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Chapter 1

Introduction

1.1 What is Abstract Algebra?

Abstract algebra is the subject area of mathematics that studies algebraic structures, such
as groups, rings, fields, modules, vector spaces, and algebras. This course is an introduc-
tion to abstract algebra. We will spend most of our time studying groups. Group theory
is the study of symmetry, and is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics. This course will cover the
basic concepts of group theory, and a special effort will be made to emphasize the intu-
ition behind the concepts and motivate the subject matter. In the last few weeks of the
semester, we will also introduce rings and fields.

1.2 An Inquiry-Based Approach

In a typical course, math or otherwise, you sit and listen to a lecture. (Hopefully) These
lectures are polished and well-delivered. You may have often been lured into believing
that the instructor has opened up your head and is pouring knowledge into it. I absolutely
love lecturing and I do believe there is value in it, but I also believe that in reality most
students do not learn by simply listening. You must be active in the learning process. I’m
sure each of you have said to yourselves, “Hmmm, I understood this concept when the
professor was going over it, but now that I am alone, I am lost.” In order to promote a
more active participation in your learning, we will incorporate ideas from an educational
philosophy called inquiry-based learning (IBL).

Loosely speaking, IBL is a student-centered method of teaching mathematics that en-
gages students in sense-making activities. Students are given tasks requiring them to
solve problems, conjecture, experiment, explore, create, communicate. Rather than show-
ing facts or a clear, smooth path to a solution, the instructor guides and mentors students
via well-crafted problems through an adventure in mathematical discovery. Effective IBL
courses encourage deep engagement in rich mathematical activities and provide oppor-
tunities to collaborate with peers (either through class presentations or group-oriented
work).
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Perhaps this is sufficiently vague, but I believe that there are two essential elements to
IBL. Students should as much as possible be responsible for:

1. Guiding the acquisition of knowledge, and

2. Validating the ideas presented. That is, students should not be looking to the in-
structor as the sole authority.

For additional information, check out my blog post, What the Heck is IBL?
Much of the course will be devoted to students proving theorems on the board and a

significant portion of your grade will be determined by how much mathematics you pro-
duce. I use the word “produce” because I believe that the best way to learn mathematics
is by doing mathematics. Someone cannot master a musical instrument or a martial art
by simply watching, and in a similar fashion, you cannot master mathematics by simply
watching; you must do mathematics!

Furthermore, it is important to understand that proving theorems is difficult and takes
time. You should not expect to complete a single proof in 10 minutes. Sometimes, you
might have to stare at the statement for an hour before even understanding how to get
started.

In this course, everyone will be required to

• read and interact with course notes on your own;

• write up quality proofs to assigned problems;

• present proofs on the board to the rest of the class;

• participate in discussions centered around a student’s presented proof;

• call upon your own prodigious mental faculties to respond in flexible, thoughtful,
and creative ways to problems that may seem unfamiliar on first glance.

As the semester progresses, it should become clear to you what the expectations are. This
will be new to many of you and there may be some growing pains associated with it.

Lastly, it is highly important to respect learning and to respect other people’s ideas.
Whether you disagree or agree, please praise and encourage your fellow classmates. Use
ideas from others as a starting point rather than something to be judgmental about.
Judgement is not the same as being judgmental. Helpfulness, encouragement, and com-
passion are highly valued.

1.3 Rules of the Game

You should not look to resources outside the context of this course for help. That is, you
should not be consulting the Internet, other texts, other faculty, or students outside of our
course. On the other hand, you may use each other, the course notes, me, and your own
intuition. In this class, earnest failure outweighs counterfeit success; you need not feel
pressure to hunt for solutions outside your own creative and intellectual reserves. For
more details, check out the Syllabus.

http://maamathedmatters.blogspot.com/2013/05/what-heck-is-ibl.html
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1.4 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It
is your responsibility to read and understand new definitions and their related concepts.
However, you will be supported in this sometimes difficult endeavor. In addition, you
will be asked to complete exercises aimed at solidifying your understanding of the mate-
rial. Most importantly, you will be asked to make conjectures, produce counterexamples,
and prove theorems.

Most items in the notes are labelled with a number. The items labelled as Definition
and Example are meant to be read and digested. However, the items labelled as Exercise,
Question, Theorem, Corollary, and Problem require action on your part. In particu-
lar, items labelled as Exercise are typically computational in nature and are aimed at
improving your understanding of a particular concept. There are very few items in the
notes labelled as Question, but in each case it should be obvious what is required of you.
Items with the Theorem and Corollary designation are mathematical facts and the in-
tention is for you to produce a valid proof of the given statement. The main difference
between a Theorem and Corollary is that corollaries are typically statements that follow
quickly from a previous theorem. In general, you should expect corollaries to have very
short proofs. However, that doesn’t mean that you can’t produce a more lengthy yet valid
proof of a corollary. The items labelled as Problem are sort of a mixed bag. In many
circumstances, I ask you to provide a counterexample for a statement if it is false or to
provide a proof if the statement is true. Usually, I have left it to you to determine the
truth value. If the statement for a problem is true, one could relabel it as a theorem.

It is important to point out that there are very few examples in the notes. This is
intentional. One of the goals of the items labelled as Exercise is for you to produce the
examples.

Lastly, there are many situations where you will want to refer to an earlier definition or
theorem/corollary/problem. In this case, you should reference the statement by number.
For example, you might write something like, “By Theorem 1.13, we see that. . . .”

1.5 Some Minimal Guidance

Especially in the opening sections, it won’t be clear what facts from your prior experience
in mathematics we are “allowed” to use. Unfortunately, addressing this issue is difficult
and is something we will sort out along the way. However, in general, here are some
minimal and vague guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations.
You should feel free to do this whenever the need arises. But you should show sufficient
work along the way. You do not need to write down justifications for basic algebraic ma-
nipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same
amount on the same side of an equation, adding like terms, factoring, basic simplifica-
tion, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a
proof. When necessary, you should cite a previous definition, theorem, etc. by number.
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Unlike the experience many of you had writing proofs in geometry, our proofs will be
written in complete sentences. You should break sections of a proof into paragraphs and
use proper grammar. There are some pedantic conventions for doing this that I will point
out along the way. Initially, this will be an issue that most students will struggle with,
but after a few weeks everyone will get the hang of it.

Ideally, you should rewrite the statements of theorems before you start the proof.
Moreover, for your sake and mine, you should label the statement with the appropriate
number. I will expect you to indicate where the proof begins by writing “Proof.” at the
beginning. Also, we will conclude our proofs with the standard “proof box” (i.e., � or�),
which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your
assumptions crystal clear. Sometimes there will be some implicit assumptions that we can
omit, but at least in the beginning, you should get in the habit of stating your assumptions
up front. Typically, these statements will start off “Assume. . . ” or “Let. . . ”.

This should get you started. We will discuss more as the semester progresses. Now, go
have fun and kick some butt!



Chapter 2

An Intuitive Approach to Groups

One of the major topics of this course is groups. The area of mathematics that is con-
cerned with groups is called group theory. Loosely speaking, group theory is the study
of symmetry, and in my opinion is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics.

Instead of starting with an abstract formal definition, we will begin our study of
groups by developing some intuition about what groups actually are. To get started,
we will be exploring the game SpinpossibleTM(which used to be available for iOS and
Android devices). The game is played on a 3 × 3 board of scrambled tiles numbered 1
to 9, each of which may be right-side-up or up-side-down. The objective of the game is
to return the board to the standard configuration where tiles are arranged in numerical
order and right-side-up. This is accomplished by a sequence of “spins”, where a spin
consists of rotating an m × n subrectangle by 180◦. The goal is to minimize the number
of spins used. The following figure depicts a scrambled board on the left and the solved
board on the right. The sequence of arrows is used to denote some sequence of spins that
transforms the scrambled board into the solved board.

?−→ ·· · ?−→

Example 2.1. Let’s play with an example. Suppose we start with the following scrambled
board.

2 9 1

4 6 5

7 3 8
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The underlines on the numbers are meant to help us tell whether a tile is right-side-up
or up-side-down. Our goal is to use a sequence of spins to unscramble the board. Before
we get started, let’s agree on some conventions. When we refer to tile n, we mean the
actual tile that is labeled by the number n regardless of its position and orientation on
the board. On the other hand, position n will refer to the position on the board that tile
n is supposed to be in when the board has been unscrambled. For example, in the board
above, tile 1 is in position 3 and tile 7 happens to be in position 7.

It turns out that there are multiple ways to unscramble this board., but I have one par-
ticular sequence in mind. First, let’s spin the rectangle determined by the two rightmost
columns. Here’s what we get. I’ve shaded the subrectangle that we are spinning.

2 9 1

4 6 5

7 3 8
→

2 8 3

4 5 6

7 1 9

Okay, now let’s spin the middle column.

2 8 3

4 5 6

7 1 9
→

2 1 3

4 5 6

7 8 9

Hopefully, you can see that we are really close to unscrambling the board. All we need to
do is spin the rectangle determined by the tiles in positions 1 and 2.

2 1 3

4 5 6

7 8 9
→

1 2 3

4 5 6

7 8 9

Putting all of our moves together, here is what we have.

2 9 1

4 6 5

7 3 8
→

2 8 3

4 5 6

7 1 9
→

2 1 3

4 5 6

7 8 9
→

1 2 3

4 5 6

7 8 9

In this case, we were able to solve the scrambled board in 3 moves. It’s not immediately
obvious, but it turns out that there is no way to unscramble the board in fewer than 3
spins. However, there is at least one other solution that involves exactly 3 spins. We
won’t worry about proving this; right now we are just trying to gain some intuition.

Exercise 2.2. Without worrying about whether your solution is optimal, try to find a dif-
ferent sequence of spins that unscrambles the initial board in Example 2.1. Your answer
should be a sequence of spins. Describe your sequence in a way that makes sense. Can
you find a sequence of 3 spins that is different from the one described in Example 2.1 that
unscrambles the board?
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Exercise 2.3. How many scrambled 3 × 3 Spinpossible boards are there? To answer this
question, you will need to rely on some counting principles such as factorials. Note: In
this context, we want to include the solved board as one of the scrambled boards. It’s just
not very scrambled.

Exercise 2.4. A natural question to ask is whether every possible scrambling of a board
in Spinpossible can be unscrambled using only spins. It turns out that the answer is
yes. Justify this fact by describing an algorithm that will always unscramble a scrambled
board. It does not matter whether your algorithm is efficient. That is, we don’t care how
many steps it takes to unscramble the board as long as it works in a finite number of
steps. Also, if it didn’t occur to you yet, we can always spin a single tile (referred to as
toggling a tile).

Exercise 2.5. Does the order in which you apply spins matter? Does it always matter?
Let’s be as specific as possible. If the order in which we apply two spins does not matter,
then we say that the spins commute. However, if the order does matter, then the spins
do not commute. When will two spins commute? When will they not commute? Provide
some specific examples.

Exercise 2.6. How many possible spins are there? We are referring to the moves you are
allowed to do at any stage in the game. Don’t forget that you are allowed to toggle a single
tile.

In a 2011 paper, Alex Sutherland and Andrew Sutherland (a father and son team)
present a number of interesting results about Spinpossible and list a few open problems.
You can find the paper at http://arxiv.org/abs/1110.6645. As a side note, Alex is one
of the developers of the game and his father, Andrew, is a mathematics professor at MIT.
Using a brute-force computer algorithm, the Sutherlands verified that every scrambled
3× 3 board can be solved in at most 9 moves. However, a human readable mathematical
proof of this fact remains elusive. By the way, mathematics is chock full of open prob-
lems and you can often get to the frontier of what is currently known without too much
trouble. Mathematicians are in the business of solving open problems.

At least for now, let’s ignore the optimality requirement of the game. That is, let’s not
worry about how many spins it takes to solve a scrambled board. It turns out that we
can “build” some spins from other spins. As an example, if I wanted to toggle the tile in
position 2, I could first spin the rectangle determined by positions 1 and 2, then toggle
the tile in position 1, and lastly spin the rectangle determined by positions 1 and 2 again.
Of course, this is horribly inefficient, but it works. Also, it is important to point out that I
was describing the tile positions we were spinning while not paying any attention to the
tiles occupying the corresponding positions.

It’s not too difficult to prove that we can build all of the possible spins by only using
the following spins. I’ve listed some shorter names for these spins in parentheses.

1. Toggle position 1 (t),

2. Spin rectangle determined by positions 1 and 2 (s1),

3. Spin rectangle determined by positions 2 and 3 (s2),

http://arxiv.org/abs/1110.6645
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4. Spin rectangle determined by positions 3 and 6 (s3),

5. Spin rectangle determined by positions 6 and 5 (s4),

6. Spin rectangle determined by positions 5 and 4 (s5),

7. Spin rectangle determined by positions 4 and 7 (s6),

8. Spin rectangle determined by positions 7 and 8 (s7),

9. Spin rectangle determined by positions 8 and 9 (s8).

We can describe any of the allowable spins in the game by writing down a sequence
consisting of t, s1, s2, . . . , s8.

Example 2.7. Spinning the subrectangle determined by positions 1 and 4 is an allowable
spin, but it’s not on our list above. We can build this spin by using the following sequence
of spins:

s1→ s2→ s3→ s4→ s5→ s4→ s3→ s2→ s1.

Exercise 2.8. Toggling the tile in position 3 is an allowable spin. Try to find a sequence
of spins involving t, s1, s2, . . . , s8 only that yields this toggle.

In addition to building all of the allowable spins, we can also describe any possible
rearrangement of tiles (position and/or orientation) using just these 9 spins. For example,
if we apply s2, followed by s3, and then s2 again, the net result is swapping the tiles in
positions 2 and 6 while maintaining their orientation. You should take the time to verify
this. However, notice that the net action is not an allowable spin. That is, not every
sequence of the 9 spins t, s1, s2, . . . , s8 results in an allowable spin.

Exercise 2.9. What is the net action of applying s1, then s2, and then s1? Is the net action
an allowable spin? How about s2, then s1, and then s2?

We say that the set {t, s1, . . . , s8} generates all possible scramblings of the 3 × 3 board.
In this case, we refer to {t, s1, . . . , s8} as a set of generators. It turns out that this generating
set is minimal in the sense that if we tried to get rid of any one of t, s1, . . . , s8, we would no
longer be able to generate all scramblings. Note that there are other minimal generating
sets and there are lots of sets that will generate all the scramblings that are not minimal.

We need to establish some conventions about how to write down sequences of spins
involving the generators. Since we are doing spins on top of spins, we will follow the
convention of function notation that says the function on the right goes first. For example,
ts1s3 means do s3 first, then do s1, and lastly do t. This will take some getting used to,
but just remember that it is just like function notation (stuff on the right goes first). We
will refer to sequences like ts1s3 as words in the generators t, s1, . . . , s8. We can also use
exponents to abbreviate. For example, s22 is the same as s2s2 (which in this case has the
net action of doing nothing) and (s1s2)2 is the same as s1s2s1s2.

Exercise 2.10. It turns out that there is an even simpler word (i.e., a shorter word) that
yields the same net action as (s1s2)2. Can you find one?
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Exercise 2.11. Try to write the spin that rotates the entire top row (i.e., spin the top row)
as a sequence of moves involving only t, s1, . . . , s8.

Let’s make a couple more observations. First, every spin is reversible (i.e., has an
inverse). In this case, we could just apply the same spin again to undo it. For example,
s21 is the same as doing nothing. This means that the reverse of s1, denoted s−1

1 , is s1
itself. Symbolically, we write s−1

1 = s1. Warning: Remember that we are exploring the
game Spinpossible; it won’t always be the case that repeating a generator will reverse the
action. In the same vein, every sequence of spins is reversible. For example, if we apply
s1s2 (remember that’s do s2 first and then s1) to some scrambled board, we could undo
the net action by applying s2s1. That is, the reverse (or inverse) of s1s2 is s2s1. Written
symbolically, we have

(s1s2)−1 = s−1
2 s−1

1 = s2s1
since s−1

2 = s2 and s−1
1 = s1.

Exercise 2.12. Imagine we started with a scrambled board and you were then able to
unscramble the board using some sequence from t, s1, . . . , s8. In this case, you would have
some word in t, s1, . . . , s8 (with repeats allowed). Let’s call it w. Now, imagine you have the
solved board. How could you obtain the scrambled board that w unscrambled using only
t, s1, . . . , s8? How is this related to w−1?

The upshot of the previous exercise is that the action of any sequence of generators
can be reversed and is itself an action.

At this time, I think we are ready to summarize some of our observations of the game
Spinpossible and to make a few general claims, which we will state as a list of rules.

Rule 1. There is a predefined list of actions that never changes.

Rule 2. Every action is reversible.∗

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

Rule 1 states that we must start with some fixed set of actions. These are our genera-
tors. In the case of Spinpossible, we encountered two possible generating sets. First, there
was the set of allowable spins, which you counted in Exercise 2.6. Second, we considered
the set {t, s1, . . . , s8}, which is a much smaller list of predefined actions.

Rule 2 tells us that every action given in Rule 1 has an inverse. In the case of Spinpos-
sible, every predefined spin is its own inverse.

By deterministic, we mean that we know exactly what will happen when we apply
an action. In contrast, pulling a card off the top of a shuffled deck of cards is not deter-
ministic because we don’t know which card we will end up with. Certainly, every spin is
deterministic. For example, if we apply s6, we know exactly what will happen.

Rule 4 provides us with a way to build new actions from the actions given in Rule 1.
For example, if we are given {t, s1, . . . , s8} as our predefined list of actions (Rule 1), then
Rule 4 guarantees that s1s2s3t is also an action (but does not have to be a spin).
∗Implicit in this rule is that the reverse of an action is also an action.
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Exercise 2.13. Notice that there is no explicit rule that says that every sequence of con-
secutive actions is reversible. Is this a consequence of Rules 1–4? Explain your answer.

Alright, we are finally ready for our intuitive and unofficial definition of a group.

Intuitive Definition 2.14. A group is a system or collection of actions that satisfies Rules
1–4 above.

Our first example of a group is the set of actions that rearranges and reorients the tiles
on the 3× 3 Spinpossible board. Notice that I didn’t say that the set of scrambled boards
was a group. It turns out that there is a one-to-one correspondence between actions for
Spinpossible and scrambled boards, but for now let’s focus on the actions.

Exercise 2.15. Describe how the Rubik’s Cube fits into the framework of Rules 1–4.

Exercise 2.16. Place two coins side by side on a table. Consider just one predefined
action: swapping the positions of the two coins. Can we form a group of actions using
this one action as our starting point? If so, completely describe the collection of actions.
If not, explain why.

Exercise 2.17. Consider Exercise 2.16, but add a third coin to the right of the other two
coins. The only predefined action is still the one from the previous exercise: swapping
the positions of the two leftmost coins. Can we form a group of actions using this one
action as our starting point? If so, completely describe the collection of actions. If not,
explain why. How does your answer to this exercise compare to the previous?

Exercise 2.18. Consider your three coins from the previous exercise. Now, for your ac-
tions take all possible actions of rearranging the coins. It turns out that this is a group.

(a) One of the actions is to swap the second and third coins. What happens if you do
this action twice? Is this an action?

(b) How many actions does this group have? Describe them all.

(c) Can you think of a small set of actions that would generate all the other actions?
Can you find a minimal one (in the sense that removing one of your initial actions
would result in a different group)? Write each of the actions of this group as a word
in your generators? Do some actions have more than one word representing it?

In part (a) of the previous exercise you encountered the “do-nothing” action, which
we will refer to as the identity of the group.

Exercise 2.19. Explain why every group has a do-nothing action (i.e., an identity).

Exercise 2.20. Imagine you have 10 coins in your left pocket. Consider two actions: (1)
move a coin from your left pocket to your right pocket, and (2) move a coin from your
right pocket to your left pocket. Is this a group? Explain your answer.
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Exercise 2.21. Imagine you have a square puzzle piece that fits perfectly in a square hole.
Consider these actions: pick up the square and rotate it an appropriate amount so that
it fits back in the hole. Is this a group? Explain your answer. If it is a group, how many
distinct actions are there?

Exercise 2.22. Can you describe a group that has exactly n actions for any natural number
n?

Exercise 2.23. Can you describe a situation that satisfies Rules 1–3, but not Rule 4?

Exercise 2.24. Pick your favorite integer. Consider these actions: add any integer to the
one you chose. This is an infinite set of actions. Is this a group? If so, how small a set of
generators can you find?

Exercise 2.25. Consider the previous exercise, but this time multiply instead of add. Is
this a group? Explain your answer.
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Cayley Diagrams

Recall that in the previous chapter we defined a group to be a set of actions that satisfies
the following rules.

Rule 1. There is a predefined list of actions that never changes.

Rule 2. Every action is reversible.

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

It is important to point out that this is an intuitive starting point and does not consti-
tute the official definition of a group. We’ll continue to postpone a rigorous definition in
this chapter and instead we will focus on developing more intuition about what groups
are and what they “look like.”

To get started, let’s continue thinking about the game Spinpossible (see Chapter 2).
In Exercise 2.3, we discovered that there are a total of 29 · 9! = 185,794,560 possible
scrambled Spinpossible boards. Now, imagine we wanted to write a solution manual that
would describe how to solve all these boards. There are likely many possible ways to
construct such a solution manual, but here is one way.

The manual will consist of 185,794,560 pages such that each page lists a unique
scrambling of the 3 × 3 board. Don’t forget that one of these scramblings is the solved
board, which we will make page 1. Also, imagine that the book is arranged in such a
way that it isn’t too difficult to look up a given scrambled board. On each page below
the scrambled board is a table that lists all possible spins. Next to each spin, the table
indicates whether doing that particular spin will result in a board that is either closer to
being solved or farther. In addition, the page number that corresponds to the resulting
board is listed next to each spin.

In most cases, there will be many spins that take us closer to the solved board. Given
a scrambled board, a solution would consist of following one possible sequence of pages
through the book that takes us from the scrambled board to the solved board. There
could be many such sequences. If we could construct such a solution manual, we would
have an atlas or map for the game Spinpossible.
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Note that even if we make a wrong turn (i.e., follow a page that takes us farther away
from the solution), we can still get back on track by following page numbers that take us
closer to the solved board. In fact, we can always flip back to the page we were on before
taking a wrong turn. This page will be listed on our “wrong turn page” since doing the
same spin twice has the net effect of doing nothing. If you were to actually do this, the
number of pages we would need to visit would be longer than an optimal solution, but
we’d get to the solved board nonetheless.

Let’s get a little more concrete. Consider the game Spinpossible, except let’s simplify
it a little. Instead of playing on the 3× 3 board, let’s play on a 1× 2 board consisting of a
single row with tiles labeled 1 and 2. The rules of the game are what you would expect;
we are restricted to spins involving just the tiles in positions 1 and 2 of the original board.
A scrambling of the 1× 2 Spinpossible board consists of any rearrangement of the tiles 1
and 2, where either of the tiles can be right-side-up or up-side-down.

Exercise 3.1. First, convince yourself that the set of actions corresponding to the 1 × 2
Spinpossible board satisfies our four rules of a group. We’ll refer to this group as Spin1×2.

(a) How many scrambled boards are there for the 1×2 Spinpossible game? Don’t forget
to include the solved board.

(b) How many actions are there in Spin1×2? Which of these actions are spins? Hint:
There are actions that are not spins.

Let’s try to make a map for Spin1×2, but instead of writing a solution manual, we will
draw a picture of the group called a Cayley diagram. The first thing we’ll do is draw
each of the scramblings that we found in the previous exercise. It doesn’t matter how
we arrange all of these drawings, as long as there is some space between them. Now, for
each scrambling, figure out what happens when we do each of our allowable spins. For
each of these spins, we’ll draw an arrow from the initial scrambled board to the resulting
board. Don’t worry about whether doing each of these spins is a good idea or not. In fact,
figure out what happens when we do our allowable spins to the solved board, as well. In
this case, each of our scrambled boards will have 3 arrows heading out towards 3 distinct
boards. Do you see why?

In order for us to keep straight what each arrow represents, let’s color our arrows, so
that doing a particular type of spin is always the same color. For example, we could color
the arrows that toggle the tile in the first position as green. Recall that doing the same
spin twice has the net effect of doing nothing, so we should just make all of our arrows
point in both directions.

To make sure you are keeping up to speed, consider the following scrambled board.

1 2

This board is one of our 8 possible scrambled 1× 2 boards. We have three possible spins
we can do to this board: toggle position 1, toggle position 2, or spin the whole board.
Each of these spins has a corresponding two-way arrow that takes us to three different
scrambled boards. Figure 3.1 provides a visual representation of what we just discussed.
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1 2

2 1

1 21 2

Figure 3.1. A portion of the Cayley diagram for Spin1×2 with generating set {t1, t2, s}.

Note that I could have drawn the four scrambled boards in Figure 3.1 anywhere I wanted
to, but I have a particular layout in mind. Also, notice we have three different colored
arrows. Can you see what each of the colors corresponds to? In this case, a green ar-
row corresponds to toggling the tile in position 1, a blue arrow corresponds to toggling
position 2, and a red arrow corresponds to spinning the whole board.

If we include the rest of the scrambled boards and all possible spins, we obtain Fig-
ure 3.2. Note that I’ve chosen a nice layout for the figure, but it’s really the connections
between the various boards that are important.

1 2 1 2

2 1

2 1

1 21 2

2 1

2 1

Figure 3.2. Cayley diagram for Spin1×2 with generating set {t1, t2, s}.

In this case, the spins that correspond to the three arrow colors are the generators of
Spin1×2. What this means is that we can obtain all possible scramblings/unscramblings
by using just these 3 spins. Let t1 be the spin that toggles position 1, t2 be the spin that
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toggles position 2, and s be the spin that rotates the full board.
In order to obtain the Cayley diagram for Spin1×2 (with the generators we have in

mind), we need to identify each scrambled board in Figure 3.2 with an action from the
group. The most natural choice is to identify the solved board with the do-nothing action,
which we will denote by e. As soon as we make this choice, we can just follow the arrows
around the diagram to determine which actions correspond to which scrambled boards.

For example, consider the following scrambled board.

2 1

Looking at Figure 3.2, we see that one way to get to this board from the solved board is
to follow a blue arrow and then a red arrow. This corresponds to the word st2. (Recall
that when we write down words, we should apply the actions from right to left, just like
function composition.) However, it also corresponds to the word t2st2t1 even though this
is not an optimal solution. So, we can label the board in question with either st2 or t2st2t1
(there are other choices, as well).

As another example, consider the following scrambled board.

1 2

To get here from the solved board, we can simply follow a green arrow. So, this scrambled
board corresponds to t1. However, we could also follow a red arrow, then a blue arrow,
and then a red arrow. Thus, we could also label the scrambled board by st2s.

Exercise 3.2. Using Figure 3.2, find three distinct words in t1, t2, and s that correspond
to the following scrambled board. Don’t worry about whether your word is of optimal
length or not.

1 2

Exercise 3.3. Label each of the remaining boards from Figure 3.2 with at least one appro-
priate word using t1, t2, and s. The diagram in Figure 3.2 together with your labels is the
Cayley diagram for Spin1×2 with generating set {t1, t2, s}.

It is important to point out that each word that corresponds to a given scrambled
board tells you how to reach that scrambled board from the solved board (which is labeled
by e, the do-nothing action).

Exercise 3.4. Given a word that corresponds to a scrambled board in Figure 3.2, how
could we obtain a solution to the scrambled board? That is, how can we return to the
solved board?

