
Chapter 7

Cosets, Lagrange’s Theorem, and Normal
Subgroups

7.1 Cosets
Undoubtably, you’ve noticed numerous times that if G is a group with H  G and g 2 G,
then both |H | and |g | divide |G|. The theorem that says this is always the case is called
Lagrange’s theorem and we’ll prove it towards the end of this chapter. We begin with a
definition.

Definition 7.1. Let G be a group and let H  G and a 2 G. The subsets

aH := {ah | h 2H}
and

Ha := {ha | h 2H}
are called the left and right cosets of H containing a, respectively.

To gain some insight, let’s tinker with an example. Consider the dihedral group D3 =
hr, si and let H = hsi  D3. To compute the right cosets of H , we need to multiply all of
the elements of H on the right by the elements of G. We see that

He = {ee, se} = {e, s} =H

Hr = {er, sr} = {r, sr}
Hr

2 = {er2, sr2} = {r2, rs}
Hs = {es, ss} = {s, e} =H

Hsr = {esr, ssr} = {sr, r}
Hrs = {ers, srs} = {rs, ssr2} = {rs, r2}.

Despite the fact that we made six calculations (one for each element in D3), if we scan the
list, we see that there are only 3 distinct cosets, namely

H =He =Hs = {e, s}
Hr =Hsr = {r, sr}
Hr

2 =Hrs = {r2, rs}.
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We can make a few more observations. First, the resulting cosets formed a partition of
D3. That is, every element of D3 appears in exactly one coset. Moreover, all the cosets are
the same size—two elements in each coset in this case. Lastly, each coset can be named
in multiple ways. In particular, the elements of the coset are exactly the elements of D3
we multiplied H by. For example, Hr = Hsr and the elements of this coset are r and sr.
Shortly, we will see that these observations hold, in general.

Here is another significant observation we can make. Consider the Cayley diagram
for D3 with generating set {r, s} that is given in Figure 7.1. Given this Cayley diagram,
we can visualize the subgroup H and its clones. Moreover, H and its clones are exactly
the 3 right cosets of H . We’ll see that, in general, the right cosets of a given subgroup are
always the subgroup and its clones (see Problem 7.15).

e
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s

rs sr

Figure 7.1. Cayley diagram for D3 with generating set {r, s}.

Exercise 7.2. Consider the group D3. Find all the left cosets for H = hsi. Are they the
same as the right cosets? Are they the same as the subgroup H and its clones that we can
see in the Cayley graph for D3 with generating set {r, s}?

As the previous exercise indicates, the collections of left and right cosets may not be
the same and when they are not the same, the subgroup and its clones do not coincide
with the left cosets.

You might be thinking that somehow right cosets are “better” than left cosets since we
were able to visualize them in the Cayley graph. However, this is just a consequence of
our convention of composing actions from right to left. If we had adopted a left to right
convention, then we would be able to visualize the left cosets in Cayley diagrams.

Computing left and right cosets using a group table is fairly easy. Hopefully, you
figured out in Exercise 7.2 that the left cosets of H = hsi in D3 are H = {e, s}, srH = {r2, sr},
and rsH = {r, rs}. Now, consider the following group table for D3 that has the rows and
columns arranged according to the left cosets of H .
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⇤ e s sr r
2

rs r

e e s sr r
2

rs r

s s e r rs r
2

sr

sr sr r
2

e s r rs

r
2

r
2

sr rs r s e

rs rs r r
2

sr e s

r r rs s e sr r
2

The left coset srH must appear in the row labeled by sr and in the columns labeled by the
elements of H = {e, s}. We’ve depicted this below.

⇤ e s sr r
2

rs r

e e s sr r
2

rs r

s s e r rs r
2

sr

sr sr r
2

e s r rs

r
2

r
2

sr rs r s e

rs rs r r
2

sr e s

r r rs s e sr r
2

On the other hand, the right coset Hsr must appear in the column labeled by sr and the
rows labeled by the elements of H = {e, s}:

⇤ e s sr r
2

rs r

e e s sr r
2

rs r

s s e r rs r
2

sr

sr sr r
2

e s r rs

r
2

r
2

sr rs r s e

rs rs r r
2

sr e s

r r rs s e sr r
2

As we can see from the tables, srH ,Hsr since {sr, r2} , {sr, r}. If we color the entire group
table for D3 according to which left coset an element belongs to, we get the following.

