of functions from N to {0,1}, then card(F ) = card(P (N)).2

(g) If A is any set, then card(A) = card(A× {x}).

Theorem 8.3. Let A, B, and C be sets.

(a) card(A) = card(A).

(b) If card(A) = card(B), then card(B) = card(A).

(c) If card(A) = card(B) and card(B) = card(C), then card(A) = card(C).

In light of the previous theorem, the next result should not be surprising.

Corollary 8.4. If X is a set, then “has the same cardinality as” is an equivalence relation
on P (X).

Theorem 8.5. Let A, B, C, and D be sets such that card(A) = card(C) and card(B) =
card(D).

(a) If A and B are disjoint and C and D are disjoint, then card(A∪B) = card(C ∪D).

(b) card(A×B) = card(C ×D).

Given two finite sets, it makes sense to say that one set is “larger than” another pro-
vided one set contains more elements than the other. We would like to generalize this
idea to handle both finite and infinite sets.

Definition 8.6. Let A and B be sets. If there is a one-to-one function (i.e., injection) from
A to B, then we say that the cardinality of A is less than or equal to the cardinality of B.
In this case, we write card(A) ≤ card(B) .

Theorem 8.7. Let A, B, and C be sets.

(a) If A ⊆ B, then card(A) ≤ card(B).

(b) If card(A) ≤ card(B) and card(B) ≤ card(C), then card(A) ≤ card(C).

(c) If C ⊆ A while card(B) = card(C), then card(B) ≤ card(A).
1Hint: Try creating a linear function f : (a,b)→ (c,d). Drawing a picture should help.
2Hint: Define φ : F → P (N) so that φ(f ) outputs a subset of N determined by when f outputs a 1.
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It might be tempting to think that the existence of a one-to-one function from a set
A to a set B that is not onto would verify that card(A) ≤ card(B) and card(A) , card(B).
While this is true for finite sets, it is not true for infinite sets as the next exercise asks you
to verify.

Exercise 8.8. Provide an example of sets A and B such that card(A) = card(B) despite the
fact that there exists a one-to-one function from A to B that is not onto.

Definition 8.9. Let A and B be sets. We write card(A) < card(B) provided card(A) ≤
card(B) and card(A) , card(B).

It is important to point out that the statements card(A) = card(B) and card(A) ≤
card(B) are symbolic ways of asserting the existence of certain types of functions from
A to B. When we write card(A) < card(B), we are saying something much stronger than
“There exists a function f : A→ B that is one-to-one but not onto.” The statement card(A) <
card(B) is asserting that every one-to-one function from A to B is not onto. In general, it
is difficult to prove statements like card(A) , card(B) or card(A) < card(B).

8.2 Finite Sets

In the previous section, we used the phrase “finite set” without formally defining it. Let’s
be a bit more precise.

Definition 8.10. For each n ∈ N, define [n] = {1,2, . . . ,n}.

For example, [5] = {1,2,3,4,5}. Notice that our notation looks just like that for the
set of relatives given a relation on some set (see Definition 6.32), which is an equivalence
class if the relation happens to be an equivalence relation. However, despite the similar
notation, these concepts are unrelated. We will have to rely on context to keep them
straight.

The next definition should coincide with your intuition about what it means for a set
to be finite.

Definition 8.11. A set A is finite if and only if A = ∅ or card(A) = card([n]) for some n ∈ N.
If A = ∅, then we say that A has cardinality 0 and if card(A) = card([n]), then we say that
A has cardinality n.

Let’s prove a few results about finite sets.

Theorem 8.12. If A is finite and card(A) = card(B), then B is finite.3

Theorem 8.13. If A has cardinality n ∈ N ∪ {0} and x < A, then A ∪ {x} is finite and has
cardinality n+ 1.

Theorem 8.14. For every n ∈ N, every subset of [n] is finite.4

3Don’t forget to consider the case when A = ∅.
4Hint: Use induction.
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Theorem 8.13 shows that adding a single element to a finite set increases the cardi-
nality by 1. As you would expect, removing one element from a finite set decreases the
cardinality by 1.