Exercise 3.5. Consider the Cayley diagram for Spin1×2 in Figure 3.2, but remove all the
red arrows. This corresponds to forbidding the spin that rotates the full 1×2 board. Can
we obtain all of the scrambled boards from the solved board using only blue and green
arrows?
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Exercise 3.6. Repeat the previous exercise, but this time remove only the green arrows.
What about the blue arrows?

In general, a Cayley diagram for a group G is a digraph having the set of actions of
G as its vertices and the directed edges (i.e., arrows) correspond to the generators of the
group. Following an arrow forward corresponds to applying the corresponding action.
Recall that the generators are a potentially smaller set of actions from which you can
derive all the actions of the group. The way you can derive new actions is by forming
words in the generators (i.e., follow a sequence of arrows). Rule 2 guarantees that every
action is reversible, so we also allow the use of a generator’s reversal in our words (i.e.,
follow an arrow backwards).

If a generator is its own reversal, then the arrows corresponding to that generator are
two-way arrows. It is always true that following an arrow backwards corresponds to a
generator’s reversal. That is, if an arrow corresponds to the action a, then the inverse of
a, namely a−1, corresponds to the reverse arrow.

Notice that all the arrows in the Cayley diagram for Spin1×2 given in Figure 3.2 are
two-way arrows. This means that every generator is its own inverse (in the case of
Spin1×2). It’s important to point out that this is not true in general (i.e., we may have
one-way arrows that correspond to generators that are not their own inverses).

We need a way to tell our arrow types apart. One way to do this is to color them.
Another way would be to label the arrows by their corresponding generator.

Remember that in any group there is always a do-nothing action and one of the ver-
tices should be labeled by this action. From this point forward, unless someone says
otherwise, let’s use e to denote our do-nothing action for a group. Each vertex is labeled
with a word that corresponds to the sequence of arrows that we can follow from the
do-nothing action to the particular vertex. Since there are possibly many sequences of
arrows that could take us from the do-nothing vertex to another, each vertex could be
labeled with many different words.

In our Cayley diagram for Spin1×2, our vertices were fancy pictures of scrambled 1×2
Spinpossible boards. This wasn’t necessary, but is convenient and appealing for aesthetic
reasons. After labeling the solved board with the do-nothing action, e, in Exercise 3.3 you
labeled each remaining vertex of the diagram with a word that corresponds to a sequence
of arrows from the solved board to the vertex in question.

The next two exercises may be too abstract for you at the moment. Give them a shot
and if you can’t do them now, come back to them after you’ve constructed a few Cayley
diagrams.

Exercise 3.7. Assume G is a group of actions and S is a set of generators for G. Suppose
we draw the Cayley diagram for G using the actions of S as our arrows and we color
the arrows according to which generator they correspond to. Assume that each vertex is
labeled with a word in the generators or their reversals. If the arrows are not labeled,
how can you tell which generator they correspond to?

Exercise 3.8. Assume G is a group. Suppose that S and S ′ are two different sets that
generate G. If you draw the Cayley diagram for G using S and then draw the Cayley
diagram for G using S ′, what features of the two graphs are the same and which are
potentially different?
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Let’s build a few more Cayley diagrams to further our intuition.

Exercise 3.9. Consider the group consisting of the actions that rearranges two coins (but
we won’t flip them over), say a penny and a nickel. Let’s assume we start with the penny
on the left and the nickel on the right. Let’s call this group S2.

(a) Write down all possible actions using verbal descriptions. Hint: There aren’t that
many of them.

(b) Let s be the action that swaps the left and right coins. Does s generate S2? That is,
can we write all of the actions of S2 as words in s (or its reversal)?

(c) Decide on a simple generating set for S2 and draw a Cayley diagram for S2 using
your generating set. Label all the vertices and arrows appropriately. Recall that
above we said that we will use e to denote the do-nothing action unless someone
says otherwise.

Exercise 3.10. Consider a square puzzle piece that fits perfectly into a square hole. Let
R4 be the group of actions consisting of rotating the square by an appropriate amount so
that it fits back into the hole.

(a) Write down all possible actions using verbal descriptions. Are there lots of ways to
describe each of your actions?

(b) Let r be the action that rotates the puzzle piece by 90◦ clockwise. Does r generate
R4? If so, write down all of the actions of R4 as words in r.

(c) Which of your words above is the reversal of r? That is, can we describe r−1 using r?

(d) Draw the Cayley diagram forR4 using r as the generator. Be sure to label the vertices
and arrows. Are your arrows one-way or two-way arrows?

We will refer to R4 as the group of rotational symmetries of a square. In general, Rn is
the group of rotational symmetries of a regular n-gon.

Exercise 3.11. Consider a puzzle piece like the one in the previous exercise, except this
time, let’s assume that the piece and the hole are an equilateral triangle. Let D3 be the
group of actions that allow the triangle to fit back in the hole. In addition to rotations,
we will also allow the triangle to be flipped over. To give us a common starting point,
let’s assume the triangle and hole are positioned so that one of the tips of the triangle is
pointed up. Also, let’s label both the points of the hole and the points of the triangle with
the numbers 1, 2, and 3. Assume the labeling on the hole starts with 1 on top and then
continues around in the obvious way going clockwise. Label the puzzle piece in the same
way and let’s assume that the triangle starts in the position that has the labels matching
(i.e., the point of the triangle labeled 1 is in the corner of the hole labeled 1, etc.).

(a) How many actions are there? Can you describe them? One way to do this would be
to indicate where the labels of the triangle are in the hole.
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(b) Let r be rotation by 120◦ in the clockwise direction. Does r generate D3? That is,
can you write each of your actions from part (a) as words in r?

(c) What is the reversal of r? That is, what is r−1? Can you write it as a word in r?

(d) Let s be the flip (or we could call it a reflection) that swaps the corners of the puzzle
piece that are in the positions of the hole labeled by 2 and 3 (this leaves the corner
in position 1 of the hole in the same spot). Does s generate D3?

(e) What is the reversal of s? That is, what is s−1? Can you write it as a word?

(f) Can we generate all of D3 using both r and s? If so, write all the actions of D3 as
words in r and s (or their reversals/inverses).

(g) Draw the Cayley diagram for D3 using r and s as your arrows. Hints: One of your
arrow types is one-way and the other is two-way. I suggest putting half the vertices
in a circle and then the other half in a concentric circle outside your first half. Label
one of the vertices on the inner circle as e and first think about applying consecutive
actions of r. Try to stay on the inner circle of vertices as you do this. Now, starting at
e, apply s and go to one of the vertices in the outer circle. Try to label the remaining
vertices using both r and s. There are multiple ways to label each of the vertices.

Exercise 3.12. Repeat the above exercise, but do it for a square instead of a triangle. You’ll
need to make some modifications to r and s. The resulting group is called D4.

The groups D3 and D4 are the group of symmetries (rotations and reflections) of an
equilateral triangle and a square, respectively. In general, Dn is the group of symmetries
of a regular n-gon and is referred to as the dihedral group of order 2n. In this case, the
word “order” simply means the number of actions in the group. We will encounter a
formal definition of order in Chapter 4. Why does Dn consist of 2n actions?

Exercise 3.13. Consider the group from Exercise 2.24. Using “add 1” (or simply 1) as
the generator∗, describe what the Cayley diagram for this group would look like. Draw
a chunk of the Cayley diagram. Can you think of another generating set? What will the
Cayley diagram look like in this case?

Now that you’ve constructed a few examples for yourself, you should have a pretty
healthy understanding of Cayley diagrams. There are still lots of properties to discover
and opportunities to gain more intuition. If you weren’t able to complete exercises 2.24
and 3.8, go give them another shot.

By the way, Cayley diagrams are named after their inventor Arthur Cayley, a nine-
teenth century British mathematician. We’ll see his name pop up a couple more times in
the course.

Not only are Cayley diagrams visually appealing, but they provide a map for the group
in question. That is, they provide a method for navigating the group. Following se-
quences of arrows tells us how to do an action. However, each Cayley diagram very much

∗Recall that Rule 2 guarantees that every action is reversible. So, if we have “add 1”, we also have “add −1.”



CHAPTER 3. CAYLEY DIAGRAMS

depends on the set of generators that are chosen to generate the group. If we change the
generating set, we may end up with a very different looking Cayley diagram. This was the
point of Exercise 3.8. It’s important to drive this point home, so let’s construct an explicit
example.

Exercise 3.14. In Exercise 3.11, you constructed the Cayley diagram for the group called
D3. In this case, you used the generators r and s. Now, let s′ be the reflection that swaps
the corners of the triangle that are in the corners of the hole labeled by 1 and 2.

(a) Justify that s and s′ generate all of D3. Hint: Is it enough to generate r with s and s′?

(b) Construct the Cayley diagram for D3 using s and s′ as your generators. Did you get
a different diagram than you did in Exercise 3.11?

Let’s do a few more exercises involving Cayley diagrams.

Exercise 3.15. Consider the Cayley diagram for the group that we will call R6 given in
Figure 3.3.

(a) Assuming e is the do-nothing action, which action is the generator of the group?

(b) Describe the inverse of each of the 6 actions as a word in r.

(c) Can you find a shorter word to describe r8?

(d) Does r2 generate the group? How about r5? Explain your answers.

(e) Describe a concrete collection of actions that would yield this Cayley diagram.

r2

re

r5

r4 r3

Figure 3.3. Cayley diagram for R6 with generator r.

We haven’t explicitly defined what a Cayley diagram actually is yet. So, it’s not com-
pletely obvious that the diagram in the previous exercise is actually a diagram for a group.
But rest assured; this Cayley diagram truly does correspond to a group. It’s important to
point out that we can’t just throw together a digraph willy nilly and expect it to be a
Cayley diagram.

Exercise 3.16. Consider the diagram given in Figure 3.4. Explain why the diagram cannot
possibly be a Cayley diagram for a group. How many reasons can you come up with?
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a b

c

d

e f

Figure 3.4

Exercise 3.17. Let G be a group of actions and suppose S is a set of generators for G.
Suppose we draw the Cayley diagram for G using the actions of S as our arrows and we
color the arrows according to which generator they correspond to.

(a) Explain why there must be a sequence of arrows (forwards or backwards) from the
vertex labeled e to every other vertex. Do you think this is true for every pair of
vertices?

(b) Recall that G must satisfy Rule 1. What restriction does this put on our Cayley
diagram?

(c) SinceGmust satisfy Rule 3, what constraints does this place on the Cayley diagram?
Try to draw a diagram that is almost a Cayley diagram but violates Rule 3.

(d) Since G must satisfy Rule 2, what does this imply about the Cayley diagram? Can
you construct a diagram that is almost a Cayley diagram but violates Rule 2? To do
this, you may need to violate another one of our rules.

(e) What property does Rule 4 force the Cayley diagram to have? Can you construct a
diagram that is almost a Cayley diagram but violates Rule 4?

In the previous exercise, you discovered several properties embodied by all Cayley
diagrams. Unfortunately, not every diagram having these properties will yield a Cayley
diagram. For example, the diagram in Figure 3.5 satisfies the properties you discovered
in Exercise 3.17, but it turns out that this cannot be a diagram for any group (regardless
of how we label the vertices).

a b c d

efgh

Figure 3.5
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This fact exposes one of the weaknesses of our intuitive definition of a group and is
one of the many reasons we will soon require a more rigorous definition.



Chapter 4

An Introduction to Subgroups and
Isomorphisms

In this chapter, we’ll continue to utilize our intuitive definition of a group. That is, a
group G is a set of actions that satisfies the following rules.

Rule 1. There is a predefined list of actions that never changes.

Rule 2. Every action is reversible.

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

In the previous chapter, we constructed lots of Cayley diagrams for various groups.
To construct a Cayley diagram for a group G, we need to first identify a set of generators,
say S. Recall that our choice of generators is important as changing the generators can
result in a different Cayley diagram.

In the Cayley diagram forG using S, all the actions ofG are represented by the vertices
of the graph. Each vertex corresponds to a unique action. This does not imply that there
is a unique way to obtain a given action from the generators. Each of the generators
determines an arrow type in the diagram. One way to distinguish the different arrow
types is by using different colors. An arrow of a particular color always represents the
same generator.

One of the vertices in the diagram is labeled by the do-nothing action, often denoted
by e. Each of the other vertices are labeled by words that correspond to following arrows
(forwards or backwards) from e to a given vertex. There may be many ways to do this as
each sequence of arrows corresponds to a unique word. So, a vertex could be potentially
labeled by many words. Also, one potentially confusing item is that we read our words
from right to left. That is, the first arrow we follow out of e is the rightmost generator in
the word.
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4.1 Subgroups

Exercise 4.1. Recall the definition of “subset.” What do you think “subgroup” means?
Try to come up with a potential definition. Try not to read any further before doing this.

Before continuing, gather up the following Cayley diagrams:

• Spin1×2. There are 3 of these. I drew one for you in Chapter 3 and you discovered
two more in Exercise 3.6.

• S2. See Exercise 3.9.

• R4. See Exercise 3.10.

• D3. There are two of these. See exercises 3.11 and 3.14.

• D4. See Exercise 3.12.

Exercise 4.2. Examine your Cayley diagrams for D4 and R4 and make some observations.
How are they similar and how are they different? Can you reconcile the similarities and
differences by thinking about the actions of each group?

Hopefully, one of the things you noticed in the previous exercise is that we can “see”
R4 inside of D4 (and hopefully you didn’t just read that before completing the exercise).
You may have used different colors in each case and maybe even labeled the vertices with
different words, but the overall structure of R4 is there nonetheless.

Exercise 4.3. If you just pay attention to the configuration of arrows, it appears that there
are two copies of the Cayley diagram for R4 in the Cayley diagram for D4. Isolate these
two copies by ignoring the edges that correspond to the generator s. Paying close attention
to the words that label the vertices from the original Cayley diagram for D4, are either of
these groups in their own right?

Recall that the do-nothing action must always be one of the actions included in a
group. If this didn’t occur to you when doing the previous exercise, you might want to
go back and rethink your answer. Just like in the previous exercise, we can often “see”
smaller groups living inside larger groups. These smaller groups are called subgroups.

Intuitive Definition 4.4. Let G be a group of actions and let H ⊆ G. We say that H is a
subgroup if and only if H is a group in its own right. In this case, we write H ≤ G.

In light of Exercise 4.3, we would write R4 ≤ D4. The second sub-diagram of D4 that
resembles R4 cannot be a subgroup because it does not contain the do-nothing action.
However, since it looks a lot like R4, we call it a clone of R4. For convenience, we may
also say that a subgroup is a clone of itself.

The next theorem∗ tells us that if we already have a subset of a group, we only need to
check two of our rules instead of four.
∗Perhaps we should call this an “Intuitive Theorem” since we are using an intuitive definition of a group.
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Exercise 4.5. Let G be a group of actions and let H ⊆ G. If we wanted to determine
whether H is a subgroup of G or not, can we skip checking any of the four rules? Which
rules must we verify?

There are a couple subgroups that every group has.

Theorem 4.6. Let G be a group of actions and suppose that e is the do-nothing action.
Then {e} ≤ G.

Exercise 4.7. Let G be a group and suppose that e is the do-nothing action. What does
the Cayley diagram for the subgroup {e} look like?

Earlier, we referred to subgroups as being “smaller.” However, our definition does not
imply that this has to be the case.

Theorem 4.8. Let G be a group of actions. Then G ≤ G.

We refer to subgroups that are strictly smaller than the whole group as proper sub-
groups.

Lots of groups have been given formal names (e.g., D4, R4, etc.). However, not every
group or subgroup has a name. In this case, it’s useful to have notation to refer to specific
subgroups.

Definition 4.9. Let G be a group of actions and let g1, . . . , gn be distinct actions from G.
We define 〈g1, . . . , gn〉 to be the smallest subgroup containing g1, . . . , gn. In this case, we call
〈g1, . . . , gn〉 the subgroup generated by g1, . . . , gn.

For example, consider r, s, s′ ∈ D3 (as defined in exercises 3.11 and 3.14). Then 〈r, s〉 =
〈s, s′〉 = D3. Recall that R4 is the subgroup of D4 consisting of rotations of the square.
Similarly, the group of rotations of an equilateral triangle is called R3. Then using the r
from D3, we have 〈r〉 = R3, which is a subgroup of D3.

Note that in Definition 4.9, we used a finite number of generators. There’s no reason
we have to do this. That is, we can consider groups/subgroups generated by infinitely
many elements.

Exercise 4.10. Suppose {g1, . . . , gn} is a generating set for a group G.

(a) Explain why {g−1
1 , . . . , g−1

n } is also a generating set for G.

(b) How does the Cayley diagram for G with generating set {g1, . . . , gn} compare to the
Cayley diagram with generating set {g−1

1 , . . . , g−1
n }?

Exercise 4.11. Consider Spin1×2.

(a) Can you find the Cayley diagram for 〈t1〉 as a subgroup of Spin1×2?

(b) Write down all the actions of the subgroup 〈t1, t2〉. Write them as words in t1 and t2.
Can you find the Cayley diagram for 〈t1, t2〉 as a subgroup of Spin1×2? Can you find
a clone for 〈t1, t2〉?
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One of the benefits of Cayley diagrams is that they are useful for visualizing sub-
groups. However, recall that if we change our set of generators, we might get a very
different looking Cayley diagram. The upshot of this is that we may be able to see a
subgroup in one Cayley diagram for a given group, but not be able to see it in a Cayley
diagram with a different set of arrows.

Exercise 4.12. We currently have two different Cayley diagrams forD3 (see Exercises 3.11
and 3.14).

(a) Can you find the Cayley diagram for 〈e〉 as a subgroup of D3? Can you see it in both
Cayley diagrams for D3? Can you find all the clones?

(b) Can you find the Cayley diagram for 〈r〉 = R3 as a subgroup of D3? Can you see it in
both Cayley diagrams? Can you find all the clones?

(c) Find the Cayley diagrams for 〈s〉 and 〈s′〉 as subgroups of D3. Can you see them in
both Cayley diagrams for D3? Can you find all the clones?

Exercise 4.13. Consider D4. Let h be the action that reflects (i.e., flips over) the square
over the horizontal midline and let v be the action that reflects the square over the vertical
midline. Also, recall that r2 is shorthand for the action rr that does r twice in a row. Which
of the following are subgroups of D4? In each case, justify your answer. If a subset is a
subgroup, try to find a minimal set of generators. Also, determine whether you can see
the subgroups in our Cayley diagram for D4.

(a) {e, r2}

(b) {e,h}

(c) {e,h,v}

(d) {e,h,v, r2}

The subgroup in Exercise 4.13(d) is often referred to as the Klein four-group and is
denoted by V4.

Exercise 4.14. Draw the Cayley diagram for V4 using {v,h} as our set of generators.

Let’s introduce a group we haven’t seen yet. We define the quaternion group to be the
groupQ8 = {1,−1, i,−i, j,−j,k,−k} having the Cayley diagram with generators i, j,−1 given
in Figure 4.1. In this case, 1 is the do-nothing action.

Notice that I didn’t mention what the actions actually do. For now, let’s not worry
about that. The relationship between the arrows and vertices tells us everything we need
to know. Also, let’s take it for granted that Q8 actually is a group.

Exercise 4.15. Consider the Cayley diagram for Q8 given in Figure 4.1.

(a) Which arrows correspond to which generators in our Cayley diagram for Q8?

(b) What is i2 equal to? That is, what element of {1,−1, i,−i, j,−j,k,−k} is i2 equal to?
How about i3, i4, and i5?
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1 i

kj

−1 −i

−k−j

Figure 4.1. Cayley diagram for Q8 with generating set {−1, i, j}.

e s

Figure 4.2. Cayley diagram for S2 with generator s.

(c) What are j2, j3, j4, and j5 equal to?

(d) What is (−1)2 equal to?

(e) What is ij equal to? How about ji?

(f) Can you determine what k2 and ik are equal to?

(g) Can you identify a generating set consisting of only two elements? Can you find
more than one?

(h) What subgroups of Q8 can you see in the Cayley diagram in Figure 4.1?

(i) Find a subgroup of Q8 that you cannot see in the Cayley diagram.

4.2 Isomorphisms

By now you’ve probably seen enough examples of Cayley diagrams to witness some pat-
terns appearing over and over again. One of the things you’ve probably noticed is that
parts of some Cayley diagrams look just like parts of other Cayley diagrams.

Recall from Exercise 3.9 that S2 is the group that acts on two coins by swapping their
positions (but not flipping them over). We defined s to be the action that swaps the left
and right coins and as usual e is the do-nothing action. The Cayley diagram for S2 with
generator s is given in Figure 4.2.

If you look back at all the Cayley diagrams you’ve encountered, you’ll notice that
many of them contained chunks that resemble the Cayley diagram for S2 with generator
s. In particular, in the Cayley diagrams for Spin1×2, D3, D4, and Q8 that we’ve seen,
it is easy to identify the portions that “look like” S2. For example, if you isolate the
Cayley diagram for the subgroup 〈−1〉 = {1,−1} in Q8, we see that it looks just like the
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Cayley diagram for S2, except the labels are not identical. The clones of the subgroup
〈−1〉 = {1,−1} in Q8 look like S2, as well, but they do not contain the do-nothing action.

The one thing that is different about the Cayley diagram for S2 and the Cayley diagram
for 〈−1〉 is that the labels are different. If we set the Cayley diagram for S2 on top of the
Cayley diagram for 〈−1〉 such that the do-nothing actions match up, then s and −1 would
correspond to each other. In other words, the two Cayley diagrams are identical up to
relabeling the vertices.

In this case, we say that S2 and the subgroup 〈−1〉 ofQ8 are isomorphic under the cor-
respondence e↔ 1 and s↔−1. This one-to-one correspondence between the two groups
is called an isomorphism, which is depicted in Figure 4.3. Note that I’ve recolored the
arrow in S2 so that it matches the corresponding arrow color of 〈−1〉. This isn’t necessary,
but it makes the correspondence more obvious.

1 i

kj

−1 −i

−k−j

e sQ8

S2

Figure 4.3. Isomorphism between 〈−1〉 ≤Q8 and S2.

What this means is that these two groups have the same structure and characteristics.
Or, in other words, these two groups essentially do the “same kind” of thing. Clearly,
the two do-nothing actions behave the same way. Also, s and −1 both have the property
that doing the action twice results in having done nothing (i.e., each element is its own
reverse). Since there are only two elements, there isn’t anything else to check. In groups
with more elements, things can get much more complicated.

It is important to point out that S2 and 〈−1〉 (in Q8) are not equal. But they have the
same structure. Identifying when two groups have the same structure (i.e., isomorphic)
is an important pursuit in group theory.

If you look at the original Cayley diagram for Spin1×2 (with generators s, t1, t2), we
can see three subgroups that look like S2; namely 〈s〉, 〈t1〉, and 〈t2〉. Each of these three
subgroups is isomorphic to S2.

There is one serious potential for confusion here. Notice that there is an s in S2 and an s
in Spin1×2. Despite having identical names, they are not the same element. Since we only
have 26 letters in our alphabet this sort of thing is unavoidable. Under the isomorphism
between S2 and the subgroup 〈s〉 in Spin1×2, the two elements with the same name match
up. That is, these two elements are the ones in each group with the same behavior.
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Exercise 4.16. Can you find any other subgroups or groups that are isomorphic to S2?

Let’s write down an official definition of isomorphic.

Definition 4.17. Let G and G′ be two groups. We say that G and G′ are isomorphic if
there exist generating sets S and S ′ forG andG′, respectively, such that the corresponding
Cayley diagrams are identical where we ignore the labels on the vertices and recolor the
edges if necessary. In this case, we write G � G′. Otherwise, we say that G and G′ are not
isomorphic. If G and G′ are isomorphic, then the one-to-one correspondence determined
by matching up the corresponding generators and respecting arrow paths is called an
isomorphism.

The last sentence in the definition above might be a bit much to handle at the moment,
but as we construct more examples, the concept should become clear. The general idea is
to take two identical Cayley diagrams (ignoring labels) for G and G′ and then set one on
top of the other so that the vertices and arrows of the same color match up. This should
be done so that the do-nothing actions correspond to each other. Then it becomes clear
which actions in G correspond to which actions in G′. There might be many ways to do
this.

Consider the groupR4 with generator r (rotation by 90◦ clockwise). Now, take a look at
the Cayley diagram for Q8 with generators i, j,−1. It should be easy to convince yourself
that R4 is isomorphic to both 〈i〉 = {1, i,−i,−1} and 〈j〉 = {1, j,−j,−1}. However, you have
to do some rearranging of one of the diagrams to set one on top of the other. Let’s just
focus on 〈i〉.

How do R4 and 〈i〉match up? We want to pair elements in each group with an element
in the other group that has the same behavior. Clearly, e and 1 match up since these
are the two do-nothing actions. Also, the reason why we noticed these two groups were
isomorphic is because their Cayley diagrams looked the same. Since each Cayley diagram
only had one arrow type determined by r and i, we should pair these two elements. Now,
following the arrows around the diagram, we see that r2 must pair with i2 = −1 and r3

corresponds to i3 = −i. In summary, the isomorphism between R4 and 〈i〉 (in Q8) is given
by e↔ 1, r↔ i, r2↔−1, and r3↔−i, which is depicted in Figure 4.4. Note that this time
we have not recolored the edges so that they match. Nonetheless, the correspondence
should be clear.

Now, take a look at the Cayley diagram for D4 with generating set {r, s}. As we noticed
in Exercise 4.2, R4 is a subgroup of D4. We could say that this subgroup is isomorphic to
R4, but in this case, we can say something even stronger: they are equal!

Before continuing, we need to emphasize an important point. If the Cayley diagram
for one group does not look like the Cayley diagram for another group, then that does
not immediately imply that the groups are not isomorphic. The issue is that perhaps we
could choose appropriate generating sets for each group so that the Cayley diagrams do
look alike. For example, notice that our standard Cayley diagram for R4 does not look
like the Cayley diagram that you constructed for V4 in Exercise 4.14. This does not imply
that these two groups are not isomorphic. We would need to do some more work in order
to determine whether the two groups are isomorphic or not. You will get a chance to do
this in Exercise 4.21.
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re

r3 r2

R4

i1

−i −1

〈i〉 ≤Q8

Figure 4.4. Isomorphism between 〈i〉 ≤Q8 and R4.

It turns out that there is a fancy word for the size of a group.

Definition 4.18. If G is a group with n distinct actions, then we say that G has order n
and write |G| = n. If G contains infinitely many elements, then we say G has infinite order
and write |G| =∞.

Exercise 4.19. Find the orders of the following groups: S2, Spin1×2, Spin3×3, R4, D3, D4,
V4, and Q8.

Theorem 4.20. Suppose G and G′ are two groups of actions such that G � G′. Then
|G| = |G′ |.

Unfortunately, the converse of the previous theorem is not true in general. That is,
two groups that have the same order may or may not be isomorphic.

Loosely speaking, if one group has a property that the other does not have, then the
two groups cannot be isomorphic. For example, if one group has the property that ev-
ery pair of actions commutes (i.e., the order† of the actions does not matter), but another
group has a pair of actions that do not commute, then the two groups cannot be isomor-
phic. Moreover, if one group contains an action that requires a minimum of k applications
to get back to the do-nothing action, but a second group does not have such an element,
then the two groups cannot be isomorphic.

Justifying these two claims takes a bit of work and for now, we’ll put that on hold.
For the time being, if you don’t see why these claims about when two groups are not
isomorphic are true, just take them on faith and we will return to the issue in a later
chapter. Feel free to use these ideas in the exercises that follow.

