
Chapter 5

A Formal Approach to Groups

In this chapter we finally introduce the formal definition of a group. From this point
on, our focus will shift from developing intuition to studying the abstract properties of
groups. However, we should not abandon the intuition we have gained. As we progress,
your intuitive understanding of groups will continue to improve and you should rely
on this understanding as you try to make sense of the notions that follow. There has
been plenty of intentional foreshadowing, so expect to revisit concepts you’ve already
encountered. We’ll also encounter plenty of new stu↵, too.

It is important to point out that things are about to get quite a bit more di�cult for
most of you. Be patient and persistent!

5.1 Binary Operations
After learning to count as a child, you likely learned how to add, subtract, multiply, and
divide with natural numbers. Loosely speaking, these operations are examples of binary
operations since we are combining two objects to obtain a single object. More formally,
we have the following definition.

Definition 5.1. A binary operation ⇤ on a set A is a function from A⇥A into A. For each
(a,b) 2 A⇥A, we denote the element ⇤(a,b) via a ⇤ b.

Remark 5.2. Don’t misunderstand the use of ⇤ in this context. We are not implying that
⇤ is the ordinary multiplication of real numbers that you are familiar with. We use ⇤ to
represent a generic binary operation.

Remark 5.3. Notice that since the codomain of a binary operation on a set A is A, binary
operations require that we yield an element of A when combining two elements of A. In
this case, we say that A is closed under ⇤. Binary operations have this closure property
by definition. Also, since binary operations are functions, any attempt to combine two
elements from A should result in a unique element of A. In this case, we say that ⇤ iswell-
defined. Moreover, since the domain of ⇤ is A⇥A, it must be the case that ⇤ is defined for
all pairs of elements from A.
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Example 5.4. Examples of binary operations include + (addition), � (subtraction), and ·
(multiplication) on the real numbers. However, ÷ (division) is not a binary operation on
the set of real numbers because all elements of the form (a,0) are not in the domain R⇥R
since we cannot divide by 0. Yet, ÷ is a suitable binary operation on R \ {0}.

Example 5.5. Let C be the set of continuous functions from R to R. Then � (function
composition) is a binary operation on C.

Example 5.6. Consider the 6 actions of D3. The composition of these actions is a binary
operation on D3. In fact, composition of actions for each of the groups that we have seen
is a binary operation on the given group. Notice that we never used a symbol for these
binary operations, but rather used juxtaposition (i.e., ab is the juxtaposition of a and b).

Example 5.7. Let M2⇥2(R) be the set of 2 ⇥ 2 matrices with real number entries. Then
matrix multiplication is a binary operation on M2⇥2(R).

Exercise 5.8. Explain why composition of spins is not a binary operation on the set of
allowable spins in Spin3⇥3. Hint: Reread the paragraph below Exercise 2.8.

Exercise 5.9. Let M(R) be the set of matrices (of any size) with real number entries. Is
matrix addition a binary operation on M(R)? How about matrix multiplication? What if
you restrict to square matrices of a fixed size n⇥n?

Exercise 5.10. Determine whether [ (union) and \ (intersection) are binary operations
on P (Z) (i.e., the power set of the integers).

Exercise 5.11. Consider the closed interval [0,1] and define ⇤ on [0,1] via a ⇤ b =min{a,b}
(i.e., take the minimum of a and b). Determine whether ⇤ is a binary operation on [0,1].

Some binary operations have additional properties.

Definition 5.12. Let A be a set and let ⇤ be a binary operation on A.

(a) We say that ⇤ is associative if and only if (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c) for all a,b,c 2 A.

(b) We say that ⇤ is commutative if and only if a ⇤ b = b ⇤ a for all a,b 2 A.

Exercise 5.13. Provide at least one example of a binary operation on a set that is commu-
tative. How about not commutative?

Theorem 5.14. Let A be a set and let F be the set of functions from A to A. Then function
composition is an associative binary operation on F.

When the set A is finite, we can represent a binary operation on A using a table in
which the elements of the set are listed across the top and the left side (in the same order).
The entry in the ith row and jth column of the table represents the output of combining
the element that labels the ith row with the element that labels the jth column (order
matters).

Example 5.15. Consider the following table.
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⇤ a b c

a b c b

b a c b

c c b a

This table represents a binary operation on the set A = {a,b,c}. In this case, a ⇤ b = c while
b ⇤ a = a. This shows that ⇤ is not commutative.

Exercise 5.16. What property must a table for a binary operation have in order for the
operation to be commutative?

Exercise 5.17. Fill in the missing entries in the following table so that ⇤ defines an asso-
ciative binary operation on {a,b,c,d}.

⇤ a b c d

a a b c d

b b a c d

c c d c d

d

5.2 Groups
Without further ado, here is our o�cial definition of a group.

Definition 5.18. A group (G,⇤) is a set G together with a binary operation ⇤ such that the
following axioms hold.