Theorem 8.15. If A has cardinality n ∈ N, then for all x ∈ A, A \ {x} is finite and has
cardinality n− 1.

The next result tells us that the cardinality of a proper subset of a finite set is never
the same as the cardinality of the original set. It turns out that this theorem does not hold
for infinite sets.

Theorem 8.16. Every subset of a finite set is finite. In particular, if A is a finite set, then
card(B) < card(A) for all proper subsets B of A.

Theorem 8.17. If A1,A2, . . . ,Ak is a finite collection of finite sets, then
k⋃
i=1

Ai is finite.5

The next theorem, called the Pigeonhole Principle, is surprisingly useful. It puts re-
strictions on when we may have a one-to-one function. The name of the theorem is in-
spired by the following idea: If n pigeons wish to roost in a house with k pigeonholes and
n > k, then it must be the case that at least one hole contains more than one pigeon.

Theorem 8.18 (Pigeonhole Principle). If n,k ∈ N and f : [n]→ [k] with n > k, then f is not
one-to-one.6

8.3 Infinite Sets

In the previous section, we explored finite sets. Now, let’s tinker with infinite sets.

Definition 8.19. A set A is infinite if and only if A is not finite.

Let’s see if we can utilize this definition to prove that the set of natural numbers is
infinite.

Theorem 8.20. The set N of natural numbers is infinite.7

The next theorem is analogous to Theorem 8.12, but for infinite sets. As we shall see
later, the converse of this theorem is not generally true.

Theorem 8.21. If A is infinite and card(A) = card(B), then B is infinite.8

5Hint: Use induction.
6Hint: Induct on the number of pigeons. The base case is n = 2.
7Hint: For sake of a contradiction, assume otherwise. Then there exists n ∈ N such that card([n]) =
card(N), which implies that there exists a bijection f : [n] → N. What can you say about the number
m := max(f (1), f (2), . . . , f (n)) + 1?

8Hint: Try a proof by contradiction. You should end up composing two bijections, say f : A → B and
g : B→ [n] for some n ∈ N.
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Exercise 8.22. Quickly verify that the following sets are infinite by appealing to Theo-
rem 8.20, Theorem 8.21, and Problem 8.2.

(a) The set of odd natural numbers.

(b) The set of even natural numbers.

(c) The integers.

(d) The set R = { 1
2n | n ∈ N}.

(e) The set N× {x}.

Notice that Definition 8.19 tells what infinite sets are not, but it doesn’t really tell
us what they are. In light of Theorem 8.20, one way of thinking about infinite sets is as
follows. Suppose A is some nonempty set. Let’s select a random element from A and set it
aside. We will call this element the “first” element. Then we select one of the remaining
elements and set is aside, as well. This is the “second” element. Imagine we continue
this way, choosing a “third” element, and “fourth” element, etc. If the set is infinite, we
should never run out of elements to select. Otherwise, we would create a bijection with
[n] for some n ∈ N.

The next problem, sometimes refered to as the Hilbert Hotel9, illustrates another way
to think about infinite sets.

Problem 8.23. The Infinite Hotel has rooms numbered 1,2,3,4, . . .. Every room in the Infi-
nite Hotel is currently occupied. Is it possible to make room for one more guest (assuming
they want a room all to themselves)? An infinite number of new guests, say g1, g2, g3, . . .,
show up in the lobby and each demands a room. Is it possible to make room for all the
new guests even in the hotel is already full?

The previous problem verifies that a proper subset of the natural numbers is in bijec-
tion with the natural numbers themselves. We also witnessed this in parts (a) and (b) of
Exercise 8.22. Notice that Theorem 8.16 forbids this type of behavior for finite sets. It
turns out that this phenomenon is true for all infinite sets. The next theorem verifies that
that the two viewpoints of infinite sets discussed above are valid.

Theorem 8.24. Let A be a set. Then the following statements are equivalent.10

(i) A is an infinite set.

(ii) There exists a one-to-one function f : N→ A.