Problem 4.21. Determine whether R4 and V4 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why.

Problem 4.22. Consider the group given by the Cayley diagram for R6 that was given in
Exercise 3.15. We can think of R6 as the rotation group for a regular hexagon. Determine

†Don’t confuse the word “order” in this sentence with the order of a group.
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whether R6 and D3 are isomorphic. Justify your answer. If they are isomorphic, specify
the isomorphism by listing the correspondence of elements. If they are not isomorphic,
explain why.

Exercise 4.23. Consider two light switches on a wall side by side. Consider the group of
actions that consists of all possible actions that you can do to the two light switches. For
example, one action is toggle the left light switch while leaving the right alone. Let’s call
this group L2.

(a) How many distinct actions does L2 have?

(b) Can you find a minimal generating set for L2? If so, give these actions names and
then write all of the actions of L2 as words in your generator(s).

(c) Using your generators from part (b), draw a Cayley diagram for L2.

Problem 4.24. Determine whether L2 and V4 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why.

Problem 4.25. Determine whether Q8 and D4 are isomorphic. Justify your answer. If
they are isomorphic, specify the isomorphism by listing the correspondence of elements.
If they are not isomorphic, explain why.

Problem 4.26. Determine whether Spin1×2 andD4 are isomorphic. Justify your answer. If
they are isomorphic, specify the isomorphism by listing the correspondence of elements.
If they are not isomorphic, explain why.

Exercise 4.27. Consider the group that acts on three coins that are in a row by rearranging
their positions (but not flipping them over). This group is called S3. Number the positions
of the coins (not the coins themselves) 1, 2, 3 from left to right. Let s1 be the action that
swaps the coins in positions 1 and 2 and let s2 be the action that swaps the coins in
positions 2 and 3.

(a) The group S3 consists of 6 actions, which we can generate with s1 and s2. Write all
6 actions as words in s1 and s2.

(b) Using s1 and s2 as generators, draw a Cayley diagram for S3.

Problem 4.28. Determine whether S3 and D3 are isomorphic. Justify your answer. If they
are isomorphic, specify the isomorphism by listing the correspondence of elements. If
they are not isomorphic, explain why. Don’t forget that we’ve drawn two different Cayley
diagrams for D3.



Chapter 5

A Formal Approach to Groups

In this chapter we finally introduce the formal definition of a group. From this point
on, our focus will shift from developing intuition to studying the abstract properties of
groups. However, we should not abandon the intuition we have gained. As we progress,
your intuitive understanding of groups will continue to improve and you should rely
on this understanding as you try to make sense of the notions that follow. There has
been plenty of intentional foreshadowing, so expect to revisit concepts you’ve already
encountered. We’ll also encounter plenty of new stuff, too.

It is important to point out that things are about to get quite a bit more difficult for
most of you. Be patient and persistent!

5.1 Binary Operations

After learning to count as a child, you likely learned how to add, subtract, multiply, and
divide with natural numbers. Loosely speaking, these operations are examples of binary
operations since we are combining two objects to obtain a single object. More formally,
we have the following definition.

Definition 5.1. A binary operation ∗ on a set A is a function from A×A into A. For each
(a,b) ∈ A×A, we denote the element ∗(a,b) via a ∗ b.

Remark 5.2. Don’t misunderstand the use of ∗ in this context. We are not implying that
∗ is the ordinary multiplication of real numbers that you are familiar with. We use ∗ to
represent a generic binary operation.

Remark 5.3. Notice that since the codomain of a binary operation on a set A is A, binary
operations require that we yield an element of A when combining two elements of A. In
this case, we say that A is closed under ∗. Binary operations have this closure property
by definition. Also, since binary operations are functions, any attempt to combine two
elements from A should result in a unique element of A. In this case, we say that ∗ is well-
defined. Moreover, since the domain of ∗ is A×A, it must be the case that ∗ is defined for
all pairs of elements from A.
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Example 5.4. Examples of binary operations include + (addition), − (subtraction), and ·
(multiplication) on the real numbers. However, ÷ (division) is not a binary operation on
the set of real numbers because all elements of the form (a,0) are not in the domain R×R
since we cannot divide by 0. Yet, ÷ is a suitable binary operation on R \ {0}.

Example 5.5. Let C be the set of continuous functions from R to R. Then ◦ (function
composition) is a binary operation on C.

Example 5.6. Consider the 6 actions of D3. The composition of these actions is a binary
operation on D3. In fact, composition of actions for each of the groups that we have seen
is a binary operation on the given group. Notice that we never used a symbol for these
binary operations, but rather used juxtaposition (i.e., ab is the juxtaposition of a and b).

Example 5.7. Let M2×2(R) be the set of 2 × 2 matrices with real number entries. Then
matrix multiplication is a binary operation on M2×2(R).

Exercise 5.8. Explain why composition of spins is not a binary operation on the set of
allowable spins in Spin3×3. Hint: Reread the paragraph below Exercise 2.8.

Exercise 5.9. Let M(R) be the set of matrices (of any size) with real number entries. Is
matrix addition a binary operation on M(R)? How about matrix multiplication? What if
you restrict to square matrices of a fixed size n×n?

Exercise 5.10. Determine whether ∪ (union) and ∩ (intersection) are binary operations
on P (Z) (i.e., the power set of the integers).

Exercise 5.11. Consider the closed interval [0,1] and define ∗ on [0,1] via a ∗ b = min{a,b}
(i.e., take the minimum of a and b). Determine whether ∗ is a binary operation on [0,1].

Some binary operations have additional properties.

Definition 5.12. Let A be a set and let ∗ be a binary operation on A.

(a) We say that ∗ is associative if and only if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ A.

(b) We say that ∗ is commutative if and only if a ∗ b = b ∗ a for all a,b ∈ A.

Exercise 5.13. Provide at least one example of a binary operation on a set that is commu-
tative. How about not commutative?

Theorem 5.14. Let A be a set and let F be the set of functions from A to A. Then function
composition is an associative binary operation on F.

When the set A is finite, we can represent a binary operation on A using a table in
which the elements of the set are listed across the top and the left side (in the same order).
The entry in the ith row and jth column of the table represents the output of combining
the element that labels the ith row with the element that labels the jth column (order
matters).

Example 5.15. Consider the following table.
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∗ a b c

a b c b
b a c b
c c b a

This table represents a binary operation on the set A = {a,b,c}. In this case, a ∗ b = c while
b ∗ a = a. This shows that ∗ is not commutative.

Exercise 5.16. What property must a table for a binary operation have in order for the
operation to be commutative?

Exercise 5.17. Fill in the missing entries in the following table so that ∗ defines an asso-
ciative binary operation on {a,b,c,d}.

∗ a b c d

a a b c d
b b a c d
c c d c d
d

5.2 Groups

Without further ado, here is our official definition of a group.

Definition 5.18. A group (G,∗) is a set G together with a binary operation ∗ such that the
following axioms hold.

(0) The set G is closed under ∗.

(1) The operation ∗ is associative.

(2) There is an element e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g. We call e the
identity.

(3) Corresponding to each g ∈ G, there is an element g ′ ∈ G such that g ∗ g ′ = g ′ ∗ g = e.
In this case, g ′ is called the inverse of g, which we shall denote as g−1.

Remark 5.19. A few comments are in order.

(a) Notice that a group has two parts to it, namely, a set and a binary operation. For
simplicity, if (G,∗) is a group, we will often refer to G as being the group. However,
you must remember that the binary operation is part of the structure.

(b) Axiom 2 forces G to be nonempty.

(c) In the generic case, even if ∗ is not actually multiplication, we will refer to a ∗ b as
the product of a and b.
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(d) We are not requiring ∗ to be commutative. If ∗ is commutative, then we say that G is
abelian∗ (or commutative).

Exercise 5.20. Explain why Axiom 0 is unnecessary.

At this time, we have two definitions of a group. The first one was intended to provide
an intuitive introduction and Definition 5.18 provides a rigorous mathematical defini-
tion. We should confirm that these two definitions are in fact compatible.

Exercise 5.21. Compare and contrast our two definitions of a group. How do the rules
and axioms match up?

Exercise 5.22. Quickly verify that Spin1×2, S2, R4, D3, D4, V4, and Q8 are groups under
composition of actions.

Exercise 5.23. Determine whether each of the following are groups. If the pair is a group,
determine whether it is abelian and identify the identity. Explain your answers.

(a) (Z,+)

(b) (N,+)

(c) (Z, ·)

(d) (R,+)

(e) (R, ·)

(f) (R \ {0}, ·)

(g) (M2×2(R),+)

(h) (M2×2(R),∗), where ∗ is matrix multiplication.

(i) ({a,b,c},∗), where ∗ is the operation determined by the table in Example 5.15.

(j) ({a,b,c,d},∗), where ∗ is the operation determined by the table in Exercise 5.17.

Notice that in Axiom 2 of Definition 5.18, we said the identity and not an identity.
Implicitly, this implies that the identity is unique.

Theorem 5.24. Let G be a group with binary operation ∗. Then there is a unique identity
element in G. That is, there is only one element e in G such that g ∗ e = e ∗ g = g for all
g ∈ G.

The following theorem is crucial for proving many theorems about groups.

Theorem 5.25 (Cancellation Law). Let (G,∗) be a group and let g,x,y ∈ G. Then g ∗x = g ∗y
if and only if x = y. Similarly, x ∗ g = y ∗ g if and only if x = y.†

∗Commutative groups are called abelian in honor of the Norwegian mathematician Niels Abel (1802–1829).
†You only need to prove one of these statements as the proof of the other is symmetric.
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Exercise 5.26. Show that (R, ·) fails the Cancellation Law (confirming the fact that it is
not a group).

Corollary 5.27. Let G be a group with binary operation ∗. Then each g ∈ G has a unique
inverse.

Theorem 5.28. Let (G,∗) be a group and let g,h ∈ G. Then the equations g ∗ x = h and
y ∗ g = h have unique solutions for x and y in G.

While proving the previous few theorems, hopefully one of the things you realized is
that you can multiply both sides of a group equation by the same element but that you
have to do it on the same side of each half. That is, since a group may or may not be
abelian, if I multiply one side of an equation on the left by a group element, then we
must multiply the other side of the equation on the left by the same group element.

Despite the fact that a group may or may not be abelian, if one product is equal to the
identity, then reversing the order yields the same result.

Theorem 5.29. Let G be a group with binary operation ∗. If g ∗ h = e, then h ∗ g = e.

The upshot of the previous theorem is if we have a “left inverse” then we automatically
have a “right inverse” (and vice versa).

The next theorem should not be surprising.

Theorem 5.30. Let (G,∗) be a group and let g ∈ G. Then (g−1)−1 = g.

Definition 5.31. Let (G,∗) be a group and let g ∈ G. Then for n ∈ N, we define

gn = g ∗ g ∗ · · · ∗ g︸       ︷︷       ︸
n factors

and
g−n = g−1 ∗ g−1 ∗ · · · ∗ g−1︸                ︷︷                ︸

n factors

.

Moreover, we define g0 = e.

The good news is that the rules of exponents you are familiar with still hold for groups.

Theorem 5.32. Let (G,∗) be a group and let g ∈ G. For n,m ∈ Z, we have the following:

(a) gn ∗ gm = gn+m,

(b) (gn)−1 = g−n.
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5.3 Group Tables

Recall that we could represent a binary operation on a finite set using a table. Since
groups have binary operations at their core, we can represent a finite group (i.e., a group
with finitely many elements) using a table, called a group table (or Cayley table). For
example, below are group tables for D3 and V4, respectively.

∗ e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr
r2 r2 e r sr sr2 s
s s sr sr2 e r r2

sr sr sr2 s r2 e r
sr2 sr2 s sr r r2 e

∗ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

Our convention will be that if x appears in row i and y appears in column j, then row
i “times” column j will result in the element determined by xy, where as usual we follow
our right to left convention. That is, xy means we apply y first and then x (as in function
composition).

Exercise 5.33. Verify that V4 is an abelian group. What feature of the table makes this
clear?

Given an arbitrary group G, we should probably say, “a group table for G” and not
“the group table for G.” The reason for this is that if we chose a different order of the
elements (e.g., swap rows 1 and 4—which swaps columns 1 and 4, as well), then the table
would look slightly different. Also, if we had chosen a different generating set, then the
names of the elements would look different. Regardless, the table still captures the same
information about the binary operation. Because every possible table for a given group
conveys the same information about the architecture of the group, people may refer to
any table for the group as “the” table.

Exercise 5.34. Create group tables for the following groups: S2, R3, R4, D3, S3, D4, and
Q8. Which groups are abelian?

Perhaps you noticed when creating the tables above that each element of the group
appeared exactly once in each row and column, respectively. This is true, in general. Use
Theorem 5.28, to prove the following theorem.

Theorem 5.35. Let (G,∗) be a finite group. Then each element of G appears exactly once
in each row and each column, respectively, in any group table for G.

We can also use tables to define groups. For example, consider the following table on
the set A = {e,a,b,c}.

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e
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Is this a table for a group? First, we see that the binary operation determined by the table
is closed. Second, we see that e is acting as the identity. Since every row and column has
the identity element e appearing, we know that every element has an inverse (do you see
why that follows?). The only thing left to check is associativity. Imagine for a moment
what this entails. It’s messy right?! And this is only for a group of order 4.

Thankfully, we can rely on some prior knowledge to help out with associativity. It
turns out that if you look closely, the group table for V4 looks the “same” as the table
above. What do we mean by “same” here? The names for elements are different (except
for e), but

the product of corresponding elements yields the corresponding result.

To see what I mean, let’s color both tables with white, red, blue, and green in such a way
that each element corresponds to a unique color. If we choose our colors wisely, it is easy
to see that both tables have the same structure.

∗ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

←→

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Since we already know that V4 is a group, we know that the binary operation for V4 is
associative.

Exercise 5.36. Explain why the discussion above implies that the binary operation deter-
mined by the table on the right above must be associative. Have we shown that (A,∗) is a
group?

It is important to point out that if we had not chosen our colors wisely, then perhaps
the colorings of the two tables would not agree. Moreover, if we had made the same color
choices for elements, but then rearranged columns and rows of one table, the colorings
of the two tables would not agree. This doesn’t imply anything. The point is whether we
can get the tables to match.

Exercise 5.37. Draw the Cayley diagram for (A,∗) with generators a and b. Explain why
this implies that V4 and A (under their respective binary operations) are isomorphic.

Exercise 5.38. Is it possible to color the group table for R4 so that it matches the coloring
of V4? Explain your answer.

Problem 5.39. Let (G,∗) and (G′,◦) be two finite groups. Suppose we can arrange the rows
and columns and color elements in such a way that the colorings for the two group tables
agree. Explain why this implies that the two groups are isomorphic.

Problem 5.40. Suppose we have a table for (G,∗), where G is finite. Further suppose that
(i) there is an identity element, and (ii) every element appears exactly once in each row
and column, respectively. Explain why the only thing we need to verify in order for (G,∗)
to be a group is that ∗ is associative.
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Problem 5.41. Suppose that (G,∗) is a group. Theorem 5.24 guarantees that there is a
unique identity in G. When creating the group table for G, what goes wrong if you try to
include two different identity elements?

Consider the class of all possible groups. It turns out that “isomorphic” (�) determines
an equivalence relation. That is, under this relation two groups are related if and only
if they are isomorphic. We’ll prove this formally later when we have a more rigorous
definition of isomorphic.

Problem 5.42. Explain why all groups with a single element are isomorphic.

In this case, we say that “up to isomorphism” there is only one group with a single
element.

Problem 5.43. Consider a group (G,∗) of order 2. Suppose that G = {e,a}. Complete the
following group table for G.

∗ e a

e
a

Explain why every group with 2 elements must be isomorphic to S2.

The previous problem implies that up to isomorphism, there is only one group of
order 2.

Problem 5.44. Consider a group (G,∗) of order 3. Suppose that G = {e,a,b}. Complete the
following group table for G.

∗ e a b

e
a
b

Explain why every group with 3 elements must be isomorphic to R3.

Problem 5.45. Consider a group (G,∗) of order 4. Suppose that G = {e,a,b,c}. Assuming
that e is the identity, the first row and first column of the corresponding group table must
be completed as follows.

∗ e a b c

e e a b c
a a ?
b b
c c
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The cell with the question mark cannot be filled with an a. So, this entry must be either
e, b, or c. However, it should be easy to see the cases with b and c are symmetric. Thus,
there are two cases: (i) the entry with the question mark is filled with e, (ii) the entry with
the question mark is (without loss of generality) filled with b. Complete the group table
in each of these two cases. Recall that we’ve seen two non-isomorphic groups of order 2,
namely R4 and V4. What conclusion can you make about groups of order 4?

So far we’ve seen that there are unique groups up to isomorphism of orders 1, 2, and
3, but that there are two groups up to isomorphism of order 4. A general question we will
want to address is, how many groups are there of order n?

In a future chapter we will be able to prove that there is only one group up to isomor-
phism of order 5, namely those groups isomorphic to R5 (i.e., rotation group of a regular
pentagon).

We’ve seen three groups of order 6, namely R6, D3, and S3. However, D3 � S3 (see
Problem 4.28) while R6 is not isomorphic to either of these (see Problem 4.22). So, we can
conclude that there are at least two groups up to isomorphism of order 6. But are there
others? It turns out that the answer is yes, but why?

The group R7 is the group of rotations of a regular 7-sided polygon. This group has
order 7. Are there other groups of order 7 that are not isomorphic to R7?

We’ve encountered four groups of order 8, namely D4, Spin1×2, Q8, and R8. Of these,
only D4 and Spin1×2 are isomorphic. Thus, there are at least three groups up to isomor-
phism of order 8. However, are these the only ones? It turns out that the answer is no.
What are the missing ones?

5.4 Revisiting Cayley Diagrams and Our Original Defini-
tion of a Group

Let’s begin with a couple of exercises.

Exercise 5.46. Consider the diagram given in Figure 5.1. This is identical to the diagram
that appeared in Figure 3.5 that we saw at the end of Chapter 3.

(a) Consider Rules 1–4 of our original definition of a group (see Definition 2.14). Does
the diagram in Figure 5.1 satisfy Rules 1–4?

(b) Try to convert this diagram into a group table. Does the table represent a group?
What goes wrong?

Exercise 5.47. Consider the diagram given in Figure 5.2

(a) Does the diagram in Figure 5.2 satisfy Rules 1–4 of Definition 2.14?

(b) Try to convert this diagram into a group table. Does the table represent a group?
What goes wrong?
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a b c d

efgh

Figure 5.1. Diagram for Exercise 5.46.

a b c d

e f g h

Figure 5.2. Diagram for Exercise 5.47.

As the previous two exercises indicate, the moral of the story is that our original intu-
itive definition of a group has a weakness. It does not agree with our formal definition of
a group given in Definition 5.18. Let’s see if we can figure out what goes wrong.

Consider the Cayley diagram forD3 with generating set {r, s} that is given in Figure 5.3.
Notice that we labeled the lower right corner of the Cayley diagram with the word r2s.
This means that we first followed a blue arrow out of e and then two red arrows. However,
we could also get to this vertex by first doing a red arrow out of e followed by a blue arrow.
So, we could also have labeled this vertex with the word sr. The upshot is that r2s = sr.
These types of group equations are called relations.

We discovered this relation by starting at e and then traveling a sequence of arrows
to get to the vertex in the lower right corner. However, notice that following a blue and
then two red arrows is always the same as following a red arrow and then a blue arrow
regardless of which vertex we start at. That is, the relation r2s = sr holds universally
across the entire Cayley diagram.

Cayley diagrams for groups will always have this uniform symmetry. The fancy way
of saying this is that Cayley diagrams are regular. In other words, a diagram is regular if
every internal pattern repeats itself throughout the diagram.

Exercise 5.48. Identify two other relations that the Cayley diagram for D3 given in Fig-
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e

rr2

s

rs r2s

Figure 5.3. Cayley diagram for D3 with generating set {r, s}.

ure 5.3 exhibits. Find one that involves both r−1 (i.e., following a red arrow backwards)
and s. Convince yourself that your relations appear throughout the diagram.

Exercise 5.49. Verify that the diagrams in Exercise 5.46 and 5.47 are not regular.

Problem 5.50. Explain why the Cayley diagram for a group must be regular.

The discussion and exercises above lead us to conclude that one thing missing from
our original intuitive definition of a group is regularity. It turns out that this is the only
thing missing. That is, if we add the requirement of regularity to our intuitive defini-
tion, we could convert it into a rigorous definition that is equivalent to Definition 5.18.
However, we won’t bother doing this since our intuitive definition served its purpose.

We close this section with a problem that asks you to think about the structure of the
Cayley diagrams for an abelian group.

Problem 5.51. Suppose (G,∗) is a group and suppose S is a generating set for G. Consider
the Cayley diagram for G with generating set S.

(a) If G is abelian and a,b ∈ S, then what relationship must be true for the arrows in the
Cayley diagram corresponding to the elements a and b?

(b) Is the converse of your claim true? That is, if every pair of edges in a Cayley diagram
for G has the property you stated above, will the group be abelian?

5.5 Revisiting Subgroups

Back in Section 4.1, we introduced the notion of subgroup. In light of our official defini-
tion of a group, we more or less have the same definition as before, but let’s restate it here
using slightly more formal language.

Definition 5.52. Let (G,∗) be a group and letH be a subset of G. ThenH is a subgroup of
G, written H ≤ G, provided that H is a group in its own right under the binary operation
inherited from G.
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The phrase “under the binary operation inherited from G” means that to combine two
elements in H , we should treat the elements as if they were in G and perform G’s binary
operation.

Recall that Theorems 4.6 and 4.8 tell us that 〈e〉 = {e} andG are always subgroups ofG.
This is still true even using our official definition of a group. The subgroup {e} is referred
to as the trivial subgroup. All other subgroups are called nontrivial. If H is a subgroup
of a group G with H , G, then we may write H < G and refer to H as a proper subgroup
of G.

The next theorem tells us that we don’t need to verify all the axioms of a group to
determine whether a nonempty subset is a subgroup.

Theorem 5.53. Suppose (G,∗) is a group and H is a nonempty subset of G. Then H ≤ G
if and only if (i) for all h ∈ H , h−1 ∈ H , as well, and (ii) H is closed under the binary
operation of G.

Remark 5.54. Notice that one of the hypotheses of Theorem 5.53 is that H be nonempty.
This means that if we want to prove that a certain subset H is a subgroup of a group G,
then one of the things we must do is verify that H is in fact nonempty.

Exercise 5.55. Consider (R3,+), where R3 is the set of all 3-entry row vectors with real
number entries (e.g., (a,b,c) where a,b,c ∈ R) and + is ordinary vector addition. It turns
out that (R3,+) is an abelian group with identity (0,0,0).

(a) Let H be the subset of R3 consisting of vectors with first coordinate 0. Is H a sub-
group of R3? Prove your answer.

(b) Let K be the subset of R3 consisting of vectors whose entries sum to 0. Is K a
subgroup of R3? Prove your answer.

(c) Construct a subset of R3 (different from H and K) that is not a subgroup of R3.

Exercise 5.56. Consider the group (Z,+) (under ordinary addition).

(a) Show that the even integers, written 2Z := {2k | k ∈ Z}, form a subgroup of Z.

(b) Show that the odd integers are not a subgroup of Z.

(c) Show that all subsets of the form nZ := {nk | k ∈ Z} for n ∈ Z are subgroups of Z.

(d) Are there any other subgroups besides the ones listed in part (c)? Explain your
answer.

Exercise 5.57. Consider the group of symmetries of a regular octagon. This group is
denoted by D8, where the operation is composition of actions. The group D8 consists of
16 elements (8 rotations and 8 reflections). LetH be the subset consisting of the following
clockwise rotations: 0◦, 90◦, 180◦, and 270◦. Determine whether H is a subgroup of D8
and justify your answer.
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Exercise 5.58. Consider the groups (R,+) and (R \ {0}, ·). Explain why R \ {0} is not a
subgroup of R despite the fact that R \ {0} ⊆ R and both are groups (under the respective
binary operations).

Theorem 5.59. Suppose (G,∗) is a group and let H,K ≤ G. Then H ∩K ≤ G.

Problem 5.60. Can we replace intersection with union in the theorem above? If so, prove
the corresponding theorem. If not, then provide a specific counterexample.

Theorem 5.61. Suppose (G,∗) is an abelian group and let H ≤ G. Then H is an abelian
subgroup.

Problem 5.62. Is the converse of the previous theorem true? If so, prove it. Otherwise,
provide a counterexample.

Theorem 5.63. Suppose (G,∗) is a group. Define

Z(G) := {z ∈ G | zg = gz for all g ∈ G}

(called the center of G). Then Z(G) is an abelian subgroup of G.

Exercise 5.64. Find the center of each of the following groups.

(a) S2

(b) V4

(c) S3

(d) D3

(e) D4

(f) R4

(g) R6

(h) Spin1×2

(i) Q8

(j) (Z,+)

(k) (R \ {0}, ·)

The following definition formalizes Definition 4.9.

Definition 5.65. Let (G,∗) be a group and let S be a nonempty subset of G. Then we
define 〈S〉 to be the set consisting of all possible (finite) products of elements from S and
their inverses. The set 〈S〉 is called the subgroup generated by S. The elements of S are
called generators of 〈S〉.
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Note that S may be finite or infinite. Moreover, even if S is finite, 〈S〉 may be infinite.
Also, it is important to point out that we are not putting any restrictions about efficiency
on S in the definition above. That is, it is possible that some elements are included in S
that are not necessary to generate all of the elements of 〈S〉.

In cases when we know what the elements of S actually are, then we will list them
inside the angle brackets without the set braces. For example, if S = {a,b,c}, then we will
write 〈a,b,c〉 instead of 〈{a,b,c}〉. In the special case when S equals a single element, say
S = {a}, then

〈a〉 = {an | n ∈ Z},

which is called the subgroup generated by a.
The set 〈S〉 is called the “subgroup generated by S”, so it better be a subgroup!

Theorem 5.66. Let (G,∗) be a group and let S ⊆ G, where S , ∅. Then 〈S〉 ≤ G. In particu-
lar, 〈S〉 is the smallest subgroup of G containing S.

Exercise 5.67. In Exercise 5.56 we introduced the notation nZ. Write these subgroups in
the “generated by” notation. That is, find a set S such that 〈S〉 = nZ. Can you find more
than one way to do it?

Every subgroup can be written in the “generated by” form. That is, if H is a subgroup
of a group G, then there always exists a subset S of G such that 〈S〉 = H . In particular,
〈H〉 =H .

Let’s explore a couple of examples. First, consider the group R4 (where the operation
is composition of actions). What are the subgroups of R4? Theorems 4.6 and 4.8 tell us
that {e} and R4 itself are subgroups of R4. Are there any others? Theorem 5.53 tells us that
if we want to find other subgroups of R4, we need to find nonempty subsets of R4 that are
closed and contain all the necessary inverses. However, the previous paragraph indicates
that we can find all of the subgroups of R4 by forming the subgroups generated by various
combinations of elements from R4. We can certainly be more efficient, but below we list
all of the possible subgroups we can generate using subsets of R4. We are assuming that r
is rotation by 90◦ clockwise. As you scan the list, you should take a moment to convince
yourself that the list is accurate.