⇤ e s sr r
2

rs r

e e s sr r
2

rs r

s s e r rs r
2

sr

sr sr r
2

e s r rs

r
2

r
2

sr rs r s e

rs rs r r
2

sr e s

r r rs s e sr r
2

We would get a similar table (but in this case, not identical) if we colored the elements
according to the right cosets.

Let’s tackle a few more examples.

Exercise 7.3. Consider D3 and let K = hri.
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(a) Find all of the left cosets of K and then find all of the right cosets of K in D3. Any
observations?

(b) Write down the group table for D3, but this time arrange the rows and columns
according to the left cosets for K . Color the entire table according to which left coset
an element belongs to. Can you visualize the observations you made in part (a)?

Exercise 7.4. Consider Q8. Let H = hii and K = h�1i.

(a) Find all of the left cosets of H and all of the right cosets of H in Q8.

(b) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for H . Color the entire table according to which left coset an
element belongs to.

(c) Find all of the left cosets of K and all of the right cosets of K in Q8.

(d) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for K . Color the entire table according to which left coset an
element belongs to.

Exercise 7.5. Consider S4. Find all of the left cosets and all of the right cosets of A4 in
S4. Instead of doing brute-force, try to be clever. Hint: What happens when you compose
two even permutations versus an even permutation and an odd permutation?

Exercise 7.6. Consider Z8. Find all of the left cosets and all of the right cosets of h4i in
Z8. Why do you know the left and right cosets are the same without actually verifying?

Exercise 7.7. Consider (Z,+). Find all of the left cosets and all of the right cosets of 3Z in
Z. Why do you know the left and right cosets are the same without actually verifying?

Theorem 7.8. Let G be a group and let H  G. If G is abelian, then for all a 2 G, aH =Ha.
That is, if G is abelian, then the left cosets of H are the same as the right cosets of H .

Exercises 7.2 and 7.3 illustrate that if a group is non-abelian, then the cosets of a
subgroup may or may not coincide. That is, knowing that the group is non-abelian is not
enough to determine whether the left and right cosets are di↵erent.

Now that we’ve played with a few examples, let’s make a few general observations.

Theorem 7.9. Let G be a group and let H  G.

(a) If a 2 G, then a 2 aH (respectively, Ha).

(b) If b 2 aH (respectively, Ha), then aH = bH (respectively, Ha =Hb).

(c) If a 2H , then aH =H =Ha.

(d) If a <H , then for all h 2H , ah <H (respectively, ha <H).
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The upshot of part (b) of Theorem 7.9 is that cosets can have di↵erent names. In
particular, if b is an element of the left coset aH , then we could have just as easily called
the coset by the name bH . In this case, both a and b are called coset representatives.

In all of the examples we’ve seen so far, the left and right cosets partitioned G into
equal-sized chunks. We need to prove that this is true in general. To prove that the cosets
form a partition, we’ll define an appropriate equivalence relation.

Theorem 7.10. Let G be a group and let H  G. Define ⇠L and ⇠R via

a ⇠L b if and only if a�1b 2H

and

a ⇠R b if and only if ab�1 2H .

Then both ⇠L and ⇠R are equivalence relations.⇤

Problem 7.11. If [a]⇠L (respectively, [a]⇠R) denotes the equivalence class of a under ⇠L
(respectively, ⇠R), what is [a]⇠L (respectively, [a]⇠R)? Hint: It’s got something to do with
cosets.

Corollary 7.12. If G is a group and H  G, then the left (respectively, right) cosets of H
form a partition of G.

Next, we argue that all of the cosets have the same size.

Theorem 7.13. Let G be a group, H  G, and a 2 G. Define � : H ! aH via �(h) = ah.
Then � is one-to-one and onto.

Corollary 7.14. Let G be a group and let H  G. Then all of the left and right cosets of H
are the same size as H . In other words #(aH) = |H | = #(Ha) for all a 2 G.†

The final result of this chapter verifies that the clones of a subgroup in a Cayley dia-
gram coincide with the right cosets of the subgroup.

