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Instructions

This portion of the Final Exam is worth a total of 12 points and is due by 5pm on Thursday, December
15. Your total combined score on the in-class portion and take-home portion is worth 20% of your overall
grade.

I expect your solutions to be well-written, neat, and organized. Do not turn in rough drafts. What you turn
in should be the “polished” version of potentially several drafts.

Feel free to type up your final version. The IXNTEX source file of this exam is also available if you are interested
in typing up your solutions using IATEX. I’ll gladly help you do this if you’d like.

The simple rules for the exam are:

1.

You may freely use any theorems that we have discussed in class, but you should make it clear where
you are using a previous result and which result you are using. For example, if a sentence in your
proof follows from Theorem 1.41, then you should say so.

. Unless you prove them, you cannot use any results from the course notes that we have not yet covered.

. You are NOT allowed to consult external sources when working on the exam. This includes people

outside of the class, other textbooks, and online resources.

. You are NOT allowed to copy someone else’s work.
. You are NOT allowed to let someone else copy your work.

. You are allowed to discuss the problems with each other and critique each other’s work.

I will vigorously pursue anyone suspected of breaking these rules.

You should turn in this cover page and all of the work that you have decided to submit. Please write
your solutions and proofs on your own paper.

To convince me that you have read and understand the instructions, sign in the box below.

Signature:

Good luck and have fun!
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Introduction
The discussion that follows is a summary of Section 10.3 of the course notes. You’ll need these ideas for

some of the problems that follow (but not all of the problems).

Recall that if G is a group and H is a subgroup of G, then we can form the quotient group G/H exactly
when H is normal in G. We would like to mimic the same construction for rings. That is, if R is a ring and
I is a subring, we would like to form the quotient ring R/I. Since R is an abelian group under addition, all
subrings will automatically be normal subgroups under addition. That is, if we ignore multiplication R/I is
a well-defined group under addition of cosets. In this case, the cosets are of the form r + I, where r € R. If
r+ I and s+ I are two (additive) cosets of I, then we add just like we did for groups:

(r+1)+(s+1)=(r+s)+1.
But if we want to make a ring out of R/I, we need to be able to multiply cosets. The natural choice is:
(r+1)(s+1I)=(rs)+ 1.

Analogous to the situation for groups (where we could only quotient by a normal subgroup), multiplication
of cosets is only well-defined under certain circumstances. The following definition is exactly the condition
on the subring that we need in order for multiplication of cosets to be well-defined. You can think of this
definition as the analog of “normal” for rings.

Definition. Let R be a ring and let I be a subring of R.
(a) I is a left ideal (respectively, right ideal) of R iff rI C I (respectively, Ir C I) for all r € R.
(b) I is an ideal (or two-sided ideal) iff I is both a left and a right ideal.

Recall that a subring must be closed under multiplication. An ideal is a special kind of subring with the
property that we can multiply elements of the ideal by whatever we want and we never leave the subring.
There is a rather lengthy discussion in Section 10.3 that argues that we can form a quotient ring exactly
when we quotient by an ideal. That is, we have the following theorem (which is proved in the course notes).

Theorem. Let R be a ring and let I be an ideal of R. Then the additive quotient group R/I is a ring under
the binary operations:

(r+D)+(s+1)=(r+s)+1
(r+1)(s+1)=(rs)+1

for all r,s € R. Conversely, if I is any subgroup such that the above operations are well-defined, then I is
an ideal of R.

Here are a few quick observations that I’ll let you ponder. Assume R is a ring and let I be an ideal of R.
(a) The additive identity in R/I is 0 + I.
(b) If R is a commutative ring, then R/I is also a commutative ring.

(c¢) If R is a ring with 1, say 1g, then R/I is also a ring with 1. In this case, the multiplicative identity is
1R + 1.

(d) If r € R is a unit (i.e., r~! exists), then (r + I) is a unit, namely (r + I)~! = = + I. However, it’s
possible that r 4+ I is a unit even if r is not.

A couple of the problems below require the following definition. Assume R is a commutative ring with 1.
An ideal M in a ring R is called a maximal ideal if M # R and the only ideals containing M are M and
R. See Example 10.53 in the course notes for a few examples.
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As you might expect, we have an isomorphism theorem for rings. The proof of the following theorem is
more or less identical to the proof of the First Isomorphism Theorem for groups. You do not need to worry
about proving this theorem, but feel free to use it.

Theorem (First Isomorphism Theorem for Rings). If ¢ : R — S is a ring homomorphism, then ker(¢) is
an ideal of R and R/ ker(¢) = ¢(R).

Problems

(4 points each) Complete three of the following problems. You are allowed to use the results of an earlier
problem in the proof of a later problem (even if you did not complete the earlier problem). However, you may
not use a later result in the proof of an earlier problem. For example, you can use the results of Problem 5
to complete Problem 7, but not the other way around.

1. Let ¢ : R — S be a ring homomorphism. Prove that ker(¢) is an ideal of R.
Note: This verifies the first claim in the First Isomorphism Theorem for Rings given above.

Hint: Your proof must also argue that ker(¢) is a subring (see Remark 10.29). We already know that
ker(¢) is a subgroup under addition, so use this fact to shorten your proof. It’s enough to check that
ker(¢) is a left ideal. Notice that proving that ker(¢) is closed under multiplication by any ring element
from R will prove that ker(¢) is closed under multiplication.

2. Prove that any finite integral domain is a field.
Note: This is Corollary 10.25 in the course notes.

Hint: Let R be a finite integral domain. Then among other things, R has a 1, say 1z. Let a € R\ {0}.
Define ¢, : R — R via ¢4(r) = ar. Verify that ¢, is a ring homomorphism such that ker(¢,) = {0}.
Then by Theorem 9.12, ¢, is one-to-one. Is ¢, onto? If so, then there exists r in domain of function
that maps to 1g.

3. Assume R is a commutative ring with 1 # 0. Let I be an ideal of R. Prove that if I contains a unit,
then I = R.

Note: This is half of Theorem 10.49 in the course notes. The converse is also true.

4. Assume R is a commutative ring with 1 # 0. Prove that if the only ideals of R are {0} and R, then R
is a field.

Note: This is half of Theorem 10.50 in the course notes. The converse is also true.

Hint: Use Problem 3.

5. Prove that if R is a field, then every nonzero ring homomorphism from R into another ring is one-to-one.
Note: This is Corollary 10.51 in the course notes.

Hint: Use Problem 1.

6. Assume R is a commutative ring with 1. Prove that if M is maximal ideal, then R/M is a field.

Note: This is half of Theorem 10.55 in the course notes. The converse is also true.
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Hint: Try using a proof by contradiction. Assume that R/M is not a field. Then by Problem 4, there
exists an ideal J/M of R/M, where J is a subring of R such that M C J C R (J # M, R). Now, let
r € Rand j € J. Compute (r + J)(j + J) and using the fact that J/M is an ideal, prove that J is an
ideal, which contradicts M being maximal.

7. Consider the polynomial ring Z[z] (see Example 10.26(g)) and let
I = {p(z) € Z[z] | p(r) has constant term equal to 0}.

Note that [ is an ideal (you do not need to prove this) and happens to be the smallest ideal containing
the polynomial f(z) = z. Use Problem 6 together with the First Isomorphism Theorem for Rings to
prove that I is not a maximal ideal of Z|x].
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