〈e〉 = {e}

〈r〉 = {e, r, r2, r3}

〈r2〉 = {e, r2}

〈r3〉 = {e, r3, r2, r}

〈e, r〉 = {e, r, r2, r3}

〈e, r2〉 = {e, r2}

〈e, r3〉 = {e, r3, r2, r}

〈r, r2〉 = {e, r, r2, r3}

〈r, r3〉 = {e, r, r2, r3}

〈r2, r3〉 = {e, r, r2, r3}

〈e, r, r2〉 = {e, r, r2, r3}

〈e, r, r3〉 = {e, r, r2, r3}

〈e, r2, r3〉 = {e, r, r2, r3}

〈r, r2, r3〉 = {e, r, r2, r3}

〈e, r, r2, r3〉 = {e, r, r2, r3}
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Let’s make a few observations. Scanning the list, we see only three distinct subgroups:
{e}, {e, r2}, {e, r, r2, r3}. Our exhaustive search guarantees that these are the only subgroups
of R4. It is also worth pointing out that if a subset contains either r or r3, then that
subset generates all of R4. The reason for this is that r and r3 are each generators for R4,
respectively. Also, observe that if we increase the size of the subset using an element that
was already contained in the subgroup generated by the smaller set, then we don’t get
anything new. For example, consider 〈r2〉 = {e, r2}. Since e ∈ 〈r2〉, we don’t get anything
new by including e in our generating set. We can state this as a general fact.

Theorem 5.68. Let (G,∗) be a group and let g1, g2, . . . , gn ∈ G. If x ∈ 〈g1, g2, . . . , gn〉, then
〈g1, g2, . . . , gn〉 = 〈g1, g2, . . . , gn,x〉.

It is important to point out that in the theorem above, we are not saying that {g1, g2, . . . , gn}
is a generating set for G—although this may be the case. Instead, are simply making a
statement about the subgroup 〈g1, g2, . . . , gn〉, whatever it may be.

Let’s return to our example involving R4. We have three subgroups, namely the two
trivial subgroups {e} and R4 itself, together with one nontrivial subgroup {e, r2}. Notice
that {e} is also a subgroup of {e, r2}. We can capture the overall relationship between the
subgroups using a subgroup lattice, which we depict in Figure 5.4 case of R4.

〈e〉 = {e}

〈r2〉 = {e, r2}

〈r〉 = R4

Figure 5.4. Subgroup lattice for R4.

In general, subgroups of smaller order are towards the bottom of the lattice while
larger subgroups are towards the top. Moreover, an edge between two subgroups means
that the smaller set is a subgroup of the larger set.

Let’s see what we can do with V4 = {e,v,h,vh}. Using an exhaustive search, we find
that there are five subgroups:

〈e〉 = {e}

〈h〉 = {e,h}

〈v〉 = {e,v}
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〈vh〉 = {e,vh}

〈v,h〉 = 〈v,vh〉 = 〈h,vh〉 = {e,v,h,vh} = V4

For each subgroup above, we’ve used minimal generating sets to determine the group.
(Note that minimal generating sets are generating sets where we cannot remove any ele-
ments and still obtain the same group. Two minimal generating sets for the same group
do not have to have the same number of generators.) In this case, we get the subgroup
lattice in Figure 5.5.

〈e〉 = {e}

〈h〉 = {e,h}〈v〉 = {e,v} 〈vh〉 = {e,vh}

〈v,h〉 = V4

Figure 5.5. Subgroup lattice for V4.

Notice that there are no edges among 〈v〉,〈h〉, and 〈vh〉. The reason for this is that
none of these groups are subgroups of each other. We already know that R4 and V4 are
not isomorphic, but this becomes even more apparent if you compare their subgroup
lattices.

In the next few exercises, you are asked to create subgroup lattices. As you do this, try
to minimize the amount of work it takes to come up with all the subgroups. In particular,
I do not recommend taking a full brute-force approach like we did for R4.

Exercise 5.69. Find all the subgroups of R5 = {e, r, r2, r3, r4} (where r is rotation clockwise
of a regular pentagon by 72◦) and then draw the subgroup lattice for R5.

Exercise 5.70. Find all the subgroups of R6 = {e, r, r2, r3, r4, r5} (where r is rotation clock-
wise of a regular hexagon by 60◦) and then draw the subgroup lattice for R6.

Exercise 5.71. Find all the subgroups ofD3 = {e, r, r2, s, sr, sr2} (where r and s are the usual
actions) and then draw the subgroup lattice for D3.

Exercise 5.72. Find all the subgroups of S3 = 〈s1, s2〉 (where s1 is the action is that swaps
the positions of the first and second coins and s2 is the action that swaps the second and
third coins; see Exercise 4.27) and then draw the subgroup lattice for S3. How does your
lattice compare to the one in Exercise 5.71? You should look back at Exercise 4.28 and
ponder what just happened.
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Exercise 5.73. Find all the subgroups of D4 = {e, r, r2, r3, s, sr, sr2, sr3} (where r and s are
the usual actions) and then draw the subgroup lattice for D4.

Exercise 5.74. Find all the subgroups of Q8 = {1,−1, i,−i, j,−j,k,−k} and then draw the
subgroup lattice for Q8.

Problem 5.75. What claims can be made about the subgroup lattices of two groups that
are isomorphic? What claims can be made about the subgroup lattices of two groups that
are not isomorphic? What claims can be made about two groups if their subgroup lattices
look nothing alike? Hint: The answers to two of these questions should be obvious, but
the answer to the remaining question should be something like, “we don’t have enough
information to make any claims.”

Here are two final problems to conclude this section.

Problem 5.76. Several times we’ve referred to the fact that some subgroups are visible in
a Cayley diagram for the parent group and some subgroups are not. Suppose (G,∗) is a
group and let H ≤ G. Can you describe a process for creating a Cayley diagram for G that
“reveals” the subgroup H inside of this Cayley diagram?

Problem 5.77. Suppose (G,∗) is a finite group and let H ≤ G. Can you describe a process
that “reveals” the subgroup H inside the group table for G? Where will the clones for H
end up?

5.6 Revisiting Isomorphisms

Suppose (G1,∗) and (G2,◦) are two groups. Recall that G1 and G2 are isomorphic, writ-
ten G1 � G2, provided that we can choose generating sets for G1 and G2, respectively, so
that the Cayley diagrams for both groups are identical (ignoring the labels on the ver-
tices). When two groups are isomorphic, it means that they have identical structure up
to relabeling the names of the elements of the group.

One consequence of two groups being isomorphic is that there is a one-to-one corre-
spondence between the elements of the group. This correspondence is referred to as an
isomorphism. In other words, an isomorphism is a one-to-one and onto function that
preserves the structure of the two groups.

Having an isomorphism between two groups immediately implies that they have the
same order, i.e., |G1| = |G2| (see Theorem 4.20). However, it is extremely important to
remember that two groups having the same order does not imply that the two groups are
isomorphic. Said another way, having a one-to-one correspondence between two groups
does not imply that the two groups are isomorphic. They must also have the same struc-
ture!

Exercise 5.78. Provide an example of two groups that have the same order but are not
isomorphic.

After we introduced groups tables, we also discussed the fact that G1 � G2 exactly
when we can arrange the rows and columns and color elements in such a way that the
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∗ y

x z ←→

◦ y′

x′ z′

Figure 5.6

colorings for the two group tables agree (see Problem 5.39). The upshot of this is that if
G1 � G2, then

the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.
Let’s try to make a little more sense of this. Suppose thatG1 � G2 and imagine we have

arranged the rows and columns of their respective group tables and colored the elements
in such a way that the colorings for the two group tables agree. Now, let x,y ∈ G1. Then
these two elements have corresponding elements in the group table for G2, say x′ and
y′, respectively. In other words, x and x′ have the same color while y and y′ have the
same color. Since G1 is closed under its binary operation ∗, there exists z ∈ G1 such that
z = x ∗ y. There must exist a z′ ∈ G2 such that z′ has the same color as z. What must be
true of x′ ◦y′? Since the two tables exhibit the same color pattern, it must be the case that
z′ = x′ ◦ y′. This is what is means for the product of corresponding elements to yield the
corresponding result. Figure 5.6 depicts this phenomenon for group tables.

We can describe the isomorphism between G1 and G2 using a function. Let φ : G1→
G2 be the one-to-one and onto function that maps elements of G1 to their corresponding
elements in G2. Then φ(x) = x′, φ(y) = y′, and φ(z) = z′. Since z′ = x′ ◦ y′, we can obtain

φ(x ∗ y) = φ(z) = z′ = x′ ◦ y′ = φ(x) ◦φ(y).

In summary, it must be the case that

φ(x ∗ y) = φ(x) ◦φ(y).

We are now prepared to state a formal definition of what it means for two groups to be
isomorphic.

Definition 5.79. Let (G1,∗) and (G2,◦) be two groups. Then G1 is isomorphic to G2,
written G1 � G2, if and only if there exists a one-to-one and onto function φ : G1 → G2
such that

φ(x ∗ y) = φ(x) ◦φ(y). (5.1)

The function φ is referred to as an isomorphism. Equation 5.1 is often referred to as the
homomorphic property.

You should definitely take a few minutes to convince yourself that the above definition
agrees with our previous informal approach to isomorphisms. For those of you that have
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had linear algebra, notice that our homomorphic property looks a lot like the require-
ment for a function on vector spaces to be a linear transformation. Linear transforma-
tions preserve the algebraic structure of vector spaces while the homomorphic property
is preserving the algebraic structure of groups.

We’ve seen several instances of two groups being isomorphic, but now that we have a
formal definition, we can open the door to more possibilities.

Problem 5.80. Consider the groups (R,+) and (R+, ·), where R+ is the set of positive real
numbers. It turns out that these two groups are isomorphic, but this would be difficult
to discover using our previous techniques because the groups are infinite. Define φ :
R → R+ via φ(r) = er (where e is the natural base, not the identity). Prove that φ is an
isomorphism.

Exercise 5.81. For each of the following pairs of groups, determine whether the given
function is an isomorphism from the first group to the second group.

(a) (Z,+) and (Z,+), φ(n) = n+ 1.

(b) (Z,+) and (Z,+), φ(n) = −n.

(c) (Q,+) and (Q,+), φ(x) = x/2.

Problem 5.82. Show that the groups (Z,+) and (2Z,+) are isomorphic.

Perhaps one surprising consequence of the previous problem is that when dealing
with infinite groups, a group can have a proper subgroup that it is isomorphic to. Of
course, this never happens with finite groups.

Once we know that two groups are isomorphic, there are lots of interesting things
we can say. The next theorem tells us that isomorphisms map the identity element of one
group to the identity of the second group. It was already clear that this was the case using
our informal definition of isomorphic. Prove the next theorem using Definition 5.79

Theorem 5.83. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,◦). If e and e′ are the identity elements of G1 and G2, respectively, then φ(e) =
e′.

Theorem 5.84. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,◦). Then φ(g−1) = [φ(g)]−1.

Theorem 5.85. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,◦). If G1 is abelian, then G2 is abelian.

Theorem 5.86. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,◦). Then the function φ−1 : G2→ G1 is an isomorphism.

Theorem 5.87. Suppose φ : G1→ G2 and ψ : G2→ G3 are isomorphisms from the groups
(G1,∗) to (G2,�) and (G2,�) to (G3,?), respectively. Then the composite function ψ ◦φ is
an isomorphism of G1 and G3.
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Theorem 5.88. Let G be any nonempty collection of groups. Then the relation � of being
isomorphic is an equivalence relation.

Theorem 5.89. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,◦). If H ≤ G1, then φ(H) ≤ G2, where

φ(H) := {y ∈ G2 | there exists h ∈H such that φ(h) = y}.

Note that φ(H) is called the image of H .

Theorem 5.90. Suppose (G,∗) is a group and let g ∈ G. Defineφg : G→ G viaφ(x) = g−1xg.
Then φg is an isomorphism from G to G. Note that the map φg is called conjugation by
g.

Now that you’ve proved the above theorems, it’s a good idea to review the key themes.
If you were really paying attention, you may have noticed that in a few of the proofs, we
did not use the fact that the function was one-to-one and onto despite assuming that the
function was an isomorphism.

Problem 5.91. For which of the recent theorems could we remove the assumption that
the function is one-to-one and onto and only assume that it satisfies the homomorphic
property? Such functions are called homomorphisms and will be the subject of a future
chapter.



Chapter 6

Families of Groups

In this chapter we will explore a few families of groups.

6.1 Cyclic Groups

Recall that if (G,∗) is a group and a ∈ G, then the subgroup generated by a is given by

〈a〉 = {an | n ∈ Z}.

According to Theorem 5.66, 〈a〉 is the smallest subgroup containing a. We call 〈a〉 the
cyclic group generated by a. It is important to point out that 〈a〉may be finite or infinite.
In the finite case, the Cayley diagram with generator a gives us a good indication where
the word cyclic comes from.

Exercise 6.1. Suppose 〈a〉 is a finite group. Since 〈a〉 is a group in its own right, we
can draw a Cayley diagram for this group. Using the generator a, what does the Cayley
diagram for 〈a〉 look like? To rigorously prove that your intuitive thinking is correct, we’ll
need some results that appear later in this section.

Definition 6.2. Suppose (G,∗) is a group and let a ∈ G. We define the order of a, written
|a|, to be the order of 〈a〉. That is,

|a| = |〈a〉|.

Exercise 6.3. What is the order of the identity in any group?

Theorem 6.4. Suppose (G,∗) is a group and let a ∈ G. Then 〈a〉 = 〈a−1〉. In particular,
|a| = |a−1|.

Exercise 6.5. Find the orders of each of the elements in each of the following groups.

(a) S2

(b) R3

(c) R4
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(d) V4

(e) R5

(f) R6

(g) D3

(h) R7

(i) R8

(j) D4

(k) Q8

Exercise 6.6. Consider the group (Z,+). What is the order of 1? Are there any elements
in Z with finite order?

Exercise 6.7. Consider the group of invertible 2 × 2 matrices with real number entries
under the operation of matrix multiplication. This group is denoted GL2(R). Find the
order of each of the following elements in this group.

(a)
[

0 −1
−1 0

]
(b)

[
0 −1
1 0

]
(c)

 1√
2
− 1√

2
1√
2

1√
2


Theorem 6.8. Suppose (G,∗) is a finite group and let a ∈ G. Then there exists a positive
integer m such that am = e, where e is the identity in G.

In fact, we can say something even stronger. You likely noticed the following fact
while exploring Exercise 6.5.

Theorem 6.9. Suppose (G,∗) is a group and let a ∈ G.

(a) If |a| = n <∞, then an = e and e,a,a2, . . . , an−1 are all distinct elements of 〈a〉.

(b) If |a| =∞, then an , e for all n , 0 and an , am whenever n ,m in Z.

Corollary 6.10. Suppose (G,∗) is a finite group and let a ∈ G. Then the order of a is the
smallest positive integer n such that an = e.

Exercise 6.11. Notice that in the definition for 〈a〉, we allow the exponents on a to be
negative. Explain why we only need to use positive exponents when 〈a〉 is a finite group.
What about when 〈a〉 is infinite?

Problem 6.12. Suppose (G,∗) is a group a ∈ G with |a| = n. For what other exponents k
will it be true that ak = e? You’ll have an opportunity to prove your claim later.

We are finally ready to introduce our family of interest for this section.

Definition 6.13. Suppose (G,∗) is a group. Then we say that G is a cyclic group if and
only if there exists a ∈ G such that 〈a〉 = G.
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It is clear that ifG is cyclic with generator a, then |G| = |a|. In fact, if a ∈ G, the converse
is true, as well.

Exercise 6.14. Determine which of the groups from Exercise 6.5 are cyclic. If the group
is cyclic, find at least one generator.

Exercise 6.15. Determine whether each of the following groups are cyclic. If the group is
cyclic, find at least one generator.

(a) (Z,+)

(b) (R,+)

(c) (R+, ·)

(d) ({6n | n ∈ Z}, ·)

(e) GL2(R) under matrix multiplication

(f) {(cos(π/4) + i sin(π/4))n | n ∈ Z} under multiplication of complex numbers

Theorem 6.16. If (G,∗) is a cyclic group, then G is abelian.

Exercise 6.17. Provide an example of a finite group that is abelian but not cyclic.

Exercise 6.18. Provide an example of an infinite group that is abelian but not cyclic.

Theorem 6.19. Suppose (G,∗) is a cyclic group such that G has exactly one element that
generates all of G. Then the order of G is at most order 2.

Theorem 6.20. Suppose (G,∗) is a group such that G has no proper nontrivial subgroups.
Then G is cyclic.

Theorem 6.21. Suppose (G,∗) is an infinite cyclic group. ThenG is isomorphic to Z (under
the operation of addition).

Recall that for n ≥ 3, Rn is the group of rotational symmetries of a regular n-gon,
where the operation is composition of actions.

Theorem 6.22. For all n ≥ 3, Rn is cyclic.

Theorem 6.23. Suppose (G,∗) is a finite cyclic group of order n ≥ 1. Then G is isomorphic
to Rn if n ≥ 3, S2 if n = 2, and the trivial group if n = 1.

The upshot of Theorems 6.21 and 6.23 is that up to isomorphism, we know exactly
what all of the cyclic groups are.

Exercise 6.24. Suppose (G,∗) is a finite cyclic group of order n with generator a. If we
write down the group table for G using e,a,a2, . . . , an−1 as the labels for the rows and
columns, are there any interesting patterns in the table?

Recall that two integers are relatively prime if they have no factors other than 1 in
common. That is, integers n and k are relatively prime iff gcd(n,k) = 1.

Definition 6.25. Let n ∈ N and define the following sets.
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(a) Zn := {0,1, . . . ,n− 1}

(b) U (n) := {k ∈ Zn | gcd(n,k) = 1}

For each set above, the immediate goal is to find a binary operation that will yield a
group. The key is to use modular arithmetic. To calculate the sum (respectively, product)
of two integers mod n, add (respectively, multiply) the two numbers and then find the
remainder after dividing the sum (respectively, product) by n. For example, 4 + 9 is 3
mod 5 since 13 has remainder 3 when being divided by 5. Similarly, 4 ·9 is 1 mod 5 since
36 has remainder 1 when being divided by 5.

Theorem 6.26. The set (Zn,+ mod n) is a group.

Theorem 6.27. The set (U (n), ·mod n) is a group.

Exercise 6.28. Consider Z4.

(a) Find the group table for Z4.

(b) Is Z4 cyclic? If so, list elements of Z4 that individually generate Z4. If Z4 is not
cyclic, explain why.

(c) Is Z4 isomorphic to either of R4 or V4? Justify your answer.

(d) Draw the subgroup lattice for Z4.

Exercise 6.29. Consider U (10) = {1,3,7,9}.

(a) Find the group table for U (10).

(b) Is U (10) cyclic? If so, list elements of U (10) that individually generate U (10). If
U (10) is not cyclic, explain why.

(c) Is U (10) isomorphic to either of R4 or V4? Justify your answer.

(d) Is U (10) isomorphic to Z4? Justify your answer.

(e) Draw the subgroup lattice for U (10).

Exercise 6.30. Consider U (12) = {1,5,7,11}.

(a) Find the group table for U (12).

(b) Is U (12) cyclic? If so, list elements of U (12) that individually generate U (12). If
U (12) is not cyclic, explain why.

(c) Is U (12) isomorphic to either of R4 or V4? Justify your answer.

(d) Draw the subgroup lattice for U (12).

In light of Exercise 6.29 and 6.30, U (n) may or may not be cyclic. Nonetheless, as the
next theorem illustrates, U (n) is always abelian.
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Theorem 6.31. For all n, U (n) is abelian.

The upshot of the next theorem is that for n ≥ 3, Zn is just the set of (smallest nonneg-
ative) exponents on r in Rn.

Theorem 6.32. For n ≥ 3, Zn � Rn. Moreover, Z2 � S2 and Z1 is isomorphic to the trivial
group.

One consequence of the previous theorem is that Zn is always cyclic. Combining the
results of Theorems 6.23 and 6.21 together with Theorem 6.32, we immediately obtain
the following.

Theorem 6.33. Let (G,∗) be a cyclic group. If the order of G is infinite, then (G,∗) is
isomorphic to (Z,+). If G has finite order n, then (G,∗) is isomorphic to (Zn,+ mod n).

Now that we have a complete description of the cyclic groups, let’s focus our attention
on subgroups of cyclic groups. The next result should look familiar and will come in
handy. In particular, it will be useful when proving Theorems 6.35 and6.37. We’ll take
the result for granted and not worry about proving it right now.

Theorem 6.34 (Division Algorithm for Z). If m is a positive integer and n is any integer,
then there exist unique integers q (called the quotient) and r (called the remainder) such
that n =mq+ r, where 0 ≤ r < m.

Theorem 6.35. Suppose (G,∗) is a group and let a ∈ G such that |a| = n. Then ai = aj iff n
divides i − j.

Compare the next result to Problem 6.12.

Corollary 6.36. Suppose (G,∗) is a group and let a ∈ G such that |a| = n. If ak = e, then |a|
divides k.

Theorem 6.37. Suppose (G,∗) is a cyclic group. If H ≤ G, then H is also cyclic.

It turns out that for proper subgroups, the converse of Theorem 6.37 is not true.

Exercise 6.38. Provide an example of a group (G,∗) such thatG is not cyclic, but all proper
subgroups of G are cyclic.

The next result officially settles Exercise 5.56(d) and also provides a complete descrip-
tion of the subgroups of infinite cyclic groups up to isomorphism.

Corollary 6.39. The subgroups of Z are precisely the groups nZ under addition for n ∈ Z.

What about finite cyclic groups?

Theorem 6.40. Suppose (G,∗) is a finite cyclic group with generator a such that |G| = n.

(a) Then |as| = n
gcd(n,s)

.

(b) Moreover, 〈as〉 = 〈at〉 iff gcd(s,n) = gcd(t,n).
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Exercise 6.41. Suppose (G,∗) is a cyclic group of order 12 with generator a.

(a) Find the orders of each of the following elements: a2, a7, a8.

(b) Which elements of G individually generate G?

Corollary 6.42. Suppose (G,∗) is a finite cyclic group with generator a such that |G| = n.
Then 〈a〉 = 〈ar〉 iff n and r are relatively prime. That is, ar generates G iff n and r are
relatively prime.

Exercise 6.43. Consider (Z18,+ mod 18).

(a) Find all of the elements of Z18 that individually generate all of Z18.

(b) Draw the subgroup lattice for Z18. For each subgroup, list the elements of the corre-
sponding set. Moreover, circle the the elements in each subgroup that individually
generate that subgroup. For example, 〈2〉 = {0,2,4,6,8,10,12,14,16}. In this case,
we should circle 2, 4, 8, 10, 14, and 16 since each of these elements individually
generate 〈2〉 and none of the remaining elements do. I’ll leave it to you to figure out
why this is true.

Exercise 6.44. Repeat the above exercise, but this time use Z12 instead of Z18.

Corollary 6.45. Suppose (G,∗) is a finite cyclic group such that |G| = p, where p is prime.
Then G has no proper nontrivial subgroups.

Problem 6.46. Let p and q be distinct primes. Find the number of generators of Zpq.

Problem 6.47. Let p be a prime. Find the number of generators of Zpr , where r is an
integer greater than or equal to 1.

Problem 6.48. If there is exactly one group up to isomorphism of order n, then to what
group are all the groups of order n isomorphic?

6.2 Dihedral Groups

We can think of cyclic groups as groups that describe rotational symmetry. In particular,
Rn is the group of rotational symmetries of a regular n-gon. Dihedral groups are those
groups that describe both rotational and reflection symmetry of regular n-gons.

Definition 6.49. For n ≥ 3, the dihedral groupDn is defined to be the group consisting of
the symmetry actions of a regular n-gon, where the operation is composition of actions.

For example, as we’ve seen, D3 and D4 are the symmetry groups of equilateral trian-
gles and squares, respectively. The symmetry group of a regular pentagon is denoted by
D5. It is a well-known fact from geometry that the composition of two reflections in the
plane is a rotation by twice the angle between the reflecting lines.

Theorem 6.50. The group Dn is a non-abelian group of order 2n.
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Theorem 6.51. For n ≥ 3, Rn ≤Dn.

Theorem 6.52. Fix n ≥ 3 and consider Dn. Let r be rotation clockwise by 360◦/n and let s
and s′ be any two adjacent reflections of a regular n-gon. Then

(a) Dn = 〈r, s〉 = {e, r, r2, . . . , rn−1︸           ︷︷           ︸
rotations

, s, sr, sr2, . . . , srn−1︸               ︷︷               ︸
reflections

} and

(b) Dn = 〈s, s′〉 = all possible products of s and s′.

Theorem 6.53. Fix n ≥ 3 and consider Dn. Let r be rotation clockwise by 360◦/n and let
s and s′ be any two adjacent reflections of a regular n-gon. Then the following relations
hold.

(a) rn = s2 = (s′)2 = e,

(b) r−k = rn−k (special case: r−1 = rn−1),

(c) srk = rn−ks (special case: sr = rn−1s),

(d) ss′s · · ·︸︷︷︸
n factors

= s′ss′ · · ·︸ ︷︷ ︸
n factors

.

Exercise 6.54. From Theorem 6.52, we knowDn = 〈r, s〉 = {e, r, r2, . . . , rn−1︸           ︷︷           ︸
rotations

, s, sr, sr2, . . . , srn−1︸               ︷︷               ︸
reflections

}.

If you were to create the group table forDn so that the rows and columns of the table were
labeled by e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1 (in exactly that order), do any patterns arise?
Hint: Where are the rotations? Where are the reflections?

6.3 Symmetric Groups

Recall the group S3 from Exercise 4.27. This group acts on three coins that are in a row
by rearranging their positions (but not flipping them over). This group is an example of a
symmetric group. In general, the symmetric group on n objects is the set of permutations
that rearranges the n objects. The group operation is composition of permutations. Let’s
be a little more formal.

Definition 6.55. A permutation of a set A is a function σ : A→ A that is both one-to-one
and onto.

You should take a moment to convince yourself that the formal definition of a permu-
tation agrees with the notion of rearranging the set of objects. The do-nothing action is
the identity permutation, i.e., σ (a) = a for all a ∈ A. There are many ways to represent a
permutation. One visual way is using permutation diagrams, which we will introduce
via examples.

Consider the following diagrams:
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α =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
β =

1 2 3 4 5r
r
r

r
r

r
r
r

r
r

σ =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
γ =

1 2 3 4 5r
r
r

r
r
r

r
r

r
r

Each of these diagrams represents a permutation on five objects. I’ve given the permu-
tations the names α, β, σ , and γ . The intention is to read the diagrams from the top
down. The numbers labeling the nodes along the top are identifying position. Following
an edge from the top row of nodes to the bottom row of nodes tells us what position an
object moves to. It is important to remember that the numbers are referring to the posi-
tion of an object, not the object itself. For example, β is the permutation that sends the
object in the second position to the fourth position, the object in the third position to the
second position, and the object in the fourth position to the third position. Moreover, the
permutation β doesn’t do anything to the objects in positions 1 and 5.

Exercise 6.56. Describe in words what the permutations σ and γ do.

Exercise 6.57. Draw the permutation diagram for the do-nothing permutation on 5 ob-
jects. This is called the identity permutation. What does the identity permutation dia-
gram look like in general for arbitrary n?

Definition 6.58. The set of all permutations on n objects is denoted by Sn.

Exercise 6.59. Draw all the permutation diagrams for the permutations in S3.

Exercise 6.60. How many distinct permutations are there in S4? How about Sn for any
n ∈ N?