Problem 7.15. Let G be a finite group with generating set S and let H be a proper sub-
group of G and suppose we can visualize the subgroup for H in the Cayley diagram for G
using S as the generating set.

(a) If g 2 G, verify that the right coset Hg is a clone of H . Hint: Suppose s 2 S and
h1,h2 2 H such that there is an arrow labeled by s that points from h1 to h2. Argue
that there is an arrow labeled by s pointing from h1g to h2g .

(b) If C is a clone of H , prove that C is a right coset of H .
⇤You only need to prove that either ⇠L or ⇠R is an equivalence relation as the proof for the other is similar.
†As you probably expect, #(aH) denotes the size of aH . Note that everything works out just fine even if H
has infinite order.
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7.2 Lagrange’s Theorem
We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born
mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove
the theorem that is named after him. The theorem was actually proved by Carl Friedrich
Gauss in 1801.

Theorem 7.16 (Lagrange’s Theorem). Let G be a finite group and let H  G. Then |H |
divides |G|.

This simple sounding theorem is extremely powerful. One consequence is that groups
and subgroups have a fairly rigid structure. Suppose G is a finite group and let H  G.
Since G is finite, there must be a finite number of distinct left cosets, say H,a2H,. . . , anH .
Corollary 7.14 tells us that each of these cosets is the same size. In particular, Lagrange’s
Theorem implies that for each i 2 {1, . . . ,n}, |aiH | = |G|/n, or equivalently n = |G|/ |aiH |.
This is depicted in Figure 7.2, where each rectangle represents a coset and we’ve labeled
a single coset representative in each case.

e a2 an

H a2H anH

· · ·

Figure 7.2

One important consequence of Lagrange’s Theorem is that it narrows down the possi-
ble sizes for subgroups.

Exercise 7.17. Suppose G is a group of order 48. What are the possible orders for sub-
groups of G?

Lagrange’s Theorem tells us what the possible orders of a subgroup are, but if k is a
divisor of the order of a group, it does not guarantee that there is a subgroup of order k.
It’s not too hard to show that the converse of Lagrange’s Theorem is true for cyclic groups.
However, it’s not true, in general. The next problem will show that A4 is an example of a
group where the converse of Lagrange’s Theorem fails. Can you think of others?

Problem 7.18. Consider the alternating group A4. Lagrange’s Theorem tells us that the
possible orders of subgroups for A4 are 1, 2, 3, 4, 6, and 12.

(a) Find examples of subgroups of A4 of orders 1, 2, 3, 4, and 12.

(b) Write down all of the elements of order 2 in A4.

(c) Argue that any subgroup of A4 that contains any two elements of order 2 must
contain a subgroup isomorphic to V4.
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(d) Argue that if A4 has a subgroup of order 6, that it cannot be isomorphic to R6.

(e) It turns out that up to isomorphism, there are only two groups of order 6, namely
S3 and R6. Suppose that H is a subgroup of A4 of order 6. Part (d) guarantees that
H � S3. Argue that H must contain all of the elements of order 2 from A4.

(f) Explain why A4 cannot have a subgroup of order 6.

Using Lagrange’s Theorem, we can quickly prove both of the following theorems.

Theorem 7.19. Let G be a finite group and let a 2 G. Then |a| divides |G|.
Theorem 7.20. Every group of prime order is cyclic.

Since the converse of Lagrange’s Theorem is not true, the converse of Theorem 7.19 is
not true either. However, it is much easier to find a counterexample.

Problem 7.21. Argue that S4 does not have any elements of order 8.

Lagrange’s Theorem motivates the following definition.

Definition 7.22. Let G be a group and let H  G. The index of H in G is the number of
cosets (left or right) of H in G. Equivalently, if G is finite, then the index of H in G is
equal to |G|/ |H |. We denote the index via [G :H].

Exercise 7.23. Let H = h(1,2)(3,4), (1,3)(2,4)i.
(a) Find [A4 :H].

(b) Find [S4 :H].

Exercise 7.24. Find [Z : 4Z].

7.3 Normal Subgroups
We’ve seen an example where the left and right cosets of a subgroup were di↵erent and a
few examples where they coincided. In the latter case, the subgroup has a special name.

Definition 7.25. Let G be a group and let H  G. If aH = Ha for all a 2 G, then we say
that H is a normal subgroup. If H is a normal subgroup of G, then we write H E G.