(iii) A can be put in bijection with a proper subset of A (i.e., there exists a proper subset
B of A such that card(B) = card(A)).

9The Hilbert Hotel is named after mathematician David Hilbert (1862–1942).
10Hint: Prove (i) if and only if (ii) and (ii) if and only if (iii). For (i) implies (ii), construct f recursively. For

(ii) implies (i), try a proof by contradiction. For (ii) implies (iii), let B = A\ {f (1), f (2), . . .} and show that A
can be put in bijection with B∪{f (2), f (3), . . .}. Lastly, for (iii) implies (ii), suppose g : A→ C is a bijection
for some proper subset C of A. Let a ∈ A \C. Define f : N→ A via f (n) = gn(a), where gn means compose
g with itself n times.

https://en.wikipedia.org/wiki/David_Hilbert
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Corollary 8.25. A set is infinite if and only if it has an infinite subset.

Corollary 8.26. If A is an infinite set, then card(N) ≤ card(A).

It is worth mentioning that for the previous theorem, (iii) implies (i) follows immedi-
ately from the contrapositive of Theorem 8.16.

Problem 8.27. Find a new proof of Theorem 8.20 that uses (iii) implies (i) from Theo-
rem 8.24.

Exercise 8.28. Quickly verify that the following sets are infinite by appealing to either
Theorem 8.24 (use (ii) implies (i)) or Corollary 8.25.

(a) The set of odd natural numbers.

(b) The set of even natural numbers.

(c) The integers.

(d) The set N×N.

(e) The set of rational numbers Q.

(f) The set of real numbers R.

(g) The set of perfect squares.

(h) The interval (0,1).

(i) The set of complex numbers C := {a+ bi | a,b ∈ R}.

8.4 Countable Sets

Recall that if A = ∅, then we say that A has cardinality 0. Also, if card(A) = card([n]) for
n ∈ N, then we say that A has cardinality n. We have a special way of describing sets that
are in bijection with the natural numbers.

Definition 8.29. If A is a set such that card(A) = card(N), then we say that A is denumer-
able and has cardinality ℵ0 (read “aleph naught”).

Notice if a set A has cardinality 1,2, . . ., or ℵ0, we can label the elements in A as “first”,
“second”, and so on. That is, we can “count” the elements in these situations. Certainly, if
a set has cardinality 0, counting isn’t an issue. This idea leads to the following definition.

Definition 8.30. A set A is called countable if and only if A is finite or denumerable. A
set is called uncountable if and only if it is not countable.

Exercise 8.31. Quickly justify that each of the following sets is countable. Feel free to
appeal to previous problems.
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(a) The set A := {a,b,c}

(b) The set of odd natural numbers.

(c) The set of even natural numbers.

(d) The set R := { 1
2n | n ∈ N}.

(e) The set of perfect squares.

(f) The integers.

(g) The set N× {x}, where x < N.

Theorem 8.32. Let A and B be sets such that A is countable. If f : A→ B is a bijection,
then B is countable.

Theorem 8.33. Every subset of a countable set is countable.11

Theorem 8.34. A set is countable if and only if it has the same cardinality of some subset
of the natural numbers.

Theorem 8.35. If f : N→ A is an onto function, then A is countable.

Loosely speaking, the next theorem tells us that we can arrange all of the rational
numbers then count them “first”, “second”, “third”, etc. Given the fact that between any
two distinct rational numbers on the number line, there are an infinite number of other
rational numbers (justified by taking repeated midpoints), this may seem counterintu-
itive.

Theorem 8.36. The set of rational numbers Q is countable.12

Theorem 8.37. If A and B are countable sets, then A∪B is countable.

We would like to prove a stronger result than the previous theorem. To do so, we need
a lemma.

Lemma 8.38. Let {An}∞n=1 be a (countable) collection of sets. Define B1 := A1 and for each
natural number n > 1, define

Bn := An \
n−1⋃
i=1

Ai .

Then we we have the following:

11Hint: Let A be a countable set. Consider the cases when A is finite versus infinite. The contrapositive of
Corollary 8.25 should be useful for the case when A is finite.