If Sn is going to be a group, we need to know how to compose permutations. This
is easy to do using the permutation diagrams. Consider the permutations α and β from
earlier. We can represent the composition α ◦ β via

α ◦ β =

1 2 3 4 5

β

r
r
r

r
r

r
r
r

r
r

α

r
r
r

r
r

r
r

r
r

r
=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .

As you can see by looking at the figure, to compose two permutations, you stack the
one that goes first in the composition (e.g., β in the example above) on top of the other
and just follow the edges from the top through the middle to the bottom. If you think
about how function composition works, this is very natural. The resulting permutation
is determined by where we begin and where we end in the composition.

We already know that the order of composition matters for functions, and so it should
matter for the composition of permutations. To make this crystal clear, let’s compose α
and β in the opposite order. We see that
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β ◦α =

1 2 3 4 5

α

r
r
r

r
r

r
r

r
r

r
β

r
r
r

r
r

r
r
r

r
r

=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .

The moral of the story is that composition of permutations does not necessarily commute.

Exercise 6.61. Consider α, β, σ , and γ from earlier. Can you find a pair of permutations
that do commute? Can you identify any features about your diagrams that indicate why
they commuted?

Exercise 6.62. Fix n ∈ N. Convince yourself that any ρ ∈ Sn composed with the identity
permutation (in either order) equals ρ.

If Sn is going to be a group, we need to know what the inverse of a permutation is.

Problem 6.63. Given a permutation ρ ∈ Sn, describe a method for constructing ρ−1.
Briefly justify that ρ ◦ ρ−1 will yield the identity permutation.

At this point, we have all the ingredients we need to prove that Sn forms a group under
composition of permutations.

Theorem 6.64. The set of permutations on n objects forms a group under the operation
of composition. That is, (Sn,◦) is a group. Moreover, |Sn| = n!.

Note that it is standard convention to omit the composition symbol when writing
down compositions in Sn. For example, we will simply write αβ to denote α ◦ β.

Permutation diagrams are fun to play with, but we need a more efficient way of en-
coding information. One way to do this is using cycle notation. Consider α,β,σ , and γ in
S5 from the previous examples. Below I have indicated what each permutation is equal
to using cycle notation.

α =

r
r
r

r
r

r
r

r
r

r = (1,2,3,4,5)

β =

r
r
r

r
r

r
r
r

r
r = (2,4,3)

σ =

r
r
r

r
r

r
r

r
r

r = (1,3)(2,5,4)

γ =

r
r
r

r
r
r

r
r

r
r = (1,5)
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Each string of numbers enclosed by parentheses is called a cycle and if the string of
numbers has length k, then we call it a k-cycle. For example, α consists of a single 5-
cycle, whereas σ consists of one 2-cycle and one 3-cycle. In the case of σ , we say that σ is
the product of two disjoint cycles.

One observation that you hopefully made is that if an object in position i remains
unchanged, then we don’t bother listing that number in the cycle notation. However, if
we wanted to, we could use the 1-cycle (i) to denote this. For example, we could write
β = (1)(2,3,4)(5). In particular, we could denote the identity permutation in S5 using
(1)(2)(3)(4)(5). Yet, it is common to simply use (1) to denote the identity in Sn for all n.

Notice that the first number we choose to write down for a given cycle is arbitrary.
However, the numbers that follow are not negotiable. Typically, we would use the small-
est possible number first, but this is not necessary. For example, the cycle (2,4,7) could
also be written as (4,7,2) or (7,2,4).

Exercise 6.65. Write down all 6 elements in S3 using cycle notation.

Exercise 6.66. Write down all 24 elements in S4 using cycle notation.

Suppose σ ∈ Sn. Since σ is one-to-one and onto, it is clear that it is possible to write σ
as a product of disjoint cycles such that each i ∈ {1,2, . . . ,n} appears exactly once.

Let’s see if we can figure out how to multiply elements of Sn using cycle notation.
Consider the permutations α = (1,3,2) and β = (3,4) in S4. To compute the composition
αβ = (1,3,2)(3,4), let’s explore what happens in each position. Since we are doing func-
tion composition, we should work our way from right to left. Since 1 does not appear in
the cycle notation for β, we know that β(1) = 1 (i.e., β maps 1 to 1). Now, we see what
α(1) = 3. Thus, the composition αβ maps 1 to 3 (since αβ(1) = α(β(1)) = α(1) = 3). Next,
we should return to β and see what happens to 3—which is where we ended a moment
ago. We see that β maps 3 to 4 and then α maps 4 to 4 (since 4 does not appear in the
cycle notation for α). So, αβ(3) = 4. Continuing this way, we see that β maps 4 to 3 and α
maps 3 to 2, and so αβ maps 4 to 2. Lastly, since β(2) = 2 and α(2) = 1, we have αβ(2) = 1.
Putting this altogether, we see that αβ = (1,3,4,2). Now, you should try a few. Things get
a little trickier if the composition of two permutations results in a permutation consisting
of more than a single cycle.

Exercise 6.67. Consider α, β, σ , and γ for which we drew the permutation diagrams.
Using cycle notation, compute each of the following.

(a) αγ

(b) α2

(c) α3

(d) α4

(e) α5

(f) σα

(g) α−1σ−1

(h) β2

(i) β3

(j) βγα

(k) σ3

(l) σ6
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Exercise 6.68. Write down the group table for S3 using cycle notation.

In Exercise 6.66, one of the permutations you should have written down is (1,2)(3,4).
This is a product of two disjoint 2-cycles. It is worth pointing out that each cycle is a
permutation in its own right. That is, (1,2) and (3,4) are each permutations. It just so
happens that their composition does not “simplify” any further. Moreover, these two dis-
joint 2-cycles commute since (1,2)(3,4) = (3,4)(1,2). In fact, this phenomenon is always
true.

Theorem 6.69. Suppose α and β are two disjoint cycles. Then αβ = βα. That is, products
of disjoint cycles commute.

Computing the order of a permutation is fairly easy using cycle notation once we
figure out how to do it for a single cycle. In fact, you’ve probably already guessed at the
following theorem.

Theorem 6.70. Suppose α ∈ Sn such that α consists of a single k-cycle. Then |α| = k.

Theorem 6.71. Suppose α ∈ Sn such that α consists ofm disjoint cycles of lengths k1, . . . , km.
Then |α| = lcm(k1, . . . , km).∗

Problem 6.72. Is the previous theorem true if we do not require the cycles to be disjoint?
Justify your answer.

Exercise 6.73. Compute the orders of all the elements in S3. See Exercise 6.65.

Exercise 6.74. Compute the orders of all the elements in S4. See Exercise 6.66.

Exercise 6.75. What is the order of (1,4,7)(2,5)(3,6,8,9)?

Exercise 6.76. Draw the subgroup lattice for S3.

Exercise 6.77. Now, using (1,2) and (1,2,3) as generators, draw the Cayley diagram for
S3. Look familiar?

It turns out that the subgroups of symmetric groups play an important role in group
theory.

Definition 6.78. Every subgroup of a symmetric group is called a permutation group.

The proof of the following theorem isn’t too bad, but for now we’ll take it for granted.

Theorem 6.79 (Cayley’s Theorem). Every finite group is isomorphic to some permutation
group. In particular, if (G,∗) is a group of order n, then G is isomorphic to a subgroup of
Sn.

Cayley’s Theorem guarantees that every finite group is isomorphic to a permutation
group and it turns out that there is a rather simple algorithm for constructing the cor-
responding permutation group. I’ll briefly explain an example and then let you try a
couple.

Consider the Klein four-group V4 = {e,v,h,vh}. Recall that V4 has the following group
table.
∗Recall that lcm(k1, . . . , km) is the least common multiple of {k1, . . . , km}.
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∗ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

If we number the elements e,v,h, and vh as 1,2,3, and 4, respectively, then we obtain
the following table.

1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Comparing each of the four columns to the leftmost column, we can obtain the corre-
sponding permutations. In particular, we obtain

e↔ (1)
v↔ (1,2)(3,4)
h↔ (1,3)(2,4)
vh↔ (1,4)(2,3).

Do you see where these permutations came from? The claim is that the set of permu-
tations {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} is isomorphic to V4. In this particular case,
it’s fairly clear that this is true. However, it takes some work to prove that this process
will always result in an isomorphic permutation group. In fact, verifying the algorithm
is essentially the proof of Cayley’s Theorem.

Since there are potentially many ways to rearrange the rows and columns of a given
table, it should be clear that there are potentially many isomorphisms that could result
from the algorithm described above.

Here’s another way to obtain a permutation group that is isomorphic to a given group.
Let’s consider V4 again. Recall that V4 is a subset of D4, which is the symmetry group for
a square. Alternatively, V4 is the symmetry group for a non-square rectangle. Label the
corners of the rectangle 1, 2, 3, and 4 by starting in the upper left corner and continuing
clockwise. Recall that v is the action that reflects the rectangle over the vertical midline.
The result of this action is that the corners labeled by 1 and 2 switch places and the cor-
ners labeled by 3 and 4 switch places. Thus, v corresponds to the permutation (1,2)(3,4).
Similarly, h swaps the corners labeled by 1 and 4 and the corners labeled by 2 and 3, and
so h corresponds to the permutation (1,4)(2,3). Notice that this is not the same answer
we got earlier and that’s okay as there may be many permutation representations for a
given group. Lastly, vh rotates the rectangle 180◦ which sends ends up swapping corners
labeled 1 and 3 and swapping corners labeled by 2 and 4. Therefore, vh corresponds to
the permutation (1,3)(2,4).

Exercise 6.80. Find a permutation group that is isomorphic to D4.
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Exercise 6.81. Find a permutation group that is isomorphic to Z6.

Exercise 6.82. Consider S3.

(a) Using (1,2), (1,3), and (2,3) as generators, draw the Cayley diagram for S3.

(b) In the previous part, we used a generating set with three elements. Is there a smaller
generating set? If so, what is it?

Exercise 6.83. Recall that there are 4! = 24 permutations in S4.

(a) Pick any 12 permutations from S4 and verify that you can write them as words in the
2-cycles (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). In most circumstances, your words will
not consist of products of disjoint 2-cycles. For example, the permutation (1,2,3)
can be decomposed into (1,2)(2,3), which is a word consisting of two 2-cycles that
happen to not be disjoint.

(b) Using your same 12 permutations, verify that you can write them as words only in
the 2-cycles (1,2), (2,3), (3,4).

By the way, it might take some trial and error to come up with a way to do this. Moreover,
there is more than one way to do it.

As the previous exercises hinted at, the 2-cycles play a special role in the symmetric
groups. In fact, they have a special name. A transposition is a single cycle of length 2. In
the special case that the transposition is of the form (i, i + 1), we call it an adjacent trans-
position. For example, (3,7) is a (non-adjacent) transposition while (6,7) is an adjacent
transposition.

It turns out that the set of transpositions in Sn is a generating set for Sn. In fact, the
adjacent transpositions form an even smaller generating set Sn. To get some intuition,
let’s play with a few examples.

Exercise 6.84. Try to write each of the following permutations as a product of transposi-
tions. You do not necessarily need to use adjacent transpositions.

(a) (3,1,5)

(b) (2,4,6,8)

(c) (3,1,5)(2,4,6,8)

(d) (1,6)(2,5,3)

The products you found in the previous exercise are called transposition representa-
tions of the given permutation.

Problem 6.85. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k ≤ n). Find a
way to write this permutation as a product of 2-cycles.

Problem 6.86. Consider the arbitrary 2-cycle (a,b) from Sn. Find a way to write this
permutation as a product of adjacent 2-cycles.
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The previous two problems imply the following theorem.

Theorem 6.87. Consider Sn.

1. Every permutation in Sn can be written as a product of transpositions.

2. Every permutation in Sn can be written as a product of adjacent transpositions.

Corollary 6.88. The set of transpositions (respectively, the set of adjacent transpositions)
from Sn forms a generating set for Sn.

It is important to point out that the transposition representation of a permutation
is not unique. That is, there are many words in the transpositions that will equal the
same permutation. However, as we shall see in the next section, given two transposition
representations for the same permutation, the number of transpositions will have the
same parity (i.e., even versus odd).

Remark 6.89. Here are two interesting facts that I will let you ponder on your own time.

(a) The group of rigid motion symmetries for a cube is isomorphic to S4. To convince
yourself of this fact, first prove that this group has 24 actions and then ponder the
action of S4 on the four long diagonals of a cube.

(b) It turns out that you can generate S4 with (1,2) and (1,2,3,4). Moreover, you can
arrange the Cayley diagram for S4 with these generators on a truncated cube, which
is depicted in Figure 6.1. Try it.

Figure 6.1. Truncated cube. [Image source: Wikipedia]

6.4 Alternating Groups

In this section, we describe a special class of permutation groups. To get started, let’s play
with a few exercises.

https://en.wikipedia.org/wiki/Truncated_cube
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Exercise 6.90. Write down every permutation in S3 as a product of 2-cycles in the most
efficient way you can find (i.e., use the fewest possible transpositions). Now, write every
permutation in S3 as a product of adjacent 2-cycles, but don’t worry about whether your
decompositions are efficient. Any observations about the number of transpositions you
used in each case? Think about even versus odd.

Lemma 6.91. Suppose α1,α2, . . . ,αk is a collection of 2-cycles in Sn such that α1α2 · · ·αk =
(1). Then k must be even. Hint: Use strong induction on k. Start by showing that k , 1 but
that the statement is true when k = 2. Then assume that k > 2 and proceed by induction.

Theorem 6.92. Let σ ∈ Sn. Then every transposition representation of σ has the same
parity.

The previous theorem tells us that the following definition is well-defined.

Definition 6.93. A permutation is even (respectively, odd) if one of its transposition rep-
resentations consists of an even (respectively, odd) number of transpositions.

Exercise 6.94. Classify all of the permutations in S3 as even or odd.

Exercise 6.95. Classify all of the permutations in S4 as even or odd.

Exercise 6.96. Determine whether (1,4,2,3,5) is even or odd. How about (1,4,2,3,5)(7,9)?

Problem 6.97. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k ≤ n). When
will this cycle be odd versus even? Briefly justify your answer.

Problem 6.98. Conjecture a statement about when a permutation will be even versus
odd. Briefly justify your answer.

And finally, we are ready to introduce the alternating groups.

Definition 6.99. The set of all even permutations in Sn is denoted by An and is called the
alternating group.

Since we referred to An as a group, it darn well better be a group!

Theorem 6.100. The set An forms a group under composition of permutations and has
order n!/2.

Exercise 6.101. Find A3. What group is A3 isomorphic to?

Exercise 6.102. Find A4 and then draw its subgroup lattice. Is A4 abelian?

Exercise 6.103. What is the order of A5? Is A5 abelian?

Exercise 6.104. What are the possible orders for elements in S6 and A6? What about S7
and A7?

Exercise 6.105. Does A8 contain an element of order 15? If so, find one. If not, explain
why no such element exists.
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Remark 6.106. Below are a few interesting facts about A4 and A5, which we will state
without proof.

(a) The group of rigid motion symmetries for a regular tetrahedron is isomorphic to
A4.

(b) You can arrange the Cayley diagram for A4 with generators (1,2)(3,4) and (2,3,4)
on a truncated tetrahedron, which is depicted in Figure 6.2(a).

(c) You can arrange the Cayley diagram forA5 with generators (1,2)(3,4) and (1,2,3,4,5)
on a truncated icosahedron, which is given in Figure 6.2(b). You can also arrange
the Cayley diagram for A5 with generators (1,2,3) and (1,5)(2,4) on a truncated
dodecahedron seen in Figure 6.2(c).

(a) (b) (c)

Figure 6.2. Truncated tetrahedron, truncated icosahedron, and truncated dodecahedron.
[Image source: Wikipedia]

https://en.wikipedia.org/wiki/Truncated_tetrahedron
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Cosets, Lagrange’s Theorem, and Normal
Subgroups

7.1 Cosets

Undoubtably, you’ve noticed numerous times that if G is a group with H ≤ G and g ∈ G,
then both |H | and |g | divide |G|. The theorem that says this is always the case is called
Lagrange’s theorem and we’ll prove it towards the end of this chapter. We begin with a
definition.

Definition 7.1. Let G be a group and let H ≤ G and a ∈ G. The subsets

aH := {ah | h ∈H}
and

Ha := {ha | h ∈H}
are called the left and right cosets of H containing a, respectively.

To gain some insight, let’s tinker with an example. Consider the dihedral group D3 =
〈r, s〉 and let H = 〈s〉 ≤ D3. To compute the right cosets of H , we need to multiply all of
the elements of H on the right by the elements of G. We see that

He = {ee, se} = {e, s} =H
Hr = {er, sr} = {r, sr}
Hr2 = {er2, sr2} = {r2, rs}
Hs = {es, ss} = {s, e} =H
Hsr = {esr, ssr} = {sr, r}
Hrs = {ers, srs} = {rs, ssr2} = {rs, r2}.

Despite the fact that we made six calculations (one for each element in D3), if we scan the
list, we see that there are only 3 distinct cosets, namely

H =He =Hs = {e, s}
Hr =Hsr = {r, sr}
Hr2 =Hrs = {r2, rs}.
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We can make a few more observations. First, the resulting cosets formed a partition of
D3. That is, every element of D3 appears in exactly one coset. Moreover, all the cosets are
the same size—two elements in each coset in this case. Lastly, each coset can be named
in multiple ways. In particular, the elements of the coset are exactly the elements of D3
we multiplied H by. For example, Hr = Hsr and the elements of this coset are r and sr.
Shortly, we will see that these observations hold, in general.

Here is another significant observation we can make. Consider the Cayley diagram
for D3 with generating set {r, s} that is given in Figure 7.1. Given this Cayley diagram,
we can visualize the subgroup H and it’s clones. Moreover, H and it’s clones are exactly
the 3 right cosets of H . We’ll see that, in general, the right cosets of a given subgroup are
always the subgroup and its clones.

e

rr2

s

rs sr

Figure 7.1. Cayley diagram for D3 with generating set {r, s}.

Exercise 7.2. Consider the group D3. Find all the left cosets for H = 〈s〉. Are they the
same as the right cosets? Are they the same as the subgroup H and its clones that we can
see in the Cayley graph for D3 with generating set {r, s}?

As the previous exercise indicates, the collections of left and right cosets may not be
the same and when they are not the same, the subgroup and its clones do not coincide
with the left cosets.

You might be thinking that somehow right cosets are better than left cosets since we
were able to visualize them in the Cayley graph. However, this is not the case. Our
convention of composing actions from right to left is what is dictating the visualization.
If we had adopted a left to right convention, then we would be able to visualize the left
cosets.

Computing left and right cosets using a group table is fairly easy. Hopefully, you
figured out in Exercise 7.2 that the left cosets of H = 〈s〉 in D3 are H = {e, s}, srH = {r2, sr},
and rsH = {r, rs}. Now, consider the following group table for D3 that has the rows and
columns arranged according to the left cosets of H .
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∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

The left coset srH must appear in the row labeled by sr and in the columns labeled by the
elements of H = {e, s}. We’ve depicted this below.

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

On the other hand, the right coset Hsr must appear in the column labeled by sr and the
rows labeled by the elements of H = {e, s}:

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

As we can see from the tables, srH ,Hsr since {sr, r2} , {sr, r}. If we color the entire group
table for D3 according to which left coset an element belongs to, we get the following.

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

We would get a similar table (but in this case, not identical) if we colored the elements
according to the right cosets.

Let’s tackle a few more examples.

Exercise 7.3. Consider D3 and let K = 〈r〉.
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(a) Find all of the left cosets of K and then find all of the right cosets of K in D3. Any
observations?

(b) Write down the group table for D3, but this time arrange the rows and columns
according to the left cosets for K . Color the entire table according to which left coset
an element belongs to. Can you visualize the observations you made in part (a)?

Exercise 7.4. Consider Q8. Let H = 〈i〉 and K = 〈−1〉.

(a) Find all of the left cosets of H and all of the right cosets of H in Q8.

(b) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for H . Color the entire table according to which left coset an
element belongs to.

(c) Find all of the left cosets of K and all of the right cosets of K in Q8.

(d) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for K . Color the entire table according to which left coset an
element belongs to.

Exercise 7.5. Consider S4. Find all of the left cosets and all of the right cosets of A4 in
S4. Instead of doing brute-force, try to be clever. Hint: What happens when you compose
two even permutations versus an even permutation and an odd permutation?

Exercise 7.6. Consider Z8. Find all of the left cosets and all of the right cosets of 〈4〉 in
Z8. Why do you know the left and right cosets are the same without actually verifying?

Exercise 7.7. Consider (Z,+). Find all of the left cosets and all of the right cosets of 3Z in
Z. Why do you know the left and right cosets are the same without actually verifying?

Now that we’ve played with a few examples, let’s make a few general observations.

Theorem 7.8. Let G be a group and let H ≤ G.

1. If a ∈ G, then a ∈ aH (respectively, Ha).

2. If b ∈ aH (respectively, Ha), then aH = bH (respectively, Ha =Hb).

3. If a ∈H , then aH =H =Ha.

4. If a <H , then for all h ∈H , ah <H (respectively, ha <H).

The upshot of part 2 of Theorem 7.8 is that cosets can have different names. In par-
ticular, if b is an element of the left coset aH , then we could have just as easily called the
coset by the name bH . In this case, both a and b are called coset representatives.

In all of the examples we’ve seen so far, the left and right cosets partitioned G into
equal-sized chunks. We need to prove that this is true in general. To prove that the cosets
form a partition, we’ll define an appropriate equivalence relation.

Theorem 7.9. Let G be a group and let H ≤ G. Define ∼L and ∼R via
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a ∼L b iff a−1b ∈H

and

a ∼R b iff ab−1 ∈H .

Then both ∼L and ∼R are equivalence relations.∗

Problem 7.10. If [a]∼L (respectively, [a]∼R) denotes the equivalence class of a under ∼L
(respectively, ∼R), what is [a]∼L (respectively, [a]∼R)? Hint: It’s got something to do with
cosets.

Corollary 7.11. If G is a group and H ≤ G, then the left (respectively, right) cosets of H
form a partition of G.

Next, we argue that all of the cosets have the same size.

Theorem 7.12. Let G be a group, H ≤ G, and a ∈ G. Define φ : H → aH via φ(h) = ah.
Then φ is one-to-one and onto.

Corollary 7.13. Let G be a group and let H ≤ G. Then all of the left and right cosets of H
are the same size as H . In other words #(aH) = |H | = #(Ha) for all a ∈ G.†

7.2 Lagrange’s Theorem

We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born
mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove
the theorem that is named after him. The theorem was actually proved by Carl Friedrich
Gauss in 1801.

Theorem 7.14 (Lagrange’s Theorem). Let G be a finite group and let H ≤ G. Then |H |
divides |G|.

This simple sounding theorem is extremely powerful. One consequence is that groups
and subgroups have a fairly rigid structure. Suppose G is a finite group and let H ≤ G.
Since G is finite, there must be a finite number of distinct left cosets, say H,a2H,. . . ,anH .
Corollary 7.13 tells us that each of these cosets is the same size. In particular, Lagrange’s
Theorem implies that for each i ∈ {1, . . . ,n}, |aiH | = |G|/n, or equivalently n = |G|/ |aiH |.
This is depicted in Figure 7.2, where each rectangle represents a coset and we’ve labeled
a single coset representative in each case.

One important consequence of Lagrange’s Theorem is that it narrows down the possi-
ble sizes for subgroups.

Exercise 7.15. Suppose G is a group of order 48. What are the possible orders for sub-
groups of G?

∗You only need to prove that either ∼L or ∼R is an equivalence relation as the proof for the other is similar.
†As you probably expect, #(aH) denotes the size of aH . Note that everything works out just fine even if H
has infinite order.
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e a2 an

H a2H anH

· · ·

Figure 7.2

Lagrange’s Theorem tells us what the possible orders of a subgroup are, but if k is a
divisor of the order of a group, it does not guarantee that there is a subgroup of order k.
It’s not too hard to show that the converse of Lagrange’s Theorem is true for cyclic groups.
However, it’s not true, in general. The next problem will show that A4 is an example of a
group where the converse of Lagrange’s Theorem fails. Can you think of others?

Problem 7.16. Consider the alternating group A4. Lagrange’s Theorem tells us that the
possible orders of subgroups for A4 are 1, 2, 3, 4, 6, and 12.

(a) Find examples of subgroups of A4 of orders 1, 2, 3, 4, and 12.

(b) Write down all of the elements of order 2 in A4.

(c) Argue that any subgroup of A4 that contains any two elements of order 2 must
contain a subgroup isomorphic to V4.

(d) Argue that if A4 has a subgroup of order 6, that it cannot be isomorphic to R6.

(e) It turns out that up to isomorphism, there are only two groups of order 6, namely
S3 and R6. Suppose that H is a subgroup of A4 of order 6. Part (d) guarantees that
H � S3. Argue that H must contain all of the elements of order 2 from A4.

(f) Explain why A4 cannot have a subgroup of order 6.

Using Lagrange’s Theorem, we can quickly prove both of the following theorems.

Theorem 7.17. Let G be a finite group and let a ∈ G. Then |a| divides |G|.

Theorem 7.18. Every group of prime order is cyclic.

Since the converse of Lagrange’s Theorem is not true, the converse of Theorem 7.17 is
not true either. However, it is much easier to find a counterexample.

Problem 7.19. Argue that S4 does not have any elements of order 8.

Lagrange’s Theorem motivates the following definition.

Definition 7.20. Let G be a group and let H ≤ G. The index of H in G is the number of
cosets (left or right) of H in G. Equivalently, if G is finite, then the index of H in G is
equal to |G|/ |H |. We denote the index via [G :H].
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Exercise 7.21. Let H = 〈(1,2)(3,4), (1,3)(2,4)〉.

(a) Find [A4 :H].

(b) Find [S4 :H].

Exercise 7.22. Find [Z : 4Z].

7.3 Normal Subgroups

We’ve seen an example where the left and right cosets of a subgroup were different and a
few examples where they coincided. In the latter case, the subgroup has a special name.

Definition 7.23. Let G be a group and let H ≤ G. If aH = Ha for all a ∈ G, then we say
that H is a normal subgroup. If H is a normal subgroup of G, then we write H E G.

Exercise 7.24. Provide an example of group that has a subgroup that is not normal.

Problem 7.25. Suppose G is a finite group and let H ≤ G. If H E G and we arrange the
rows and columns of the group table for G according to the left cosets ofH and then color
the corresponding cosets, what property will the table have? Is the converse true? That
is, if the table has the property you discovered, will H be normal in G?

There are a few instances where we can guarantee that a subgroup will be normal.

Theorem 7.26. Suppose G is a group. Then {e}E G and G E G.

Theorem 7.27. If G is an abelian group, then all subgroups of G are normal.

A group does not have to be abelian in order for all the proper subgroups to be normal.

Problem 7.28. Argue that all of the proper subgroups of Q8 are normal in Q8.

Theorem 7.29. Suppose G is a group and let H ≤ G such that [G :H] = 2. Then H E G.

It turns out that normality is not transitive.

Problem 7.30. Consider 〈s〉 = {e, s} and 〈r2, sr2〉 = {e, r2, sr2, s}. It is clear that

〈s〉 ≤ 〈r2, sr2〉 ≤D4.

Show that 〈s〉E 〈r2, sr2〉 and 〈r2, sr2〉ED4, but 〈s〉5D4.

The previous problem illustrates that H E K E G does not imply H E G.