Exercise 7.26. Provide an example of group that has a subgroup that is not normal.

Problem 7.27. Suppose G is a finite group and let H  G. If H E G and we arrange the
rows and columns of the group table for G according to the left cosets ofH and then color
the corresponding cosets, what property will the table have? Is the converse true? That
is, if the table has the property you discovered, will H be normal in G?

There are a few instances where we can guarantee that a subgroup will be normal.

Theorem 7.28. Suppose G is a group. Then {e}E G and G E G.
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Theorem 7.29. If G is an abelian group, then all subgroups of G are normal.

A group does not have to be abelian in order for all the proper subgroups to be normal.

Problem 7.30. Argue that all of the proper subgroups of Q8 are normal in Q8.

Theorem 7.31. Suppose G is a group and let H  G such that [G :H] = 2. Then H E G.

It turns out that normality is not transitive.

Problem 7.32. Consider hsi = {e, s} and hr2, sr2i = {e, r2, sr2, s}. It is clear that

hsi  hr2, sr2i D4.

Show that hsiE hr2, sr2i and hr2, sr2iED4, but hsi5D4.

The previous problem illustrates that H E K E G does not imply H E G.

Definition 7.33. Suppose G is a group and let H  G. For g 2 G, we define the conjugate
of H by g to be the set

gHg
�1 := {ghg�1 | h 2H}.

Theorem 7.34. Suppose G is a group and letH  G. ThenH E G if and only if gHg
�1 ✓H

for all g 2 G.

Another way of thinking about normal subgroups is that they are “closed under con-
jugation.” It’s not too hard to show that if gHg

�1 ✓H for all g 2 G, then we actually have
gHg

�1 = H for all g 2 G. This implies that H E G if and only if gHg
�1 = H for all g 2 G.

This seemingly stronger version of Theorem 7.34 is sometimes used as the definition of
normal subgroup. This discussion motivates the following definition.

Definition 7.35. Let G be a group and letH  G. The normalizer ofH inG is defined via

NG(H) := {g 2 G | gHg
�1 =H}.

Theorem 7.36. If G is a group and H  G, then NG(H) is a subgroup of G.

Theorem 7.37. If G is a group and H  G, then H E NG(H). Moreover, NG(H) is the
largest subgroup of G in which H is normal.

It is worth pointing out that the “smallest” NG(H) can be is H itself—certainly a sub-
group is a normal subgroup of itself. Also, the “largest” that NG(H) can be is G, which
happens precisely when H is normal in G.

Exercise 7.38. Find ND4(V4).

Exercise 7.39. Find ND3(hsi).
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We conclude this chapter with a few remarks. We’ve seen examples of groups that
have subgroups that are normal and subgroups that are not normal. In an abelian group,
all the subgroups are normal. It turns out that there are examples of groups that have no
normal subgroups. These groups are called simple groups. The smallest simple group
is A5, which has 60 elements and lots of proper nontrivial subgroups, none of which are
normal.

The classification of the finite simple groups is a theorem stating that every finite
simple group belongs to one of four categories:

1. A cyclic group with prime order;

2. An alternating group of degree at least 5;

3. A simple group of Lie type, including both

(a) the classical Lie groups, namely the simple groups related to the projective
special linear, unitary, symplectic, or orthogonal transformations over a finite
field;

(b) the exceptional and twisted groups of Lie type (including the Tits group);

4. The 26 sporadic simple groups.

These groups can be seen as the basic building blocks of all finite groups, in a way remi-
niscent of the way the prime numbers are the basic building blocks of the natural num-
bers.

The classification theorem has applications inmany branches of mathematics, as ques-
tions about the structure of finite groups (and their action on other mathematical objects)
can sometimes be reduced to questions about finite simple groups. Thanks to the clas-
sification theorem, such questions can sometimes be answered by checking each family
of simple groups and each sporadic group. The proof of the theorem consists of tens
of thousands of pages in several hundred journal articles written by about 100 authors,
published mostly between 1955 and 2004.

The classification of the finite simple groups is a modern achievement in abstract
algebra and I highly encourage you to go learn more about it. You might be especially
interested in learning about one of the sporadic groups called the Monster Group.
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