(0) The set G is closed under ⇤.

(1) The operation ⇤ is associative.

(2) There is an element e 2 G such that for all g 2 G, e ⇤ g = g ⇤ e = g . We call e the
identity.

(3) Corresponding to each g 2 G, there is an element g 0 2 G such that g ⇤ g 0 = g
0 ⇤ g = e.

In this case, g 0 is called the inverse of g , which we shall denote as g�1.

Remark 5.19. A few comments are in order.

(a) Notice that a group has two parts to it, namely, a set and a binary operation. For
simplicity, if (G,⇤) is a group, we will often refer to G as being the group. However,
you must remember that the binary operation is part of the structure.

(b) Axiom 2 forces G to be nonempty.

(c) In the generic case, even if ⇤ is not actually multiplication, we will refer to a ⇤ b as
the product of a and b.
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(d) We are not requiring ⇤ to be commutative. If ⇤ is commutative, then we say that G is
abelian⇤ (or commutative).

Exercise 5.20. Explain why Axiom 0 is unnecessary.

At this time, we have two definitions of a group. The first one was intended to provide
an intuitive introduction and Definition 5.18 provides a rigorous mathematical defini-
tion. We should confirm that these two definitions are in fact compatible.

Exercise 5.21. Compare and contrast our two definitions of a group. How do the rules
and axioms match up?

Exercise 5.22. Quickly verify that Spin1⇥2, S2, R4, D3, D4, V4, and Q8 are groups under
composition of actions.

Exercise 5.23. Determine whether each of the following are groups. If the pair is a group,
determine whether it is abelian and identify the identity. Explain your answers.

(a) (Z,+)

(b) (N,+)

(c) (Z, ·)

(d) (R,+)

(e) (R, ·)

(f) (R \ {0}, ·)

(g) (M2⇥2(R),+)

(h) (M2⇥2(R),⇤), where ⇤ is matrix multiplication.

(i) ({a,b,c},⇤), where ⇤ is the operation determined by the table in Example 5.15.

(j) ({a,b,c,d},⇤), where ⇤ is the operation determined by the table in Exercise 5.17.

Notice that in Axiom 2 of Definition 5.18, we said the identity and not an identity.
Implicitly, this implies that the identity is unique.

Theorem 5.24. Let G be a group with binary operation ⇤. Then there is a unique identity
element in G. That is, there is only one element e in G such that g ⇤ e = e ⇤ g = g for all
g 2 G.

The following theorem is crucial for proving many theorems about groups.

Theorem 5.25 (Cancellation Law). Let (G,⇤) be a group and let g,x,y 2 G. Then g ⇤x = g ⇤y
if and only if x = y. Similarly, x ⇤ g = y ⇤ g if and only if x = y.†

⇤Commutative groups are called abelian in honor of the Norwegian mathematician Niels Abel (1802–1829).
†You only need to prove one of these statements as the proof of the other is symmetric.
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Exercise 5.26. Show that (R, ·) fails the Cancellation Law (confirming the fact that it is
not a group).

Corollary 5.27. Let G be a group with binary operation ⇤. Then each g 2 G has a unique
inverse.

Theorem 5.28. Let (G,⇤) be a group and let g,h 2 G. Then the equations g ⇤ x = h and
y ⇤ g = h have unique solutions for x and y in G.

While proving the previous few theorems, hopefully one of the things you realized is
that you can multiply both sides of a group equation by the same element but that you
have to do it on the same side of each half. That is, since a group may or may not be
abelian, if I multiply one side of an equation on the left by a group element, then we
must multiply the other side of the equation on the left by the same group element.

Despite the fact that a group may or may not be abelian, if one product is equal to the
identity, then reversing the order yields the same result.

Theorem 5.29. Let G be a group with binary operation ⇤. If g ⇤ h = e, then h ⇤ g = e.

The upshot of the previous theorem is if we have a “left inverse” then we automatically
have a “right inverse” (and vice versa).

The next theorem should not be surprising.

Theorem 5.30. Let (G,⇤) be a group and let g 2 G. Then (g�1)�1 = g .

Definition 5.31. Let (G,⇤) be a group and let g 2 G. Then for n 2 N, we define

g
n = g ⇤ g ⇤ · · · ⇤ g

|       {z       }
n factors

and
g
�n = g

�1 ⇤ g�1 ⇤ · · · ⇤ g�1
|                {z                }

n factors

.

Moreover, we define g0 = e.

The good news is that the rules of exponents you are familiar with still hold for groups.