12Hint: Make a table with column headings 0,1,−1,2,−2, . . . and row headings 1,2,3,4,5, . . .. If a column has
heading m and a row has heading n, then the corresponding entry in the table is given by the fraction
m/n. Find a way to zig-zag through the table making sure to hit every entry in the table (not including
column and row headings) exactly once. This justifies that there is a bijection between N and the entries
in the table. Do you see why? Now, we aren’t done yet because every rational number appears an infinite
number of times in the table. Appeal to Theorem 8.33.
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(a) The collection {Bn}∞n=1 is pairwise disjoint.

(b)
∞⋃
n=1

An =
∞⋃
n=1

Bn.

Theorem 8.39. Every countable union of countable sets is countable.13

Theorem 8.40. If A and B are countable sets, then A×B is countable.

Theorem 8.41. The set of all finite sequences of 0’s and 1’s (e.g., 0110010) is countable.

8.5 Uncountable Sets

Recall from Definition 8.30 that a set A is uncountable if and only if A is not countable.
Since all finite sets are countable, the only way a set could be uncountable is if it is infinite.
It follows that a set A is uncountable if and only if there is never a bijection between N
and A. It’s not clear that uncountable sets even exist! It turns out that uncountable sets
do exist and in this section, we will discover a few of them.

Our first task is to prove that the open interval (0,1) is uncountable. By Exercise 8.28(h),
we know that (0,1) is an infinite set, so it is at least plausible that (0,1) is uncountable. The
following problem outlines the proof of Theorem 8.43. Our approach is often referred to
as Cantor’s Diagonalization Argument.

Before we get started, recall that every number in (0,1) can be written in decimal form.
However, there may be more than one way to write a given number in decimal form. For
example, 0.2 equals 0.199. A number x = 0.a1a2a3 . . . is said to be in standard form if
and only if there is no k such that for all i > k, ai = 9. That is, a decimal expansion is in
standard form if and only if the expansion doesn’t end with a repeating sequence of 9’s.
For example, 0.2 is in standard form while 0.199 is not, even though both represent the
same number. It turns out that every real number can be expressed uniquely in standard
form.

Problem 8.42. For sake of a contradiction, assume the interval (0,1) is countable. Then
there exists a bijection f : N→ (0,1). For each n ∈ N, its image under f is some number
in (0,1). Let f (n) := 0.a1na2na3n . . ., where a1n is the first digit in the decimal form for the
image of n, a2n is the second digit, and so on. If f (n) terminates after k digits, then our
convention will be to continue the decimal form with 0’s. Now, define b = 0.b1b2b3 . . .,
where

bi =

2, if aii , 2
3, if aii = 2.

(a) Prove that the decimal expansion that defines b above is in standard form.

13Hint: A countable union is a union of countably many sets. Recall that a countable set may be finite or
infinite. Consider three cases: (1) finite union of countable sets (use induction with base case n = 2), (2)
countably infinite union of finite sets, (3) countably infinite union of countably infinite sets.
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(b) Prove that for all n ∈ N, f (n) , b.

(c) Prove that f is not onto.

(d) Explain why we have a contradiction.

(e) Explain why it follows that the open interval (0,1) cannot be countable.

The steps above prove the following theorem.

Theorem 8.43. The open interval (0,1) is uncountable.

Loosely speaking, what Theorem 8.43 says is that the open interval (0,1) is “bigger”
in terms of the number of elements it contains than the natural numbers and even the
rational numbers. This shows that there are infinite sets of different sizes!

One consequence of Theorem 8.43 is that we know there is at least one uncountable
set. The next three results are useful for finding other uncountable sets.

Theorem 8.44. If A and B are sets such that A ⊆ B and A is uncountable, then B is un-
countable.14

Corollary 8.45. If A and B are sets such that A is uncountable and B is countable, then
A \B is uncountable.

Theorem 8.46. If f : A → B is a one-to-one function and A is uncountable, then B is
uncountable.