Theorem 7.31. Suppose G is a group and letH ≤ G. ThenH E G if and only if aHa−1 =H
for all a ∈ G, where

aHa−1 = {aha−1 | h ∈H}.
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Note that the expression gHg−1 is called the conjugate of H by g. Another way of
thinking about normal subgroups is that they are “closed under conjugation.” The pre-
vious theorem is often used as the definition of normal. It also motivates the following
definition.

Definition 7.32. Let G be a group and letH ≤ G. The normalizer ofH inG is defined via

NG(H) := {g ∈ G | gHg−1 =H}.

Theorem 7.33. If G is a group and H ≤ G, then NG(H) is a subgroup of G.

Theorem 7.34. If G is a group and H ≤ G, then H E NG(H). Moreover, NG(H) is the
largest subgroup of G in which H is normal.

It is worth pointing out that the “smallest” NG(H) can be is H itself—certainly a sub-
group is a normal subgroup of itself. Also, the “largest” that NG(H) can be is G, which
happens precisely when H is normal in G.

Exercise 7.35. Find ND4
(V4).

Exercise 7.36. Find ND3
(〈s〉).

We conclude this chapter with a few remarks. We’ve seen examples of groups that
have subgroups that are normal and subgroups that are not normal. In an abelian group,
all the subgroups are normal. It turns out that there are examples of groups that have no
normal subgroups. These groups are called simple groups. The smallest simple group is
A5, which has 120 elements and lots of subgroups, none of which are normal.

The classification of the finite simple groups is a theorem stating that every finite
simple group belongs to one of four categories:

1. A cyclic group with prime order;

2. An alternating group of degree at least 5;

3. A simple group of Lie type, including both

(a) the classical Lie groups, namely the simple groups related to the projective
special linear, unitary, symplectic, or orthogonal transformations over a finite
field;

(b) the exceptional and twisted groups of Lie type (including the Tits group);

4. The 26 sporadic simple groups.

These groups can be seen as the basic building blocks of all finite groups, in a way remi-
niscent of the way the prime numbers are the basic building blocks of the natural num-
bers.

The classification theorem has applications in many branches of mathematics, as ques-
tions about the structure of finite groups (and their action on other mathematical objects)
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can sometimes be reduced to questions about finite simple groups. Thanks to the clas-
sification theorem, such questions can sometimes be answered by checking each family
of simple groups and each sporadic group. The proof of the theorem consists of tens
of thousands of pages in several hundred journal articles written by about 100 authors,
published mostly between 1955 and 2004.

The classification of the finite simple groups is a modern achievement in abstract
algebra and I highly encourage you to go learn more about it. You might be especially
interested in learning about one of the sporadic groups called the Monster Group.
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Products and Quotients of Groups

8.1 Products of Groups

In this section, we will discuss a method for using existing groups as building blocks to
form new groups.

Suppose (G,∗) and (H,◦) are two groups. Recall that the Cartesian product of G and
H is defined to be

G ×H = {(g,h) : g ∈ G,h ∈H}
For more information on Cartesian products, see Definition A.26. Using the binary oper-
ations for the groups G and H , we can define a binary operation on the set G ×H . Define
? on G ×H via

(g1,h1) ? (g2,h2) = (g1 ∗ g2,h1 ◦ h2).

This looks fancier than it is. We’re just doing the operation of each group in the appro-
priate component. It turns out that (G ×H,?) is a group.

Theorem 8.1. Suppose (G,∗) and (H,◦) are two groups, where e and e′ are the identity
elements of G and H , respectively. Then (G × H,?) is a group, where ? is defined as
above. Moreover, (e,e′) is the identity of G×H and the inverse of (g,h) ∈ G×H is given by
(g,h)−1 = (g−1,h−1).

We refer toG×H as the direct product of the groupsG andH . Note that we abbreviate
(g1,h1) ? (g2,h2) = (g1 ∗ g2,h1 ◦ h2) by (g1,h1)(g2,h2) = (g1g2,h1h2).

There’s no reason we can’t do this for more than two groups. If A1,A2, . . . ,An is a
collection of sets, we define

n∏
i=1

Ai := A1 ×A2 × · · · ×An.

Each element of
∏n
i=1Ai is of the form (a1, a2, . . . , an), where ai ∈ Ai .

Theorem 8.2. Let G1,G2, . . . ,Gn be groups. For (a1, a2, . . . , an), (b1,b2, . . . , bn) ∈
∏n
i=1Gi , de-

fine
(a1, a2, . . . , an)(b1,b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Then
∏n
i=1Gi , the direct product of Gi , is a group under this binary operation.
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Note that each Gi above is called a factor of the direct product. One way to think
about direct products is that we can navigate the product by navigating each factor si-
multaneously but independently.

Theorem 8.3. Let G1,G2, . . . ,Gn be finite groups. Then

|G1 ×G2 × · · · ×Gn| = |G1| · |G2| · · · |Gn|.

Theorem 8.4. Let G1,G2, . . . ,Gn be groups. Then |G1 ×G2 × · · · ×Gn| is infinite if and only
if at least one |Gi | is infinite.

The following theorem should be clear.

Theorem 8.5. Let G1,G2, . . . ,Gn be groups. Then
∏n
i=1Gi is abelian if and only if each Gi

is abelian.

If each Gi is abelian, then we may use additive notation. For example, consider Z2×Z3
under the operation of addition mod 2 in the first component and addition mod 3 in the
second component. Then

Z2 ×Z3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}.

Since Z2 and Z3 are cyclic, both groups are abelian, and hence Z2 ×Z3 is abelian. In this
case, we will use addition notation in Z2 ×Z3. For example,

(0,1) + (1,2) = (1,0)

and
(1,2) + (0,2) = (1,1).

There is a very natural generating set for Z2×Z3, namely, {(1,0), (0,1)} since 1 ∈ Z2 and
1 ∈ Z3 generate Z2 and Z3, respectively.

Exercise 8.6. Draw the Cayley diagram for Z2 × Z3 using {(1,0), (0,1)} as the generating
set. Do you see a subgroup of Z2 ×Z3 isomorphic to Z2 in the Cayley diagram? What is
this subgroup? How about a subgroup isomorphic to Z3?

Exercise 8.7. Prove that Z2 ×Z3 is a cyclic group of order 6 and hence isomorphic to R6.

Let’s play with a few more examples.

Exercise 8.8. Consider Z2×Z2 under the operation of addition mod 2 in each component.
Find a generating set for Z2 ×Z2 and then create a Cayley diagram for this group. What
well-known group is Z2 ×Z2 isomorphic to?

Consider the similarities and differences between Z2×Z3 and Z2×Z2. Both groups are
abelian by Theorem 8.5, but only the former is cyclic. Here’s another exercise.

Problem 8.9. Consider Z2×Z4 under the operation of addition mod 2 in the first compo-
nent and addition mod 4 in the second component.
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(a) Using {(1,0), (0,1)} as the generating set, draw the Cayley diagram for Z2 ×Z4.

(b) Draw the subgroup lattice for Z2 ×Z4.

(c) Show that Z2 ×Z4 is abelian but not cyclic.

(d) Argue that Z2 ×Z4 cannot be isomorphic to any of D4, R8, and Q8.

The upshot of the previous problem is that there are at least 4 groups of order 8 up to
isomorphism. We’ll show later that there are actually (at least) 5. The previous exercises
have hinted at the following theorem.

Theorem 8.10. The group Zm ×Zn is cyclic if and only if m and n are relatively prime.

Corollary 8.11. The group Zm ×Zn is isomorphic to Zmn if and only if m and n are rela-
tively prime.

The previous results can be extended to more than two factors.

Theorem 8.12. The group
∏n
i=1Zmi is cyclic and isomorphic to Zm1m2···mn if and only if

every pair from the collection {m1,m2, . . . ,mn} is relatively prime.

Exercise 8.13. Determine whether each of the following groups is cyclic.

(a) Z7 ×Z8

(b) Z7 ×Z7

(c) Z2 ×Z7 ×Z8

(d) Z5 ×Z7 ×Z8

Theorem 8.14. Suppose n = pn1
1 p

n2
2 · · ·p

nr
r , where each pi is a distinct prime number. Then

Zn � Zpn1
1
×Zpn2

2
× · · · ×Zpnrr .

Theorem 8.15. Suppose G and H are two groups. Then G ×H �H ×G.

The next theorem tells us how to compute the order of an element in a direct product
of groups.

Theorem 8.16. Suppose G1,G2, . . . ,Gn are groups and let (g1, g2, . . . , gn) ∈
∏n
i=1Gi . If |gi | =

ri <∞, then |(g1, g2, . . . , gn)| = lcm(r1, r2, . . . , rn).

Exercise 8.17. Find the order of each of the following elements.

(a) (6,5) ∈ Z12 ×Z7.

(b) (r, i) ∈D3 ×Q8.

(c) ((1,2)(3,4),3) ∈ S4 ×Z15.

Exercise 8.18. Find the largest possible order in each of the following groups.
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(a) Z6 ×Z8

(b) Z9 ×Z12

(c) Z4 ×Z18 ×Z15

Theorem 8.19. Suppose G1 and G2 are groups such that H1 ≤ G1 and H2 ≤ G2. Then
H1 ×H2 ≤ G1 ×G2.

However, not every subgroup of a direct product has the form above.

Problem 8.20. Find an example that illustrates that not every subgroup of a direct prod-
uct is the direct product of subgroups of the factors.

Theorem 8.21. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1} ×G2 E G1 ×G2 and G1 × {e2}E G1 ×G2.

Theorem 8.22. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1} ×G2 � G2 and G1 × {e2} � G1.

The next theorem describes precisely the structure of finite abelian groups. We will
omit its proof, but allow ourselves to utilize it as needed.

Theorem 8.23 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group G is isomorphic to a direct product of cyclic groups of the form

Zpn1
1
×Zpn2

2
× · · · ×Zpnrr ×Z

k ,

where each pi is a prime number (not necessarily distinct). The product is unique up to
rearrangement of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group
is finite if and only if the Betti number is 0.

Exercise 8.24. Find all abelian groups up to isomorphism of order 8. How many different
groups up to isomorphism (both abelian and non-abelian) have we seen and what are
they?

Exercise 8.25. Find all abelian groups up to isomorphism for each of the following orders.

(a) 16

(b) 12

(c) 25

(d) 30

(e) 60
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8.2 Quotients of Groups

In the previous section, we discussed a method for constructing “larger” groups from
“smaller” groups using a direct product construction. In this section, we will in some
sense do the opposite.

Problem 7.25 hinted that if H ≤ G and we arrange the group table according to the
left cosets of H , then the group table will have checkerboard pattern if and only if H is
normal in G (i.e., the left and right cosets ofH are the same). For example, see the colored
table prior to Exercise 7.3 versus the ones you created in Exercises 7.3, 7.4. If we have
the checkerboard pattern in the group table that arises from a normal subgroup, then by
“gluing together” the colored blocks, we obtain a group table for a smaller group that has
the cosets as the elements.

For example, let’s consider K = 〈−1〉 ≤ Q8. Exercise 7.4 showed us that K is normal
Q8. The left (and right) cosets of K in Q8 are

K = {1,−1}, iK = {i,−i}, jK = {j,−j}, and kK = {k,−k}.

As you found in Exercise 7.4, if we arrange the rows and columns ofQ8 according to these
cosets, we obtain the following group table.

∗ 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

If we consider the 2 × 2 blocks as elements, it appears that we have a group table for
a group with 4 elements. Closer inspection reveals that this looks like the table for V4. If
the table of 2× 2 blocks is going to represent a group, we need to understand the binary
operation. How do we “multiply” cosets? For example, the table suggest that the coset
jK (colored in red) times the coset iK (colored in blue) is equal to kK (colored in purple)
despite the fact that ji = −k , k. Yet, it is true that the product ji = −k is an element in the
coset kK . In fact, if we look closely at the table, we see that if we pick any two cosets, the
product of any element of the first coset times any element of the second coset will always
result in an element in the same coset regardless of which representatives we chose.

In other words, it looks like we can multiply cosets by choosing any representative
from each coset and then seeing what coset the product of the representatives lies in.
However, it is important to point out that this will only work if we have a checkerboard
pattern of cosets, which we have seen evidence of only happening when the correspond-
ing subgroup is normal.

Before continuing, let’s continue tinkering with the same example. Consider the Cay-
ley diagram for Q8 with generators {i, j,−1} that is given in Figure 8.1.
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1 i

kj

−1 −i

−k−j

Figure 8.1. Cayley diagram for Q8 with generating set {i, j,−1}.

We can visualize the left cosets of K as the clumps of vertices connected together with
the two-way green arrows. In this case, we are also seeing the right cosets since K is
normal in Q8. If we collapse the cosets onto each other and collapse the corresponding
arrows, we obtain the diagram given in Figure 8.2. It is clear that this diagram is the
Cayley diagram for a group that is isomorphic to V4. For reasons we will understand
shortly, this processing of collapsing a Cayley diagram according to the cosets of a normal
subgroup is called the “quotient process.”

K iK

kKjK

Figure 8.2. The collapsed Cayley diagram for Q8 according to the cosets of K = 〈−1〉.

Exercise 8.26. Let’s see what happens if we attempt the quotient process for a subgroup
that is not normal. Consider H = 〈s〉 ≤ D3. In Exercise 7.2, we discovered that the left
cosets of H are not the same as the right cosets of H . This implies that H is not normal in
D3. Consider the standard Cayley diagram for D3 that uses the generators r and s. Draw
the diagram that results from attempting the quotient process on D3 using the subgroup
H . Explain why this diagram cannot be the diagram for a group.

The problem that arises in Exercise 8.26 is that if the same arrow types (i.e., those rep-
resenting the same generator) leaving a coset do not point at elements in the same coset,
attempting the quotient process will result in a diagram that violates Rule 3 (every action
is deterministic) of Definition 2.14. In Figure 8.3, we illustrate what goes wrong if all the
arrows out of a coset do not unanimously point to the same coset. In the second subfig-
ure, all the arrows point to the same coset, and in this case, it appears that everything
works out just fine.
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Figure 8.3. The quotient process.

Exercise 8.27. In Exercise 7.3, we learned that the subgroup K = 〈r〉 is normal in D3
since the left cosets are equal to the right cosets. Note that this follows immediately from
Theorem 7.29 since [D3 : K] = 2. Draw the diagram that results from performing the
quotient process to D3 using the subgroup K . Does the resulting diagram represent a
group? If so, what group is it isomorphic to?

Now, suppose G is an arbitrary group and let H ≤ G. Consider the set of left cosets of
H . We define

(aH)(bH) := (ab)H.

The natural question to ask is whether this operation is well-defined. That is, does the re-
sult of multiplying two left cosets depend on our choice of representatives? More specif-
ically, suppose c ∈ aH and d ∈ bH . Then cH = aH and dH = bH . According to the
operation defined above, (cH)(dH) = cdH . It better be the case that cdH = abH , otherwise
the operation is not well-defined.

Exercise 8.28. Let H = 〈s〉 ≤D3. Find specific examples of a,b,c,d ∈D3 such that

(aH)(bH) , (cH)(dH)

even though aH = cH and bH = dH .
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Theorem 8.29. Let G be a group and let H ≤ G. Then left coset multiplication (as defined
above) is well-defined if and only if H E G.

Theorem 8.30. Let G be a group and letH E G. Then the set of left cosets ofH in G forms
a group under left coset multiplication.

The group from Theorem 8.30 is denoted by G/H , read “G mod H”, and is referred
to as the quotient group (or factor group) of G by H . If G is a finite group, then G/H is
exactly the group that arises from “gluing together” the colored blocks in a checkerboard-
patterned group table. It’s also the group that we get after applying the quotient process
to the Cayley diagram. It’s important to point out once more that this only works properly
if H is a normal subgroup.

Theorem 8.31. Let G be a group and let H E G. Then |G/H | = [G : H]. In particular, if G
is finite, then |G/H | = |G|/ |H |.

Exercise 8.32. Find the order of the given element in the quotient group. You may assume
that we are taking the quotient by a normal subgroup.

(a) s〈r〉 ∈D4/〈r〉

(b) j〈−1〉 ∈Q8/〈−1〉

(c) 5 + 〈4〉 ∈ Z12/〈4〉

(d) (2,1) + 〈(1,1)〉 ∈ (Z3 ×Z6)/〈(1,1)〉

Exercise 8.33. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) Q8/〈−1〉

(b) Q8/〈i〉

(c) Z4/〈2〉

(d) V4/〈h〉

(e) A4/〈(1,2)(3,4), (1,3)(2,4)〉

(f) (Z2 ×Z2)/〈(1,1)〉

(g) Z/4Z

(h) S4/A4

(i) (Z4 ×Z2)/({0} ×Z2)

Theorem 8.34. Let G be a group. Then

1. G/{e} � G
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2. G/G � {e}

Theorem 8.35. For all n ∈ N, we have the following.

1. Sn/An � Z2 (for n ≥ 3)

2. Z/nZ � Zn

3. R/nR � {e}

Theorem 8.36. Let G be a group and let H E G. If G is abelian, then so is G/H .

Problem 8.37. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Exercise 8.38. Consider the quotient group (Z4 ×Z6)/〈(0,1)〉.

(a) What is the order of (Z4 ×Z6)/〈(0,1)〉?

(b) Is the group abelian? Why?

(c) Write down all the elements of (Z4 ×Z6)/〈(0,1)〉.

(d) Does one of the elements generate the group?

(e) What well-known group is (Z4 ×Z6)/〈(0,1)〉 isomorphic to?

Theorem 8.39. Let G be a group and let H E G. If G is cyclic, then so is G/H .

Problem 8.40. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Here are few additional exercises. These ones are a bit tougher.

Exercise 8.41. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) (Z4 ×Z6)/〈(0,2)〉

(b) (Z×Z)/〈(1,1)〉

(c) Q/〈1〉 (the operation on Q is addition)
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Homomorphisms and the Isomorphism
Theorems

9.1 Homomorphisms

Let G1 and G2 be groups. Recall that φ : G1→ G2 is an isomorphism iff φ

(a) is one-to-one,

(b) is onto, and

(c) satisfies the homomorphic property.

We say that G1 is isomorphic to G2 and write G1 � G2 if such a φ exists. Loosely speaking,
two groups are isomorphic if they have the “same structure.” What if we drop the one-to-
one and onto requirement?

Definition 9.1. Let (G1,∗) and (G2,◦) be groups. A function φ : G1 → G2 is a homomor-
phism iff φ satisfies the homomorphic property:

φ(x ∗ y) = φ(x) ◦φ(y)

for all x,y ∈ G1. At the risk of introducing ambiguity, we will usually omit making explicit
reference to the binary operations and write the homomorphic property as

φ(xy) = φ(x)φ(y).

Group homomorphisms are analogous to linear transformations on vector spaces that
one encounters in linear algebra.

Figure 9.1 captures a visual representation of the homomorphic property. We encoun-
tered this same representation in Figure 5.6. If φ(x) = x′, φ(y) = y′, and φ(z) = z′ while
z′ = x′ ◦ y′, then the only way G2 may respect the structure of G1 is for

φ(x ∗ y) = φ(z) = z′ = x′ ◦ y′ = φ(x) ◦φ(y).
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∗ y

x z −→

◦ y′

x′ z′

Figure 9.1

Exercise 9.2. Define φ : Z3→D3 via φ(k) = rk. Prove that φ is a homomorphism and then
determine whether φ is one-to-one or onto. Also, try to draw a picture of the homomor-
phism in terms of Cayley diagrams.

Exercise 9.3. Let G and H be groups. Prove that the function φ : G ×H → G given by
φ(g,h) = g is a homomorphism. This function is an example of a projection map.

There is always at least one homomorphism between two groups.

Theorem 9.4. Let G1 and G2 be groups. Define φ : G1 → G2 via φ(g) = e2 (where e2 is
the identity of G2). Then φ is a homomorphism. This function is often referred to as the
trivial homomorphism or the 0-map.

Back in Section 5.5, we encountered several theorems about isomorphisms. However,
at the end of that section we remarked that some of those theorems did not require that
the function be one-to-one and onto. We collect those results here for convenience.

Theorem 9.5. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism.

1. If e1 and e2 are the identity elements of G1 and G2, respectively, then φ(e1) = e2.

2. For all g ∈ G1, we have φ(g−1) = [φ(g)]−1.

3. If H ≤ G1, then φ(H) ≤ G2, where

φ(H) := {y ∈ G2 | there exists h ∈H such that φ(h) = y}.

Note that φ(H) is called the image of H . A special case is when H = G1. Notice that
φ is onto exactly when φ(G1) = G2.

The next two theorems tell us that under a homomorphism, the order of the image
must divide the order of the preimage.

Theorem 9.6. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism. If
G1 is finite, then |φ(G1)| divides |G1|.

Theorem 9.7. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism. If
g ∈ G1 such that |g | is finite, then |φ(g)| divides |g |.

Every homomorphism has an important subset of the domain associated with it.
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Definition 9.8. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism.
The kernel of φ is defined via

ker(φ) := {g ∈ G1 | φ(g) = e2}.

The kernel of a homomorphism is analogous to the null space of a linear transforma-
tion of vector spaces.

Exercise 9.9. Identify the kernel and image for the homomorphism given in Exercise 9.2.

Exercise 9.10. What is the kernel of a trivial homomorphism (see Theorem 9.4).

Theorem 9.11. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Then ker(φ)E G1.

It turns out that the kernel can tell us something about whether φ is one-to-one.

Theorem 9.12. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Then φ is one-to-one iff ker(φ) = {e1}.

Remark 9.13. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Given a generating set for G1, the homomorphism φ is uniquely determined by its action
on the generating set for G1. In particular, if you have a word for a group element written
in terms of the generators, just apply the homomorphic property to the word to find the
image of the corresponding group element.

Exercise 9.14. Suppose φ : Q8 → V4 is a group homomorphism satisfying φ(i) = h and
φ(j) = v.

(a) Find φ(1), φ(−1), φ(k), φ(−i), φ(−j), and φ(−k).

(b) Find ker(φ).

(c) What well-known group is Q8/ ker(φ) isomorphic to?

Exercise 9.15. Find a non-trivial homomorphism from Z10 to Z6.

Exercise 9.16. Find all non-trivial homomorphisms from Z3 to Z6.

Problem 9.17. Prove that the only homomorphism from D3 to Z3 is the trivial homomor-
phism.

Exercise 9.18. Let F be the set of all functions from R to R and let D be the subset of
differentiable functions on R. It turns out that F is a group under addition of functions
and D is a subgroup of F (you do not need to prove this). Define φ : D → F via φ(f ) = f ′

(where f ′ is the derivative of f ). Prove that φ is a homomorphism. You may recall facts
from calculus without proving them. Is φ one-to-one? Onto?
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9.2 The Isomorphism Theorems

We begin with a theorem.

Theorem 9.19. Let G be a group and let H E G. Then the map γ : G → G/H given
by γ(g) = gH is a homomorphism with ker(γ) = H . This map is called the canonical
projection map.

The upshot of Theorems 9.11 and 9.19 is that kernels of homomorphisms are always
normal and every normal subgroup is the kernel of some homomorphism.

The next theorem is arguably the crowning achievement of the course.

Theorem 9.20 (The First Isomorphism Theorem). Let G1 and G2 be groups and suppose
φ : G1→ G2 is a homomorphism. Then

G1/ ker(φ) � φ(G1).

If φ is onto, then
G1/ ker(φ) � G2.

Exercise 9.21. Let φ :Q8→ V4 be the homomorphism described in Exercise 9.14. Use the
First Isomorphism Theorem to prove that Q8/〈−1〉 � V4.

Exercise 9.22. Define φ : Sn→ Z2 via

φ(σ ) =

0, σ even
1, σ odd.

Use the First Isomorphism Theorem to prove that Sn/An � Z2.

Exercise 9.23. Use the First Isomorphism Theorem to prove that Z/6Z � Z6. Attempt to
draw a picture of this using Cayley diagrams.

Exercise 9.24. Use the First Isomorphism Theorem to prove that (Z4×Z2)/({0}×Z2) � Z4.

We finish the chapter by listing a few of the remaining isomorphism theorems, but we
won’t prove these in this course.

Theorem 9.25 (The Second Isomorphism Theorem). Let G be a group with H ≤ G and
N E G. Then

1. HN := {hn | h ∈H,n ∈N } ≤ G;

2. H ∩N EH ;

3. H/H ∩N �HN/N .

Theorem 9.26 (The Third Isomorphism Theorem). Let G be a group with H,K E G and
K ≤H . Then

G/H � (G/K)/(H/K).
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An Introduction to Rings

10.1 Definitions and Examples

Recall that a group is a set together with a single binary operation, which together satisfy
a few modest properties. Loosely speaking, a ring is a set together with two binary oper-
ations (called addition and multiplication) that are related via a distributive property.

Definition 10.1. A ring R is a set together with two binary operations + and · (called
addition and multiplication, respectively) satisfying the following:

(i) (R,+) is an abelian group.

(ii) · is associative: (a · b) · c = a · (b · c) for all a,b,c ∈ R.

(iii) The distributive property holds: a · (b+ c) = (a ·b) + (a · c) and (a+b) · c = (a · c) + (b · c)
for all a,b,c ∈ R.

Remark 10.2. We make a couple comments about notation.

(a) We often write ab in place a · b.

(b) The additive inverse of the ring element a ∈ R is denoted −a.

Theorem 10.3. Let R be a ring. Then for all a,b ∈ R:

1. 0a = a0 = 0

2. (−a)b = a(−b) = −(ab)

3. (−a)(−b) = ab

Definition 10.4. A ring R is called commutative if multiplication is commutative.

Definition 10.5. A ring R is said to have an identity (or called a ring with 1) if there is
an element 1 ∈ R such that 1a = a1 = a for all a ∈ R.

Exercise 10.6. Justify that Z is a commutative ring with 1 under the usual operations of
addition and multiplication. Which elements have multiplicative inverses in Z?
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Exercise 10.7. Justify that Zn is a commutative ring with 1 under addition and multipli-
cation mod n.

Exercise 10.8. Consider the set Z10 = {0,1,2,3,4,5,6,7,8,9}. Which elements have multi-
plicative inverses in Z10?

Exercise 10.9. For each of the following, find a positive integer n such that the ring Zn
does not have the stated property.

(a) a2 = a implies a = 0 or a = 1.

(b) ab = 0 implies a = 0 or b = 0.

(c) ab = ac and a , 0 imply b = c.

Theorem 10.10. If R is a ring with 1, then the multiplicative identity is unique and −a =
(−1)a.

Problem 10.11. Requiring (R,+) to be a group is fairly natural, but why require (R,+) to
be abelian? Suppose R has a 1. Compute (1 + 1)(a+ b) in two different ways.

Definition 10.12. A ring R with 1 (with 1 , 0) is called a division ring if every nonzero
element in R has a multiplicative inverse: if a ∈ R \ {0}, then there exists b ∈ R such that
ab = ba = 1.

Definition 10.13. A commutative division ring is called a field.

Definition 10.14. A nonzero element a in a ring R is called a zero divisor if there is a
nonzero element b ∈ R such that either ab = 0 or ba = 0.

Exercise 10.15. Are there any zero divisors in Z10? If so, find all of them.

Exercise 10.16. Are there any zero divisors in Z5? If so, find all of them.

Exercise 10.17. Provide an example of a ring R and elements a,b ∈ R such that ax = b has
more than one solution. How does this compare with groups?

Theorem 10.18 (Cancellation Law). Assume a,b,c ∈ R such that a is not a zero divisor. If
ab = ac, then either a = 0 or b = c.