Theorem 8.47. The setR of real numbers is uncountable. Moreover, card((0,1)) = card(R).15

Theorem 8.48. If a,b ∈ R with a < b, then (a,b), [a,b], (a,b], and [a,b) are all uncountable.

Theorem 8.49. The set of irrational numbers is uncountable.

Theorem 8.50. The set C of complex numbers is uncountable.

Problem 8.51. Determine whether each of the following statements is true or false. If a
statement is true, prove it. If a statement is false, provide a counterexample.

(a) If A and B are sets such that A is uncountable, then A∪B is uncountable.

(b) If A and B are sets such that A is uncountable, then A∩B is uncountable.

(c) If A and B are sets such that A is uncountable, then A×B is uncountable.

(d) If A and B are sets such that A is uncountable, then A \B is uncountable.

Problem 8.52. Let S be the set of infinite sequences of 0’s and 1’s. Determine whether S
is countable or uncountable and prove that your answer is correct.

14Hint: Try a proof by contradiction. Take a look at Theorem 8.33.
15Hint: To show that R is uncountable, appeal to Theorem 8.44. To show that card((0,1)) = card(R), con-

sider the function f : (0,1) → R defined via f (x) = tan(πx − π
2 ). It is worth pointing out that proving

card((0,1)) = card(R) automatically proves that R is uncountable.
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It turns out that the two uncountable sets may or may not have the same cardinality.
Perhaps surprisingly, there are sets that are even “bigger” than the set of real numbers.
Given any set, we can always increase the cardinality by considering its power set.

Theorem 8.53. If A is a set, then card(A) < card(P (A)).16

Recall that cardinality provides a way for talking about “how big” a set is. The fact
that the natural numbers and the real numbers have different cardinality (one countable,
the other uncountable), tells us that there are at least two different “sizes of infinity”.
Theorem 8.53 tells us that there are infinitely many “sizes of infinity.”

Theorem 8.54. Consider the set S from Problem 8.52. Then card(P (N)) = card(S).

16Hint: Mimic Cantor’s Diagonalization Argument for showing that the interval (0,1) is uncountable.
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Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem
is just a single number, “the right answer.” It is time to unlearn those lessons; those days
are over. From here on out, mathematics is about discovering proofs and writing them
clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number,
in my comments on your homework and exams. Keep these rules handy so that you may
refer to them as you write your proofs.

1. The burden of communication lies on you, not on your reader. It is your job to ex-
plain your thoughts; it is not your reader’s job to guess them from a few hints. You
are trying to convince a skeptical reader who doesn’t believe you, so you need to ar-
gue with airtight logic in crystal clear language; otherwise the reader will continue
to doubt. If you didn’t write something on the paper, then (a) you didn’t commu-
nicate it, (b) the reader didn’t learn it, and (c) the grader has to assume you didn’t
know it in the first place.

2. Tell the reader what you’re proving. The reader doesn’t necessarily know or re-
member what “Theorem 2.13” is. Even a professor grading a stack of papers might
lose track from time to time. Therefore, the statement you are proving should be on
the same page as the beginning of your proof. For an exam this won’t be a problem,
of course, but on your homework, recopy the claim you are proving. This has the
additional advantage that when you study for exams by reviewing your homework,
you won’t have to flip back in the notes/textbook to know what you were proving.

3. Use English words. Although there will usually be equations or mathematical
statements in your proofs, use English sentences to connect them and display their
logical relationships. If you look in your notes/textbook, you’ll see that each proof
consists mostly of English words.

4. Use complete sentences. If you wrote a history essay in sentence fragments, the
reader would not understand what you meant; likewise in mathematics you must
use complete sentences, with verbs, to convey your logical train of thought.
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Some complete sentences can be written purely in mathematical symbols, such as
equations (e.g., a3 = b−1), inequalities (e.g., x < 5), and other relations (like 5

∣∣∣10 or
7 ∈ Z). These statements usually express a relationship between two mathematical
objects, like numbers or sets. However, it is considered bad style to begin a sentence
with symbols. A common phrase to use to avoid starting a sentence with mathemat-
ical symbols is “We see that...”

5. Show the logical connections among your sentences. Use phrases like “Therefore”
or “because” or “if. . . , then. . . ” or “if and only if” to connect your sentences.

6. Know the difference between statements and objects. A mathematical object is a
thing, a noun, such as a group, an element, a vector space, a number, an ordered
pair, etc. Objects either exist or don’t exist. Statements, on the other hand, are
mathematical sentences: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it’s an
object (e.g., “x2 + 3”) or a statement (e.g., “x2 + 3 < 7”). One way to tell is that every
mathematical statement includes a verb, such as =, ≤, “divides”, etc.

7. “=” means equals. Don’t write A = B unless you mean that A actually equals B.
This rule seems obvious, but there is a great temptation to be sloppy. In calculus,
for example, some people might write f (x) = x2 = 2x (which is false), when they
really mean that “if f (x) = x2, then f ′(x) = 2x.”

8. Don’t interchange = and =⇒ . The equals sign connects two objects, as in “x2 = b”;
the symbol “ =⇒ ” is an abbreviation for “implies” and connects two statements, as
in “a+ b = a =⇒ b = 0.” You should avoid using =⇒ in your formal write-ups.

9. Say exactly what you mean. Just as the = is sometimes abused, so too people some-
times write A ∈ B when they mean A ⊆ B, or write aij ∈ A when they mean that aij is
an entry in matrix A. Mathematics is a very precise language, and there is a way to
say exactly what you mean; find it and use it.

10. Don’t write anything unproven. Every statement on your paper should be some-
thing you know to be true. The reader expects your proof to be a series of statements,
each proven by the statements that came before it. If you ever need to write some-
thing you don’t yet know is true, you must preface it with words like “assume,”
“suppose,” or “if” (if you are temporarily assuming it), or with words like “we need
to show that” or “we claim that” (if it is your goal). Otherwise the reader will think
they have missed part of your proof.

11. Write strings of equalities (or inequalities) in the proper order. When your reader
sees something like

A = B ≤ C =D,

he/she expects to understand easily why A = B, why B ≤ C, and why C = D, and
he/she expects the point of the entire line to be the more complicated fact that A ≤
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D. For example, if you were computing the distance d of the point (12,5) from the
origin, you could write

d =
√

122 + 52 = 13.

In this string of equalities, the first equals sign is true by the Pythagorean theorem,
the second is just arithmetic, and the point is that the first item equals the last item:
d = 13.

A common error is to write strings of equations in the wrong order. For example,
if you were to write “

√
122 + 52 = 13 = d”, your reader would understand the first

equals sign, would be baffled as to how we know d = 13, and would be utterly per-
plexed as to why you wanted or needed to go through 13 to prove that

√
122 + 52 = d.

12. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!

13. Don’t write the proof backwards. Beginning students often attempt to write “proofs”
like the following, which attempts to prove that tan2(x) = sec2(x)− 1:

tan2(x) =sec2(x)− 1(
sin(x)
cos(x)

)2

=
1

cos2(x)
− 1

sin2(x)
cos2(x)

=
1− cos2(x)

cos2(x)

sin2(x) =1− cos2(x)

sin2(x) + cos2(x) =1
1 =1

Notice what has happened here: the student started with the conclusion, and de-
duced the true statement “1 = 1.” In other words, he/she has proved “If tan2(x) =
sec2(x)− 1, then 1 = 1,” which is true but highly uninteresting.

Now this isn’t a bad way of finding a proof. Working backwards from your goal
often is a good strategy on your scratch paper, but when it’s time to write your proof,
you have to start with the hypotheses and work to the conclusion.

14. Be concise. Most students err by writing their proofs too short, so that the reader
can’t understand their logic. It is nevertheless quite possible to be too wordy, and
if you find yourself writing a full-page essay, it’s probably because you don’t really
have a proof, but just an intuition. When you find a way to turn that intuition into
a formal proof, it will be much shorter.