Definition 10.19. Assume R is a ring with 1 with 1 , 0. An element u ∈ R is called a unit
in R if u has a multiplicative inverse (i.e., there exists v ∈ R such that uv = vu = 1. The set
of units in R is denoted U (R).

Exercise 10.20. Consider the ring Z20.

(a) Find U (Z20).

(b) Find the zero divisors of Z20.

(c) Any observations?
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Theorem 10.21. If U (R) , ∅, then U (R) forms a group under multiplication.

Remark 10.22. We make a few observations.

(a) A field is a commutative ring F with identity 1 , 0 in which every nonzero element
is a unit, i.e., U (F) = F \ {0}.

(b) Zero divisors can never be units.

(c) Fields never have zero divisors.

Definition 10.23. A commutative ring with identity 1 , 0 is called an integral domain if
it has no zero divisors.

Remark 10.24. The Cancellation Law (Theorem 10.18) holds in integral domains for any
three elements.

Theorem 10.25. Any finite integral domain is a field.

Example 10.26. Here are a few examples. Details left as an exercise.

(a) Zero Ring: If R = {0}, we can turn R into a ring in the obvious way. The zero
ring is a finite commutative ring with 1. It is the only ring where the additive and
multiplicative identities are equal. The zero ring is not a division ring, not a field,
and not an integral domain.

(b) Trivial Ring: Given any abelian group R, we can turn R into a ring by defining
multiplication via ab = 0 for all a,b ∈ R. Trivial rings are commutative rings in
which every nonzero element is a zero divisor. Hence a trivial ring is not a division
ring, not a field, and not a integral domain.

(c) The integers form an integral domain, but Z is not a division ring, and hence not a
field.

(d) The rational numbers Q, the real numbers R, and the complex numbers C are fields
under the usual operations of addition and multiplication.

(e) The group of units U (Zn) is the set of elements in Zn that are relatively prime to n.
All other nonzero elements are zero divisors. It turns out that Zn forms a finite field
iff n is prime.

(f) The set of even integers 2Z forms a commutative ring under the usual operations of
addition and multiplication. However, 2Z does not have a 1, and hence cannot be a
division ring nor a field nor an integral domain.

(g) Polynomial Ring: Fix a commutative ring R. Let R[x] denote the set of polynomials
in the variable x with coefficients in R. Then R[x] is a commutative ring with 1. The
units of R[x] are exactly the units of R (if there are any). So, R[x] is never a division
ring nor a field. However, if R is an integral domain, then so is R[x].
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(h) Matrix Ring: Fix a ring R and let n be a positive integer. Let Mn(R) be the set of
n×n matrices with entries from R. Then Mn(R) forms a ring under ordinary matrix
addition and multiplication. If R is nontrivial and n ≥ 2, thenMn(R) always has zero
divisors andMn(R) is not commutative even if R is. If R has a 1, then the matrix with
1’s down the diagonal and 0’s elsewhere is the multiplicative identity in Mn(R). In
this case, the group of units is the set of invertible n × n matrices, denoted GLn(R)
and called the general linear group of degree n over R.

(i) Quadratic Field: Define Q(
√

2) = {a + b
√

2 | a,b ∈ Q}. It turns out that Q(
√

2) is a
field. In fact, we can replace 2 with any rational number that is not a perfect square
in Q.

(j) Hamilton Quaternions: Define H = {a+ bi + cj + dk | a,b,c,d ∈ R, i, j,k ∈Q8} Then H
forms a ring, where addition is definite componentwise in i, j, and k and multipli-
cation is defined by expanding products and the simplifying using the relations of
Q8. It turns out that H is a non-commutative ring with 1.

Exercise 10.27. Find an example of a ring R and an element a ∈ R \ {0} such that a is
neither a zero divisor nor a unit.

Definition 10.28. A subring of a ring R is a subgroup of R that is closed under multipli-
cation.

Remark 10.29. The property “is a subring” is clearly transitive. To show that a subset S
of a ring R is a subring, it suffices to show that S , ∅, S is closed under subtraction, and S
is closed under multiplication.

Example 10.30. Here are a few quick examples.

(a) Z is a subring of Q, which is a subring of R, which in turn is a subring of C.

(b) 2Z is a subring of Z.

(c) The set Z(
√

2) = {a+ b
√

2 | a,b ∈ Z} is a subring of Q(
√

2).

(d) The ring R is a subring of R[x] if we identify R with set of constant functions.

(e) The set of polynomials with zero constant term in R[x] is a subring of R[x].

(f) Z[x] is a subring of Q[x].

(g) Zn is not a subring of Z as the operations are different.

Problem 10.31. Consider the ring Z10 from Exercise 10.8. Let S = {0,2,4,6,8}.

(a) Argue that S is a subring of R.

(b) Is S a ring with 1? If so, find the multiplicative identity. If not, explain why.

(c) Is S a field? Justify your answer.
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Problem 10.32. Suppose R is a ring and let a ∈ R. Define S = {x ∈ R | ax = 0}. Prove that S
is a subring of R.

Problem 10.33. Consider the ring Z. It turns out that 2Z and 3Z are subrings (but you
don’t need to prove this). Determine whether 2Z ∪ 3Z is a subring of Z. Justify your
answer.

10.2 Ring Homomorphisms

Definition 10.34. Let R and S be rings. A ring homomorphism is a map φ : R → S
satisfying

(i) φ(a+ b) = φ(a) +φ(b)

(ii) φ(ab) = φ(a)φ(b)

for all a,b ∈ R. The kernel of φ is defined via ker(φ) = {a ∈ R | φ(a) = 0}. If φ is a bijection,
then φ is called an isomorphism, in which case, we say that R and S are isomorphic rings
and write R � S.

Example 10.35.

(a) For n ∈ Z, define φn : Z → Z via φn(x) = nx. We see that φn(x + y) = n(x + y) =
nx+ny = φn(x)+φn(y). However, φn(xy) = n(xy) while φn(x)φn(y) = (nx)(ny) = n2xy.
It follows that φn is a ring homomorphism exactly when n ∈ {0,1}.

(b) Define φ : Q[x]→Q via φ(p(x)) = p(0) (called evaluation at 0). It turns out that φ is
a ring homomorphism, where ker(φ) is the set of polynomials with 0 constant term.

Exercise 10.36. For each of the following, determine whether the given function is a ring
homomorphism. Justify your answers.

(a) Define φ : Z4→ Z12 via φ(x) = 3x.

(b) Define φ : Z10→ Z10 via φ(x) = 5x.

(c) Let S =
{(
a b
−b a

)
| a,b ∈ R

}
. Define φ : C→ S via φ(a+ ib) =

(
a b
−b a

)
.

(d) Let T =
{(
a b
0 c

)
| a,b ∈ Z

}
. Define φ : T → Z via φ

((
a b
0 c

))
= a.

Theorem 10.37. Let φ : R→ S be a ring homomorphism.

1. φ(R) is a subring of S.

2. ker(φ) is a subring of R.
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Problem 10.38. Suppose φ : R→ S is a ring homomorphism such that R is a ring with
1, call it 1R. Prove that φ(1R) is the multiplicative identity in φ(R) (which is a subring of
S). Can you think of an example of a ring homomorphism where S has a multiplicative
identity that is not equal to φ(1R)?

Theorem 10.37(2) states that the kernel of a ring homomorphism is a subring. This
is analogous to the kernel of a group homomorphism being a subgroup. However, recall
that the kernel of a group homomorphism is also a normal subgroup. Like the situation
with groups, we can say something even stronger about the kernel of a ring homomor-
phism. This will lead us to the notion of an ideal.

Theorem 10.39. Let φ : R→ S be a ring homomorphism. If α ∈ ker(φ) and r ∈ R, then
αr,rα ∈ ker(φ). That is, ker(φ) is closed under multiplication by elements of R.

10.3 Ideals and Quotient Rings

Recall that in the case of a homomorphism φ of groups, the cosets of ker(φ) have the
structure of a group (that happens to be isomorphic to the image of φ by the First Iso-
morphism Theorem). In this case, ker(φ) is the identity of the associated quotient group.
Moreover, recall that every kernel is a normal subgroup of the domain and every normal
subgroup can be realized as the kernel of some group homomorphism. Can we do the
same sort of thing for rings?

Let φ : R→ S be a ring homomorphism with ker(φ) = I . Note that φ is also a group
homomorphism of abelian groups and the cosets of ker(φ) are of the form r + I . More
specifically, if φ(r) = a, then φ−1(a) = r + I .

These cosets naturally have the structure of a ring isomorphic to the image of φ:

(r + I) + (s+ I) = (r + s) + I (10.1)
(r + I)(s+ I) = (rs) + I (10.2)

The reason for this is that if φ−1(a) = X and φ−1(b) = Y , then the inverse image of a + b
and ab are X +Y and XY , respectively.

The corresponding ring of cosets is called the quotient ring of R by I = ker(φ) and
is denoted by R/I . The additive structure of the quotient ring R/I is exactly the additive
quotient group of the additive abelian group R by the normal subgroup R (all subgroups
are normal in abelian groups). When I is the kernel of some ring homomorphism φ,
the additive abelian quotient group R/I also has a multiplicative structure defined in (2)
above, making R/I into a ring.

Can we make R/I into a ring for any subring I?

The answer is “no” in general, just like in the situation with groups. But perhaps this
isn’t obvious because if I is an arbitrary subring of R, then I is necessarily an additive
subgroup of the abelian group R, which implies that I is an additive normal subgroup of
the group R. It turns out that the multiplicative structure of R/I may not be well-defined
if I is an arbitrary subring.
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Let I be an arbitrary subgroup of the additive group R. Let r + I and s + I be two
arbitrary cosets. In order for multiplication of the cosets to be well-defined, the product
of the two cosets must be independent of choice of representatives. Let r +α and s + β be
arbitrary representatives of r + I and s + I , respectively (α,β ∈ I), so that r + I = (r +α) + I
and s+ I = (s+ β) + I . We must have

(r +α)(s+ β) + I = rs+ I. (10.3)

This needs to be true for all possible choices of r, s ∈ R and α,β ∈ I . In particular, it must
be true when r = s = 0. In this case, we must have

αβ + I = I. (10.4)

But this only happens when αβ ∈ I . That is, one requirement for multiplication of cosets
to be well-defined is that I must be closed under multiplication, making I a subring.

Next, if we let s = 0 and let r be arbitrary, we see that we must have rβ ∈ I for every
r ∈ R and every β ∈ I . That is, it must be the case that I is closed under multiplication on
the left by elements from R. Similarly, letting r = 0, we can conclude that we must have I
closed under multiplication on the right by elements from R.

On the other hand, if I is closed under multiplication on the left and on the right by
elements from R, then it is clear that relation (4) above is satisfied.

It is easy to verify that if the multiplication of cosets defined in (2) above is well-
defined, then this multiplication makes the additive quotient group R/I into a ring (just
check the axioms for being a ring).

We have shown that the quotient R/I of the ring R by a subgroup I has a natural ring
structure iff I is closed under multiplication on the left and right by elements of R (which
also forces I to be a subring). Such subrings are called ideals.

Definition 10.40. Let R be a ring and let I be a subset of R.

(a) I is a left ideal (respectively, right ideal) of R iff I is a subring and rI ⊆ I (respec-
tively, Ir ⊆ I) for all r ∈ R.

(b) I is an ideal (or two-sided ideal) iff I is both a left and a right ideal.

Here’s a summary of everything that just happened.

Theorem 10.41. Let R be a ring and let I be an ideal of R. Then the additive quotient
group R/I is a ring under the binary operations:

(r + I) + (s+ I) = (r + s) + I (10.5)
(r + I)(s+ I) = (rs) + I (10.6)

for all r, s ∈ R. Conversely, if I is any subgroup such that the above operations are well-
defined, then I is an ideal of R.

Theorem 10.42. Suppose I and J are ideals of the ring R. Then I ∩ J is an ideal of R.

As you might expect, we have some isomorphism theorems.
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Theorem 10.43 (First Isomorphism Theorem for Rings). If φ : R→ S is a ring homomor-
phism, then ker(φ) is an ideal of R and R/ ker(φ) � φ(R).

We also have the expected Second and Third Isomorphism Theorems for rings.
The next theorem tells us that a subring is an ideal iff it is a kernel of a ring homomor-

phism.

Theorem 10.44. If I is any ideal of R, then the natural projection π : R→ R/I defined via
π(r) = r + I is a surjective ring homomorphism with ker(π) = I .

For the remainder of this section, assume that R is a ring with identity 1 , 0.

Definition 10.45. Let A be any subset of R. Let (A) denote the smallest ideal of R con-
taining A, called the ideal generated by A. If A consists of a single element, say A = {a},
then (a) := ({a}) is called a principal ideal.

Remark 10.46. The following facts are easily verified.

(a) (A) is the intersection of all ideals containing A.

(b) If R is commutative, then (a) = aR := {ar | r ∈ R}.

Example 10.47. In Z, nZ = (n) = (−n). In fact, these are the only ideals in Z (since these
are the only subgroups). So, all the ideals in Z are principal. If m and n are positive
integers, then nZ ⊆ mZ iff m divides n. Moreover, we have (m,n) = (d), where d is the
greatest common divisor of m and n.

Problem 10.48. Consider the ideal (2,x) in Z[x]. Note that (2,x) = {2p(x)+xq(x) | p(x),q(x) ∈
Z[x]}. Argue that (2,x) is not a principal ideal, i.e., there is no single polynomial in Z[x]
that we can use to generate (2,x).

Theorem 10.49. Assume R is a commutative ring with 1 , 0. Let I be an ideal of R. Then
I = R iff I contains a unit.

Theorem 10.50. Assume R is a commutative ring with 1 , 0. Then R is a field iff its only
ideals are 0 and R.

Loosely speaking, the previous results say that fields are “like simple groups” (i.e,
groups with no non-trivial normal subgroups).

Corollary 10.51. If R is a field, then every nonzero ring homomorphism from R into
another ring is an injection.

10.4 Maximal and Prime Ideals

Throughout this entire section, we assume that all rings have a multiplicative identity
1 , 0.

In this section of notes, we will study two important classes of ideals, namely maximal
and prime ideals, and study the relationship between them.
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Definition 10.52. Assume R is a commutative ring with 1. An idealM in a ring R is called
a maximal ideal if M , R and the only ideals containing M are M and R.

Example 10.53. Here are a few examples. Checking the details is left as an exercise.

(1) In Z, all the ideals are of the form nZ for n ∈ Z+. The maximal ideals correspond to
the ideals pZ, where p is prime.

(2) Consider the integral domain Z[x]. The ideals (x) (i.e., the subring containing poly-
nomials with 0 constant term) and (2) (i.e, the set of polynomials with even coeffi-
cients) are not maximal since both are contained in the proper ideal (2,x). However,
as we shall see soon, (2,x) is maximal in Z[x].

(3) The zero ring has no maximal ideals.

(4) Consider the abelian group Q under addition. We can turn Q into a trivial ring
by defining ab = 0 for all a,b ∈ Q. In this case, the ideals are exactly the additive
subgroups of Q. However, Q has no maximal subgroups, and so Q has no maximal
ideals.

The next result states that rings with an identity 1 , 0 always have maximal ideals. It
turns out that we won’t need this result going forward, so we’ll skip its proof. However,
it is worth noting that all known proofs make use of Zorn’s Lemma (equivalent to the
Axiom of Choice), which is also true for the proofs that a finitely generated group has
maximal subgroups or that every vector spaces has a basis.

Theorem 10.54. In a ring with 1, every proper ideal is contained in a maximal ideal.

For commutative rings, there is a very nice characterization about maximal ideals in
terms of the structure of their quotient rings.

Theorem 10.55. Assume R is a commutative ring with 1. Then M is a maximal ideal iff
the quotient ring R/M is a field.

Example 10.56. We can use the previous theorem to verify whether an ideal is maximal.

(1) Recall that Z/nZ � Zn and that Zn is a field iff n is prime. We can conclude that nZ
is a maximal ideal precisely when n is prime.

(2) Define φ : Z[x]→ Z via φ(p(x)) = p(0). Then φ is surjective and ker(φ) = (x). By the
First Isomorphism Theorem for Rings, we see that Z[x]/(x) � Z. However, Z is not a
field. Hence (x) is not maximal in Z[x]. Now, define ψ : Z→ Z2 via ψ(x) = x mod 2
and consider the composite homomorphism ψ ◦φ : Z→ Z2. It is clear that ψ ◦φ is
onto and the kernel of ψ ◦φ is given by {p(x) ∈ Z[x] | p(0) ∈ 2Z} = (2,x). Again by the
First Isomorphism Theorem for Rings, Z[x]/(2,x) � Z2. Since Z2 is a field, (2,x) is a
maximal ideal.

Definition 10.57. Assume R is a commutative ring with 1. An ideal P is called a prime
ideal if P , R and whenever the product ab ∈ P for a,b ∈ R, then at least one of a or b is in
P .
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Example 10.58. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring
is not an integral domain?

Remark 10.59. The notion of a prime ideal is a generalization of “prime” in Z. Suppose
n ∈ Z+ \ {1} such that n divides ab. In this case, n is guaranteed to divide either a or b
exactly when n is prime. Now, let nZ be a proper ideal in Z with n > 1 and suppose ab ∈ Z
for a,b ∈ Z. In order for nZ to be a prime ideal, it must be true that n divides either a or
b. However, this is only guaranteed to be true for all a,b ∈ Z when p is prime. That is, the
nonzero prime ideals of Z are of the form pZ, where p is prime. Note that in the case of
the integers, the maximal and nonzero prime ideals are the same.

Theorem 10.60. Assume R is a commutative ring with 1. Then P is a prime ideal in R iff
the quotient ring R/P is an integral domain.

Corollary 10.61. Assume R is a commutative ring with 1. Every maximal ideal of R is a
prime ideal.

Example 10.62. Recall that Z[x]/(x) � Z. Since Z is an integral domain, it must be the
case that (x) is a prime ideal in Z[x]. However, as we saw in an earlier example, (x) is
not maximal in Z[x] since Z is not a field. This shows that the converse of the previous
corollary is not true.



Appendix A

Prerequisites

I’ll organize this section better later, but for now, here’s a brain dump of some concepts
you should be familiar with.

A.1 Basic Set Theory

Definition A.1. A set is a collection of objects called elements. If A is a set and x is an
element of A, we write x ∈ A. Otherwise, we write x < A.

Definition A.2. The set containing no elements is called the empty set, and is denoted
by the symbol ∅.

If we think of a set as a box containing some stuff, then the empty set is a box with
nothing in it.

Definition A.3 (Interval Notation). For a,b ∈ R with a < b, we define the following.

1. (a,b) = {x ∈ R | a < x < b}

2. (a,∞) = {x ∈ R | a < x}

3. (−∞,b) = {x ∈ R | x < b}

4. [a,b] = {x ∈ R | a ≤ x ≤ b}

We analogously define [a,b), (a,b], [a,∞), and (−∞,b].

Remark A.4. There are a few sets with common names that we should be familiar with.

1. Natural Numbers: N = {1,2,3, . . .}

2. Integers: Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}

3. Real Numbers: R = (−∞,∞)∗

∗This is really a cop out. If you look at the definition of the interval (−∞,∞), we are being circular.
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4. Complex Numbers: C = {a+ bi | a,b ∈ R}, where i =
√
−1 is the imaginary unit.

Definition A.5. The language associated to sets is specific. We will often define sets using
the following notation, called set builder notation.

S = {x ∈ A | x satisfies some condition}

The first part “x ∈ A” denotes what type of x is being considered. The statements to the
right of the colon are the conditions that x must satisfy in order to be members of the set.
This notation is read as “The set of all x in A such that x satisfies some condition,” where
“some condition” is something specific about the restrictions on x relative to A.

Definition A.6. If A and B are sets, then we say that A is a subset of B, written A ⊆ B,
provided that every element of A is also an element of B.

Remark A.7. Observe that A ⊆ B is equivalent to “For all x (in the universe of discourse),
if x ∈ A, then x ∈ B.” Since we know how to deal with “for all” statements and conditional
propositions, we know how to go about proving A ⊆ B.

Theorem A.8 (Transitivity of subsets). Suppose that A, B, and C are sets. If A ⊆ B and
B ⊆ C, then A ⊆ C.

Definition A.9. If A ⊆ B, then A is called a proper subset provided that A , B. In this
case, we may write A ⊂ B or A( B.†

Definition A.10. Let A and B be sets.

1. The union of the sets A and B is A∪B = {x ∈U | x ∈ A or x ∈ B}.

2. The intersection of the sets A and B is A∩B = {x ∈U | x ∈ A and x ∈ B}.

3. The set difference of the sets A and B is A \B = {x ∈U | x ∈ A and x < B}.

4. The complement of A (relative to U ) is the set Ac =U \A = {x ∈U | x < A}.

Definition A.11. If two sets A and B have the property that A∩B = ∅, then we say that A
and B are disjoint sets.

Theorem A.12. Let A and B be sets. If A ⊆ B, then Bc ⊆ Ac.

Definition A.13. Two sets A and B are equal if and only if A ⊆ B and B ⊆ A. In this case
we write A = B.

Remark A.14. Given two sets A and B, if we want to prove A = B, then we have to do two
separate “mini” proofs: one for A ⊆ B and one for B ⊆ A.

Theorem A.15. Let A and B be sets. Then A \B = A∩Bc.

Theorem A.16 (DeMorgan’s Law). Let A and B be sets. Then

†Warning: Some books use ⊂ to mean ⊆.
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1. (A∪B)c = Ac ∩Bc,

2. (A∩B)c = Ac ∪Bc.

Theorem A.17 (Distribution of Union and Intersection). Let A, B, and C be sets. Then

1. A∪ (B∩C) = (A∪B)∩ (A∪C),

2. A∩ (B∪C) = (A∩B)∪ (A∩C).

Definition A.18. Suppose we have a collection {Aα}α∈∆.

1. The union of the entire collection is defined via⋃
α∈∆

Aα = {x | x ∈ Aα for some α ∈ ∆}.

2. The intersection of the entire collection is defined via⋂
α∈∆

Aα = {x | x ∈ Aα for all α ∈ ∆}.

Example A.19. In the special case that ∆ = N, we write

∞⋃
n=1

An = {x | x ∈ An for some n ∈ N} = A1 ∪A2 ∪A3 ∪ · · ·

and ∞⋂
n=1

An = {x | x ∈ An for all n ∈ N} = A1 ∩A2 ∩A3 ∩ · · ·

Similarly, if ∆ = {1,2,3,4}, then

4⋃
n=1

An = A1 ∪A2 ∪A3 ∪A4

and
4⋂
n=1

An = A1 ∩A2 ∩A3 ∩A4.

Remark A.20. Notice the difference between “
⋃

” and “∪” (respectively, “
⋂

” and “∩”).
The larger versions of the union and intersection symbols very much like the notation

that you’ve likely seen for sums (e.g.,
∞∑
i=1

i2).

Definition A.21. We say that a collection of sets {Aα}α∈∆ is pairwise disjoint ifAα∩Aβ = ∅
whenever α , β.
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Exercise A.22. Draw a Venn diagram of a collection of 3 sets that are pairwise disjoint.

Exercise A.23. Provide an example of a collection of three sets, say {A1,A2,A3}, such that
the collection is not pairwise disjoint, but

3⋂
n=1

An = ∅.

Definition A.24. An ordered pair is an object of the form (x,y). Two ordered pairs (x,y)
and (a,b) are equal if x = a and y = b.

Definition A.25. An n-tuple is an object of the form (x1,x2, . . . ,xn). Each xi is referred to
as the ith component.

Note that an ordered pair is just a 2-tuple.

Definition A.26. If X and Y are sets, the Cartesian product of X and Y is defined by

X ×Y = {(x,y) | x ∈ X,y ∈ Y }.

That is, X × Y is the set of all ordered pairs where the first element is from X and the
second element is from Y . The set X×X is sometimes denoted by X2. We similarly define
the Cartesian product of n sets, say X1, . . . ,Xn, by

n∏
i=1

Xi = X1 × · · · ×Xn = {(x1, . . . ,xn) | each xi ∈ Xi}.

Exercise A.27. What general conclusion can you make about X × Y versus Y ×X? When
will they be equal?

Exercise A.28. If X and Y are both finite sets, then how many elements will X × Y have?
Be as specific as possible.

Exercise A.29. Let X = [0,1] and let Y = {1}. Describe geometrically what X × Y , Y ×X,
X ×X, and Y ×Y look like.

A.2 Relations

Definition A.30. Let X and Y be sets. A relation from a set X to a set Y is a subset of
X ×Y . A relation on X is a subset of X ×X.

Remark A.31. Different notations for relations are used in different contexts. When talk-
ing about relations in the abstract, we indicate that a pair (a,b) is in the relation by some
notation like a ∼ b, which is read “a is related to b.”

Remark A.32. We can often represent relations using graphs or digraphs. Given a finite
set X and a relation ∼ on X, a digraph (short for directed graph) is a discrete graph having
the members of X as vertices and a directed edge from x to y iff x ∼ y.
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a

b

d

c

e

Figure A.1. An example of a digraph for a relation.

Example A.33. Figure A.1 depicts a digraph that represents a relation R given by

R = {(a,b), (a,c), (b,b), (b,c), (c,d), (c,e), (d,d), (d,a), (e,a)}.

Exercise A.34. Let A = {a,b,c} and define ∼= {(a,a), (a,b), (b,c), (c,b), (c,a)}. Draw the di-
graph for ∼.

Definition A.35. Let ∼ be a relation on a set A.

1. ∼ is reflexive if for all x ∈ A, x ∼ x (every element is related to itself).

2. ∼ is symmetric if for all x,y ∈ A, if x ∼ y, then y ∼ x.

3. ∼ is transitive if for all x,y,z ∈ A, if x ∼ y and y ∼ z, then x ∼ z.

Exercise A.36. Given a finite set A and a relation ∼, describe what each of reflexive,
symmetric, and transitive look like in terms of a digraph.

Exercise A.37. Let P be the set of people at a party and define N via (x,y) ∈ N iff x
knows the name of y. Describe what it would mean for N to be reflexive, symmetric, and
transitive.

Definition A.38. Let ∼ be a relation on a set A. Then ∼ is called an equivalence relation
if ∼ is reflexive, symmetric, and transitive.

Exercise A.39. Determine which of the following are equivalence relations.

1. Let Pf denote the set of all people with accounts on Facebook. Define F via xFy iff x
is friends with y.

2. Let P be the set of all people and define H via xHy iff x and y have the same height.
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3. Let P be the set of all people and define T via xT y iff x is taller than y.

4. Consider the relation “divides” on N.

5. Let L be the set of lines and define || via l1||l2 iff l1 is parallel to l2.

6. Let C[0,1] be the set of continuous functions on [0,1]. Define f ∼ g iff∫ 1

0
|f (x)| dx =

∫ 1

0
|g(x)| dx.

7. Define ∼ on N via n ∼m iff n+m is even.

8. Define D on R via (x,y) ∈D iff x = 2y.

9. Define ∼ on Z via a ∼ b iff a− b is a multiple of 5.

10. Define ∼ on R2 via (x1, y1) ∼ (x2, y2) iff x2
1 + y2

1 = x2
2 + y2

2 .

11. Define ∼ on R via x ∼ y iff bxc = byc, where bxc is the greatest integer less than or
equal to x (e.g., bπc = 3, b−1.5c = −2, and b4c = 4).

12. Define ∼ on R via x ∼ y iff |x − y| < 1.

Definition A.40. Let ∼ be a relation on a set A (not necessarily an equivalence relation)
and let x ∈ A. Then we define the set of relatives of x via

[x] = {y ∈ A | x ∼ y}.

Also, define
Ω∼ = {[x] | x ∈ A}.

Notice that Ω∼ is a set of sets. In particular, an element in Ω∼ is a subset of A (equiva-
lently, an element of P (A)). Other common notations for [x] include x and Rx.

Exercise A.41. Find [1] and [2] for the relation given in part 9 of Exercise A.39. How
many different sets of relatives are there? What are they?

Exercise A.42. If ∼ is an equivalence relation on a finite setA, then what is the connection
between the equivalence classes and the corresponding digraph?

Theorem A.43. Suppose ∼ is an equivalence relation on a set A and let a,b ∈ A. Then
[a] = [b] iff a ∼ b.

Theorem A.44. Suppose ∼ is an equivalence relation on a set A. Then

1.
⋃
x∈A[x] = A, and

2. for all x,y ∈ A, either [x] = [y] or [x]∩ [y] = ∅.
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Definition A.45. In light of Theorem A.44, if ∼ is an equivalence relation on a set A, then
we refer to each [x] as the equivalence class of x. In this case, Ω∼ is the set of equivalence
classes determined by ∼.

Remark A.46. The upshot of Theorem A.44 is that given an equivalence relation, every
element lives in exactly one equivalence class. We’ll see in the next section of notes that
we can run this in reverse. That is, if we separate out the elements of a set so that every
element is an element of exactly one subset (like the bins of my kid’s toys), then this
determines an equivalence relation. More on this later.

A.3 Partitions

Definition A.47. A collection Ω of nonempty subsets of a set A is said to be a partition
of A if the elements of Ω satisfy:

1. Given X,Y ∈Ω, either X = Y or X ∩Y = ∅ (We can’t have both at the same time. Do
you see why?), and

2.
⋃
X∈Ω

X = A.

That is, the elements of Ω are pairwise disjoint and their union is all of A.

The next theorem spells out half of the close connection between partitions and equiv-
alence relations. Hopefully you were anticipating this.

Theorem A.48. Let ∼ be an equivalence relation on a set A. Then Ω∼ forms a partition of
A.

Exercise A.49. Consider the equivalence relation

∼= {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6), (5,6), (6,5), (4,6), (6,4)}

on the set A = {1,2,3,4,5,6}. Find the partition determined by Ω∼.

It turns out that we can reverse the situation, as well. That is, given a partition, we
can form an equivalence relation. Before proving this, we need a definition.

Definition A.50. Let A be a set and Ω any collection of subsets from P (A) (not necessarily
a partition). If a,b ∈ A, we will define a to be Ω-related to b if there exists an R ∈Ω that
contains both a and b. This relation is denoted by ∼Ω and is called the relation on A
associated to Ω.

Remark A.51. This definition may look more awkward than the actual underlying con-
cept. The idea is that if two elements are in the same subset, then they are related. For
example, when my kids pick up all their toys and put them in the appropriate toy bins,
we say that two toys are related if they are in the same bin.

Remark A.52. Notice that we have two notations that looks similar: Ω∼ and ∼Ω.
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1. Ω∼ is the collection of subsets of A determined by the relation ∼.

2. ∼Ω is the relation determined by the collection of subsets Ω.

Theorem A.53. Let A be a set and let Ω be a partition of A. Then ∼Ω is an equivalence
relation.

Remark A.54. The previous theorem says that every partition determines a natural equiv-
alence relation. Namely, two elements are related if they are in the same equivalence
class.

A.4 Functions

Definition A.55. Let X and Y be two nonempty sets. A function from set X to set Y ,
denoted f : X→ Y , is a relation (i.e., subset of X ×Y ) such that:

1. For each x ∈ X, there exists y ∈ Y such that (x,y) ∈ f , and

2. If (x,y1), (x,y2) ∈ f , then y1 = y2.

Note that if (x,y) ∈ f , we usually write y = f (x) and say that “f maps x to y.”

Remark A.56. Item 1 of Definition A.55 says that every element of X appears in the first
coordinate of an ordered pair in the relation. Item 2 says that each element of X only
appears once in the first coordinate of an ordered pair in the relation. It is important to
note that there are no restrictions on whether an element of Y ever appears in the second
coordinate. Furthermore, if an element of B appears in the second coordinate, it may
appear again in a different ordered pair.

Definition A.57. The set X from Definition A.55 is called the domain of f and is denoted
by Dom(f ). The set Y is called the codomain of f and is denoted by Codom(f ). The set

Rng(f ) = {y ∈ Y | there exists x such that y = f (x)}

is called the range of f or the image of X under f .

Remark A.58. It follows immediately from the definition that Rng(f ) ⊆ Codom(f ). How-
ever, it is possible that the range of f is strictly smaller.

Remark A.59. If f is a function and (x,y) ∈ f , then we may refer to x as the input of f
and y as the output of f .

Exercise A.60. Let X = {◦,�,4,,} and Y = {a,b,c,d,e}. Determine whether each of the fol-
lowing represent functions. Explain. If the relation is a function, determine the domain,
codomain, and range.

1. f : X→ Y defined via f = {(◦, a), (�,b), (4, c), (,,d)}.

2. g : X→ Y defined via g = {(◦, a), (�,b), (4, c), (,, c)}.
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3. h : X→ Y defined via h = {(◦, a), (�,b), (4, c), (◦,d)}.

4. k : X→ Y defined via k = {(◦, a), (�,b), (4, c), (,,d), (�, e)}.

5. l : X→ Y defined via l = {(◦, e), (�, e), (4, e), (,, e)}.

6. m : X→ Y defined via m = {(◦, a), (4,b), (,, c)}.

7. happy : Y → X defined via happy(y) = , for all y ∈ Y .

8. id : X→ X defined via id(x) = x for all x ∈ X.

9. nugget : X→ X defined via

nugget(x) =

x, if x is a geometric shape,
�, otherwise.

Exercise A.61. Let f : X → Y be a function and suppose that X and Y have n and m
elements in them, respectively. Also, suppose that n < m. Is it possible for Rng(f ) =
Codom(f )? Explain.

Exercise A.62. In high school I am sure that you were told that a graph represents a
function if it passes the vertical line test. Using our terminology of ordered pairs, explain
why this works.

Definition A.63. Two functions are equal if they have the same domain, same codomain,
and the same set of ordered pairs in the relation.

Remark A.64. If two functions are defined by the same algebraic formula, but have dif-
ferent domains, then they are not equal. For example, the function f : R→ R defined via
f (x) = x2 is not equal to the function g : N→ N defined via g(x) = x2.

Theorem A.65. If f : X→ Y and g : X→ Y are functions, then f = g iff f (x) = g(x) for all
x ∈ X.

Definition A.66. Let f : X→ Y be a function.

1. The function f is said to be one-to-one (or injective) if for all y ∈ Rng(f ), there is a
unique x ∈ X such that y = f (x).

2. The function f is said to be onto (or surjective) if for all y ∈ Y , there exists x ∈ X
such that y = f (x).

3. If f is both one-to-one and onto, we say that f is a one-to-one correspondence (or
a bijection).

Exercise A.67. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or write a formula (as long as the domain
and codomain are clear). Assume that X and Y are finite sets.



APPENDIX A. PREREQUISITES

1. A function f : X→ Y that is one-to-one but not onto.

2. A function f : X→ Y that is onto but not one-to-one.

3. A function f : X→ Y that is both one-to-one and onto.

4. A function f : X→ Y that is neither one-to-one nor onto.

Theorem A.68. Let f : X → Y be a function. Then f is one-to-one iff for all x1,x2 ∈ X, if
f (x1) = f (x2), then x1 = x2.

Remark A.69. The previous theorem gives a technique for proving that a given function
is one-to-one. Start by assuming that f (x1) = f (x2) and then work to show that x1 = x2.

Remark A.70. To show that a given function is onto, you should start with an arbitrary
y ∈ Rng(f ) and then work to show that there exists x ∈ X such that y = f (x).

Definition A.71. If f : X → Y and g : Y → Z are functions, then a new function g ◦ f :
X→ Z can be defined by (g ◦ f )(x) = g(f (x)) for all x ∈Dom(f ).

Remark A.72. It is important to notice that the function on the right is the one that “goes
first.”

Exercise A.73. In each case, give examples of finite sets X, Y , and Z, and functions f :
X → Y and g : Y → Z that satisfy the given conditions. Drawing bubble diagrams is
sufficient.

1. f is onto, but g ◦ f is not onto.

2. g is onto, but g ◦ f is not onto.

3. f is one-to-one, but g ◦ f is not one-to-one.

4. g is one-to-one, but g ◦ f is not.

Theorem A.74. If f : X→ Y and g : Y → Z are both functions that are onto, then g ◦ f is
also onto.

Theorem A.75. If f : X → Y and g : Y → Z are both functions that are one-to-one, then
g ◦ f is also one-to-one.

Corollary A.76. If f : X → Y and g : Y → Z are both one-to-one correspondences, then
g ◦ f is also a one-to-one correspondence.

Definition A.77. Let f : X → Y be a function. The relation f −1, called f inverse, is
defined via

f −1 = {(f (x),x) | x ∈ X}.

Remark A.78. Notice that we called f −1 a relation and not a function. In some circum-
stances f −1 will be a function and sometimes it won’t be.
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Exercise A.79. Provide an example of a function f : X→ Y such that f −1 is not a function.
A bubble diagram is sufficient.

Theorem A.80. Let f : X→ Y be a function. Then f −1 is a function iff f is 1-1.

Theorem A.81. Let f : X→ Y be a function and suppose that f −1 is a function. Then

1. (f ◦ f −1)(x) = x for all x ∈ Y , and

2. (f −1 ◦ f )(x) = x for all x ∈ X.

(You only need to prove one of these statements; the other is similar.)

Theorem A.82. Let f : X → Y and g : Y → X be functions such that f is a one-to-one
correspondence. If (f ◦ g)(x) = x for all x ∈ Y and (g ◦ f )(x) = x for all x ∈ X, then g = f −1.

Remark A.83. The upshot of the previous two theorems is that if f −1 is a function, then it
is the only one satisfying the two-sided “undoing” property exhibited in Theorem A.81.

The next theorem can be considered to be a converse of Theorem A.82.

Theorem A.84. Let f : X → Y and g : Y → X be functions satisfying (f ◦ g)(x) = x for all
x ∈ Y and (g ◦ f )(x) = x for all x ∈ X. Then f is a one-to-one correspondence.

Theorem A.85. Let f : X→ Y and g : Y → Z be functions. If f and g are both one-to-one
correspondences, then (g ◦ f )−1 = f −1 ◦ g−1.

A.5 Induction

Induction is a technique for proving statements of the form “For all n ∈ N, P (n),” where
P (n) is some predicate involving n. Notice that this is a statement about natural numbers
and not some other set.

Axiom A.86 (Axiom of Induction). Let S ⊆ N such that both

1. 1 ∈ S, and

2. if k ∈ S, then k + 1 ∈ S.

Then S = N.

Remark A.87. Recall that an axiom is a basic mathematical assumption. That is, we are
assuming that the Axiom of Induction is true, which I’m hoping that you can agree is
a pretty reasonable assumption. I like to think of the first hypothesis of the Axiom of
Induction as saying that we have a first rung of a ladder. The second hypothesis says that
if we have some random rung, we can always get to the next rung. Taken together, this
says that we can get from the first rung to the second, from the second to the third, and
so on. Again, we are assuming that the “and so on” works as expected here.
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Theorem A.88 (Principle of Mathematical Induction). Let P (1), P (2), P (3), . . . be a sequence
of statements, one for each natural number.‡ Assume

1. P (1) is true, and

2. If P (k) is true, then P (k + 1) is true.

Then P (n) is true for all n ∈ N.§

Remark A.89. The Principal of Mathematical Induction (PMI) provides us with a process
for proving statements of the form: “For all n ∈ N, P (n),” where P (n) is some predicate
involving n. Hypothesis (1) above is called the base step while (2) is called the inductive
step.

Skeleton Proof A.90 (Proof by induction for (∀n ∈ N)P (n)). Here is what the general
structure for a proof by induction looks like. Remarks are in parentheses.

Proof. We proceed by induction.

(i) Base step: (Verify that P (1) is true. This often, but not always, amounts to plug-
ging n = 1 into two sides of some claimed equation and verifying that both sides
are actually equal. Don’t assume that they are equal!)

(ii) Inductive step: (Your goal is to prove that “For all k ∈ N, if P (k) is true, then P (k+1)
is true.”) Let k ∈ N and assume that P (k) is true. (Now, do some stuff to show that
P (k + 1) is true.) Therefore, P (k + 1) is true.

Thus, by the PMI, P (n) is true for all n ∈ N.

‡In this case, you should think of P (n) as a predicate, where P (1) is the statement that corresponds to
substituting in the value 1 for n.
§Hint: Let S = {k ∈ N | Pk is true} and use the Axiom of Induction. The set S is sometimes called the truth
set. Your job is to show that the truth set is all of N.
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Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem
is just a single number, “the right answer.” It is time to unlearn those lessons; those days
are over. From here on out, mathematics is about discovering proofs and writing them
clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number,
in my comments on your homework and exams. Keep these rules handy so that you may
refer to them as you write your proofs.

1. The writing process. Use the same writing process that you would for any writing
project.

(a) Prewriting. This is the most mathematical step of the process. Often this step
takes place on scratch paper. Figure out the mathematics: test conjectures,
work out examples, try various proof techniques, etc.

(b) Writing. When you understand the mathematics it is time to write the first
draft. The draft may have extraneous information, be missing information, be
written in the wrong order, contain some minor mathematical errors, etc.

(c) Revising. Once you have a first draft, go back and revise the writing. Focus on
large changes such as adding, removing, rearranging, and replacing. Fix any
mathematical errors.

(d) Editing/proofreading. At this stage you must attend to the fine details. Fix any
problems with spelling, grammar, word choice, punctuation, etc. Make sure
all of the mathematics is typeset correctly.

(e) Publishing. Make the final changes so that you can submit your work. You
may need to fit it to a style guide (get the margins correct, add a title page,
etc.), convert it to a certain file type, or print it.

2. The burden of communication lies on you, not on your reader. It is your job to ex-
plain your thoughts; it is not your reader’s job to guess them from a few hints. You
are trying to convince a skeptical reader who doesn’t believe you, so you need to ar-
gue with airtight logic in crystal clear language; otherwise the reader will continue
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to doubt. If you didn’t write something on the paper, then (a) you didn’t commu-
nicate it, (b) the reader didn’t learn it, and (c) the grader has to assume you didn’t
know it in the first place.

3. Tell the reader what you’re proving. The reader doesn’t necessarily know or re-
member what “Theorem 2.13” is. Even a professor grading a stack of papers might
lose track from time to time. Therefore, the statement you are proving should be on
the same page as the beginning of your proof. For an exam this won’t be a problem,
of course, but on your homework, recopy the claim you are proving. This has the
additional advantage that when you study for exams by reviewing your homework,
you won’t have to flip back in the notes/textbook to know what you were proving.

4. Use English words. Although there will usually be equations or mathematical
statements in your proofs, use English sentences to connect them and display their
logical relationships. If you look in your notes/textbook, you’ll see that each proof
consists mostly of English words.

5. Use complete sentences. If you wrote a history essay in sentence fragments, the
reader would not understand what you meant; likewise in mathematics you must
use complete sentences, with verbs, to convey your logical train of thought.

Some complete sentences can be written purely in mathematical symbols, such as
equations (e.g., a3 = b−1), inequalities (e.g., x < 5), and other relations (like 5

∣∣∣10 or
7 ∈ Z). These statements usually express a relationship between two mathematical
objects, like numbers or sets. However, it is considered bad style to begin a sentence
with symbols. A common phrase to use to avoid starting a sentence with mathemat-
ical symbols is “We see that...”

6. Show the logical connections among your sentences. Use phrases like “Therefore”
or “because” or “if. . . , then. . . ” or “if and only if” to connect your sentences.

7. Know the difference between statements and objects. A mathematical object is a
thing, a noun, such as a group, an element, a vector space, a number, an ordered
pair, etc. Objects either exist or don’t exist. Statements, on the other hand, are
mathematical sentences: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it’s an
object (e.g., “x2 + 3”) or a statement (e.g., “x2 + 3 < 7”). One way to tell is that every
mathematical statement includes a verb, such as =, ≤, “divides”, etc.

8. “=” means equals. Don’t write A = B unless you mean that A actually equals B.
This rule seems obvious, but there is a great temptation to be sloppy. In calculus,
for example, some people might write f (x) = x2 = 2x (which is false), when they
really mean that “if f (x) = x2, then f ′(x) = 2x.”

9. Don’t interchange = and =⇒ . The equals sign connects two objects, as in “x2 = b”;
the symbol “ =⇒ ” is an abbreviation for “implies” and connects two statements, as
in “a+ b = a =⇒ b = 0.” You should avoid using =⇒ in your formal write-ups.
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10. Say exactly what you mean. Just as the = is sometimes abused, so too people some-
times write A ∈ B when they mean A ⊆ B, or write aij ∈ A when they mean that aij is
an entry in matrix A. Mathematics is a very precise language, and there is a way to
say exactly what you mean; find it and use it.

11. Don’t write anything unproven. Every statement on your paper should be some-
thing you know to be true. The reader expects your proof to be a series of statements,
each proven by the statements that came before it. If you ever need to write some-
thing you don’t yet know is true, you must preface it with words like “assume,”
“suppose,” or “if” (if you are temporarily assuming it), or with words like “we need
to show that” or “we claim that” (if it is your goal). Otherwise the reader will think
they have missed part of your proof.

12. Write strings of equalities (or inequalities) in the proper order. When your reader
sees something like

A = B ≤ C =D,

he/she expects to understand easily why A = B, why B ≤ C, and why C = D, and
he/she expects the point of the entire line to be the more complicated fact that A ≤
D. For example, if you were computing the distance d of the point (12,5) from the
origin, you could write

d =
√

122 + 52 = 13.

In this string of equalities, the first equals sign is true by the Pythagorean theorem,
the second is just arithmetic, and the point is that the first item equals the last item:
d = 13.

A common error is to write strings of equations in the wrong order. For example,
if you were to write “

√
122 + 52 = 13 = d”, your reader would understand the first

equals sign, would be baffled as to how we know d = 13, and would be utterly per-
plexed as to why you wanted or needed to go through 13 to prove that

√
122 + 52 = d.

13. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!

14. Don’t write the proof backwards. Beginning students often attempt to write “proofs”
like the following, which attempts to prove that tan2(x) = sec2(x)− 1:

tan2(x) =sec2(x)− 1(
sin(x)
cos(x)

)2

=
1

cos2(x)
− 1

sin2(x)
cos2(x)

=
1− cos2(x)

cos2(x)

sin2(x) =1− cos2(x)

sin2(x) + cos2(x) =1
1 =1
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Notice what has happened here: the writer started with the conclusion, and deduced
the true statement “1 = 1.” In other words, he/she has proved “If tan2(x) = sec2(x)−
1, then 1 = 1,” which is true but highly uninteresting.

Now this isn’t a bad way of finding a proof. Working backwards from your goal
often is a good strategy on your scratch paper, but when it’s time to write your proof,
you have to start with the hypotheses and work to the conclusion.

15. Be concise. Most students err by writing their proofs too short, so that the reader
can’t understand their logic. It is nevertheless quite possible to be too wordy, and
if you find yourself writing a full-page essay, it’s probably because you don’t really
have a proof, but just an intuition. When you find a way to turn that intuition into
a formal proof, it will be much shorter.

16. Introduce every symbol you use. If you use the letter “k,” the reader should know
exactly what k is. Good phrases for introducing symbols include “Let n ∈ N,” “Let k
be the least integer such that. . . ,” “For every real number a. . . ,” and “Suppose that
X is a counterexample.”

17. Use appropriate quantifiers (once). When you introduce a variable x ∈ S, it must
be clear to your reader whether you mean “for all x ∈ S” or just “for some x ∈ S.” If
you just say something like “y = x2 where x ∈ S,” the word “where” doesn’t indicate
whether you mean “for all” or “some”.

Phrases indicating the quantifier “for all” include “Let x ∈ S”; “for all x ∈ S”; “for
every x ∈ S”; “for each x ∈ S”; etc. Phrases indicating the quantifier “some” (or
“there exists”) include “for some x ∈ S”; “there exists an x ∈ S”; “for a suitable
choice of x ∈ S”; etc.

On the other hand, don’t introduce a variable more than once! Once you have said
“Let x ∈ S,” the letter x has its meaning defined. You don’t need to say “for all x ∈ S”
again, and you definitely should not say “let x ∈ S” again.

18. Use a symbol to mean only one thing. Once you use the letter x once, its meaning
is fixed for the duration of your proof. You cannot use x to mean anything else.

19. Don’t “prove by example.” Most problems ask you to prove that something is true
“for all”—You cannot prove this by giving a single example, or even a hundred. Your
answer will need to be a logical argument that holds for every example there possibly
could be.

20. Write “Let x = . . . ,” not “Let · · · = x.” When you have an existing expression, say a2,
and you want to give it a new, simpler name like b, you should write “Let b = a2,”
which means, “Let the new symbol b mean a2.”This convention makes it clear to the
reader that b is the brand-new symbol and a2 is the old expression he/she already
understands.

If you were to write it backwards, saying “Let a2 = b,” then your startled reader
would ask, “What if a2 , b?”
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21. Make your counterexamples concrete and specific. Proofs need to be entirely gen-
eral, but counterexamples should be absolutely concrete. When you provide an
example or counterexample, make it as specific as possible. For a set, for example,
you must name its elements, and for a function you must give its rule. Do not say
things like “θ could be one-to-one but not onto”; instead, provide an actual function
θ that is one-to-one but not onto.

22. Don’t include examples in proofs. Including an example very rarely adds anything
to your proof. If your logic is sound, then it doesn’t need an example to back it up.
If your logic is bad, a dozen examples won’t help it (see rule 19). There are only two
valid reasons to include an example in a proof: if it is a counterexample disproving
something, or if you are performing complicated manipulations in a general setting
and the example is just to help the reader understand what you are saying.

23. Use scratch paper. Finding your proof will be a long, potentially messy process,
full of false starts and dead ends. Do all that on scratch paper until you find a real
proof, and only then break out your clean paper to write your final proof carefully.
Do not hand in your scratch work!

Only sentences that actually contribute to your proof should be part of the proof.
Do not just perform a “brain dump,” throwing everything you know onto the paper
before showing the logical steps that prove the conclusion. That is what scratch paper
is for.



Appendix C

Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and
throughout your mathematical career.

1. Definition—a precise and unambiguous description of the meaning of a mathemat-
ical term. It characterizes the meaning of a word by giving all the properties and
only those properties that must be true.

2. Theorem—a mathematical statement that is proved using rigorous mathematical
reasoning. In a mathematical paper, the term theorem is often reserved for the
most important results.

3. Lemma—a minor result whose sole purpose is to help in proving a theorem. It is a
stepping stone on the path to proving a theorem. Very occasionally lemmas can take
on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s
lemma).

4. Corollary—a result in which the (usually short) proof relies heavily on a given the-
orem (we often say that “this is a corollary of Theorem A”).

5. Proposition—a proved and often interesting result, but generally less important
than a theorem.

6. Conjecture—a statement that is unproved, but is believed to be true (Collatz con-
jecture, Goldbach conjecture, twin prime conjecture).

7. Claim—an assertion that is then proved. It is often used like an informal lemma.

8. Axiom/Postulate—a statement that is assumed to be true without proof. These are
the basic building blocks from which all theorems are proved (Euclid’s five postu-
lates, Zermelo-Frankel axioms, Peano axioms).

9. Identity—a mathematical expression giving the equality of two (often variable)
quantities (trigonometric identities, Euler’s identity).
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10. Paradox—a statement that can be shown, using a given set of axioms and defini-
tions, to be both true and false. Paradoxes are often used to show the inconsistencies
in a flawed theory (Russell’s paradox). The term paradox is often used informally
to describe a surprising or counterintuitive result that follows from a given set of
rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn).



Appendix D

Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play
a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarely-
used word rodomontade. According to the Oxford English Dictionary∗ (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic
speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten min-
utes later ask her to define rodomontade. Most likely she will be able to give a reasonably
accurate definition. Maybe she’d say something like, “It is a speech or act or piece of
writing created by a pompous or egotistical person who wants to show off how great they
are.” It is unlikely that she will have quoted the OED word-for-word. In everyday En-
glish that is fine—you would probably agree that your friend knows the meaning of the
rodomontade. This is because most definitions are descriptive. They describe the common
usage of a word.

Let us take a mathematical example. The OED† gives this definition of continuous.

Characterized by continuity; extending in space without interruption of sub-
stance; having no interstices or breaks; having its parts in immediate connec-
tion; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose
graph can be drawn “without picking up the pencil.” This definition is descriptive. (As
we learned in calculus the picking-up-the-pencil description is not a perfect description
of continuous functions.) This is not a mathematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the exact and
correct meaning of a word. Contrast the OED’s descriptive definition of continuous with
the the definition of continuous found in a real analysis textbook.

A function f : A→ R is continuous at a point c ∈ A if, for all ε > 0, there exists
δ > 0 such that whenever |x−c| < δ (and x ∈ A) it follows that |f (x)−f (c)| < ε. If f

∗http://www.oed.com/view/Entry/166837
†http://www.oed.com/view/Entry/40280
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is continuous at every point in the domain A, then we say that f is continuous
on A.‡

In mathematics there is very little freedom in definitions. Mathematics is a deductive
theory; it is impossible to state and prove theorems without clear definitions of the math-
ematical terms. The definition of a term must completely, accurately, and unambiguously
describe the term. Each word is chosen very carefully and the order of the words is crit-
ical. In the definition of continuity changing “there exists” to “for all,” changing the
orders of quantifiers, changing < to ≤ or >, or changing R to Z would completely change
the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage
you memorize the definitions word-for-word. It is the safest way to guarantee that you
have it correct. As you gain confidence and familiarity with the subject you may be ready
to modify the wording. You may want to change “for all” to “given any” or you may want
to change |x − c| < δ to −δ < x − c < δ or to “the distance between x and c is less than δ.”

Of course, memorization is not enough; you must have a conceptual understanding of
the term, you must see how the formal definition matches up with your conceptual un-
derstanding, and you must know how to work with the definition. It is perhaps with the
first of these that descriptive definitions are useful. They are useful for building intuition
and for painting the “big picture.” Only after days (weeks, months, years?) of experience
does one get an intuitive feel for the ε,δ-definition of continuity; most mathematicians
have the “picking-up-the-pencil” definitions in their head. This is fine as long as we
know that it is imperfect, and that when we prove theorems about continuous functions
mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive defi-
nition was not sufficient. In 2003 the German version of the game show Who wants to be
a millionaire? contained the following question: “Every rectangle is: (a) a rhombus, (b) a
trapezoid, (c) a square, (d) a parallelogram.”

The confused contestant decided to skip the question and left with e4000. Afterward
the show received letters from irate viewers. Why were the contestant and the viewers
upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But
what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilat-
eral with a pair of parallel sides. But this leaves open the question: can a trapezoid have
two pairs of parallel sides or must there only be one pair? The viewers said two pairs is
allowed, the producers of the television show said it is not. This is a case in which a clear,
precise, mathematical definition is required.

‡This definition is taken from page 109 of Stephen Abbott’s Understanding Analysis, but the definition
would be essentially the same in any modern real analysis textbook.
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