15. Introduce every symbol you use. If you use the letter “k,” the reader should know
exactly what k is. Good phrases for introducing symbols include “Let n ∈ N,” “Let k
be the least integer such that. . . ,” “For every real number a. . . ,” and “Suppose that
X is a counterexample.”
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16. Use appropriate quantifiers (once). When you introduce a variable x ∈ S, it must
be clear to your reader whether you mean “for all x ∈ S” or just “for some x ∈ S.” If
you just say something like “y = x2 where x ∈ S,” the word “where” doesn’t indicate
whether you mean “for all” or “some”.

Phrases indicating the quantifier “for all” include “Let x ∈ S”; “for all x ∈ S”; “for
every x ∈ S”; “for each x ∈ S”; etc. Phrases indicating the quantifier “some” (or
“there exists”) include “for some x ∈ S”; “there exists an x ∈ S”; “for a suitable
choice of x ∈ S”; etc.

On the other hand, don’t introduce a variable more than once! Once you have said
“Let x ∈ S,” the letter x has its meaning defined. You don’t need to say “for all x ∈ S”
again, and you definitely should not say “let x ∈ S” again.

17. Use a symbol to mean only one thing. Once you use the letter x once, its meaning
is fixed for the duration of your proof. You cannot use x to mean anything else.

18. Don’t “prove by example.” Most problems ask you to prove that something is true
“for all”—You cannot prove this by giving a single example, or even a hundred. Your
answer will need to be a logical argument that holds for every example there possibly
could be.

19. Write “Let x = . . . ,” not “Let · · · = x.” When you have an existing expression, say a2,
and you want to give it a new, simpler name like b, you should write “Let b = a2,”
which means, “Let the new symbol bmean a2.” This convention makes it clear to the
reader that b is the brand-new symbol and a2 is the old expression he/she already
understands.

If you were to write it backwards, saying “Let a2 = b,” then your startled reader
would ask, “What if a2 , b?”

20. Make your counterexamples concrete and specific. Proofs need to be entirely gen-
eral, but counterexamples should be absolutely concrete. When you provide an
example or counterexample, make it as specific as possible. For a set, for example,
you must name its elements, and for a function you must give its rule. Do not say
things like “θ could be one-to-one but not onto”; instead, provide an actual function
θ that is one-to-one but not onto.

21. Don’t include examples in proofs. Including an example very rarely adds anything
to your proof. If your logic is sound, then it doesn’t need an example to back it up.
If your logic is bad, a dozen examples won’t help it (see rule 18). There are only two
valid reasons to include an example in a proof: if it is a counterexample disproving
something, or if you are performing complicated manipulations in a general setting
and the example is just to help the reader understand what you are saying.

22. Use scratch paper. Finding your proof will be a long, potentially messy process,
full of false starts and dead ends. Do all that on scratch paper until you find a real
proof, and only then break out your clean paper to write your final proof carefully.
Do not hand in your scratch work!
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Only sentences that actually contribute to your proof should be part of the proof.
Do not just perform a “brain dump,” throwing everything you know onto the paper
before showing the logical steps that prove the conclusion. That is what scratch paper
is for.
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Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and
throughout your mathematical career.

1. Definition—a precise and unambiguous description of the meaning of a mathemat-
ical term. It characterizes the meaning of a word by giving all the properties and
only those properties that must be true.

2. Theorem—a mathematical statement that is proved using rigorous mathematical
reasoning. In a mathematical paper, the term theorem is often reserved for the
most important results.

3. Lemma—a minor result whose sole purpose is to help in proving a theorem. It is a
stepping stone on the path to proving a theorem. Very occasionally lemmas can take
on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s
lemma).

4. Corollary—a result in which the (usually short) proof relies heavily on a given the-
orem (we often say that “this is a corollary of Theorem A”).

5. Proposition—a proved and often interesting result, but generally less important
than a theorem.

6. Conjecture—a statement that is unproved, but is believed to be true (Collatz con-
jecture, Goldbach conjecture, twin prime conjecture).

7. Claim—an assertion that is then proved. It is often used like an informal lemma.

8. Axiom/Postulate—a statement that is assumed to be true without proof. These are
the basic building blocks from which all theorems are proved (Euclid’s five postu-
lates, Zermelo-Frankel axioms, Peano axioms).

9. Identity—a mathematical expression giving the equality of two (often variable)
quantities (trigonometric identities, Euler’s identity).
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10. Paradox—a statement that can be shown, using a given set of axioms and defini-
tions, to be both true and false. Paradoxes are often used to show the inconsistencies
in a flawed theory (Russell’s paradox). The term paradox is often used informally
to describe a surprising or counterintuitive result that follows from a given set of
rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn).
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Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play
a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarely-
used word rodomontade. According to the Oxford English Dictionary1 (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic
speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten min-
utes later ask her to define rodomontade. Most likely she will be able to give a reasonably
accurate definition. Maybe she’d say something like, “It is a speech or act or piece of
writing created by a pompous or egotistical person who wants to show off how great they
are.” It is unlikely that she will have quoted the OED word-for-word. In everyday En-
glish that is fine—you would probably agree that your friend knows the meaning of the
rodomontade. This is because most definitions are descriptive. They describe the common
usage of a word.

Let us take a mathematical example. The OED2 gives this definition of continuous.

Characterized by continuity; extending in space without interruption of sub-
stance; having no interstices or breaks; having its parts in immediate connec-
tion; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose
graph can be drawn “without picking up the pencil.” This definition is descriptive. (As
we learned in calculus the picking-up-the-pencil description is not a perfect description
of continuous functions.) This is not a mathematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the exact and
correct meaning of a word. Contrast the OED’s descriptive definition of continuous with
the the definition of continuous found in a real analysis textbook.

A function f : A→ R is continuous at a point c ∈ A if, for all ε > 0, there exists
δ > 0 such that whenever |x−c| < δ (and x ∈ A) it follows that |f (x)−f (c)| < ε. If f

1http://www.oed.com/view/Entry/166837
2http://www.oed.com/view/Entry/40280
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is continuous at every point in the domain A, then we say that f is continuous
on A.3

In mathematics there is very little freedom in definitions. Mathematics is a deductive
theory; it is impossible to state and prove theorems without clear definitions of the math-
ematical terms. The definition of a term must completely, accurately, and unambiguously
describe the term. Each word is chosen very carefully and the order of the words is crit-
ical. In the definition of continuity changing “there exists” to “for all,” changing the
orders of quantifiers, changing < to ≤ or >, or changing R to Z would completely change
the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage
you memorize the definitions word-for-word. It is the safest way to guarantee that you
have it correct. As you gain confidence and familiarity with the subject you may be ready
to modify the wording. You may want to change “for all” to “given any” or you may want
to change |x − c| < δ to −δ < x − c < δ or to “the distance between x and c is less than δ.”

Of course, memorization is not enough; you must have a conceptual understanding of
the term, you must see how the formal definition matches up with your conceptual un-
derstanding, and you must know how to work with the definition. It is perhaps with the
first of these that descriptive definitions are useful. They are useful for building intuition
and for painting the “big picture.” Only after days (weeks, months, years?) of experience
does one get an intuitive feel for the ε,δ-definition of continuity; most mathematicians
have the “picking-up-the-pencil” definitions in their head. This is fine as long as we
know that it is imperfect, and that when we prove theorems about continuous functions
in mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive defi-
nition was not sufficient. In 2003 the German version of the game show Who wants to be
a millionaire? contained the following question: “Every rectangle is: (a) a rhombus, (b) a
trapezoid, (c) a square, (d) a parallelogram.”

The confused contestant decided to skip the question and left with €4000. Afterward
the show received letters from irate viewers. Why were the contestant and the viewers
upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But
what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilat-
eral with a pair of parallel sides. But this leaves open the question: can a trapezoid have
two pairs of parallel sides or must there only be one pair? The viewers said two pairs is
allowed, the producers of the television show said it is not. This is a case in which a clear,
precise, mathematical definition is required.

3This definition is taken from page 109 of Stephen Abbott’s Understanding Analysis, but the definition
would be essentially the same in any modern real analysis textbook.
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