Theorem 5.32. Let (G,⇤) be a group and let g 2 G. For n,m 2 Z, we have the following:

(a) g
n ⇤ gm = g

n+m,

(b) (gn)�1 = g
�n.
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5.3 Group Tables
Recall that we could represent a binary operation on a finite set using a table. Since
groups have binary operations at their core, we can represent a finite group (i.e., a group
with finitely many elements) using a table, called a group table (or Cayley table). For
example, below are group tables for D3 and V4, respectively.

⇤ e r r
2

s sr sr
2

e e r r
2

s sr sr
2

r r r
2

e sr
2

s sr

r
2

r
2

e r sr sr
2

s

s s sr sr
2

e r r
2

sr sr sr
2

s r
2

e r

sr
2

sr
2

s sr r r
2

e

⇤ e v h vh

e e v h vh

v v e vh h

h h vh e v

vh vh h v e

Our convention will be that if x appears in row i and y appears in column j , then row
i “times” column j will result in the element determined by xy, where as usual we follow
our right to left convention. That is, xy means we apply y first and then x (as in function
composition).

Exercise 5.33. Verify that V4 is an abelian group. What feature of the table makes this
clear?

Given an arbitrary group G, we should probably say, “a group table for G” and not
“the group table for G.” The reason for this is that if we chose a di↵erent order of the
elements (e.g., swap rows 1 and 4—which swaps columns 1 and 4, as well), then the table
would look slightly di↵erent. Also, if we had chosen a di↵erent generating set, then the
names of the elements would look di↵erent. Regardless, the table still captures the same
information about the binary operation. Because every possible table for a given group
conveys the same information about the architecture of the group, people may refer to
any table for the group as “the” table.

Exercise 5.34. Create group tables for the following groups: S2, R3, R4, D3, S3, D4, and
Q8. Which groups are abelian?

Perhaps you noticed when creating the tables above that each element of the group
appeared exactly once in each row and column, respectively. This is true, in general. Use
Theorem 5.28, to prove the following theorem.

Theorem 5.35. Let (G,⇤) be a finite group. Then each element of G appears exactly once
in each row and each column, respectively, in any group table for G.

We can also use tables to define groups. For example, consider the following table on
the set A = {e,a,b, c}.

⇤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e



CHAPTER 5. A FORMAL APPROACH TO GROUPS

Is this a table for a group? First, we see that the binary operation determined by the table
is closed. Second, we see that e is acting as the identity. Since every row and column has
the identity element e appearing, we know that every element has an inverse (do you see
why that follows?). The only thing left to check is associativity. Imagine for a moment
what this entails. It’s messy right?! And this is only for a group of order 4.

Thankfully, we can rely on some prior knowledge to help out with associativity. It
turns out that if you look closely, the group table for V4 looks the “same” as the table
above. What do we mean by “same” here? The names for elements are di↵erent (except
for e), but

the product of corresponding elements yields the corresponding result.

To see what I mean, let’s color both tables with white, red, blue, and green in such a way
that each element corresponds to a unique color. If we choose our colors wisely, it is easy
to see that both tables have the same structure.

⇤ e v h vh

e e v h vh

v v e vh h

h h vh e v

vh vh h v e

 !

⇤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Since we already know that V4 is a group, we know that the binary operation for V4 is
associative.

Exercise 5.36. Explain why the discussion above implies that the binary operation deter-
mined by the table on the right above must be associative. Have we shown that (A,⇤) is a
group?

It is important to point out that if we had not chosen our colors wisely, then perhaps
the colorings of the two tables would not agree. Moreover, if we had made the same color
choices for elements, but then rearranged columns and rows of one table, the colorings
of the two tables would not agree. This doesn’t imply anything. The point is whether we
can get the tables to match.

Exercise 5.37. Draw the Cayley diagram for (A,⇤) with generators a and b. Explain why
this implies that V4 and A (under their respective binary operations) are isomorphic.

Exercise 5.38. Is it possible to color the group table for R4 so that it matches the coloring
of V4? Explain your answer.

Problem 5.39. Let (G,⇤) and (G0,�) be two finite groups. Suppose we can arrange the
rows and columns and color elements in such a way that the colorings for the two group
tables agree. Explain why this implies that the two groups are isomorphic.

Problem 5.40. Suppose we have a table for (G,⇤), where G is finite. Further suppose that
(i) there is an identity element, and (ii) every element appears exactly once in each row
and column, respectively. Explain why the only thing we need to verify in order for (G,⇤)
to be a group is that ⇤ is associative.
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Problem 5.41. Suppose that (G,⇤) is a group. Theorem 5.24 guarantees that there is a
unique identity in G. When creating the group table for G, what goes wrong if you try to
include two di↵erent identity elements?

Consider the class of all possible groups. It turns out that “isomorphic” (�) determines
an equivalence relation. That is, under this relation two groups are related if and only
if they are isomorphic. We’ll prove this formally later when we have a more rigorous
definition of isomorphic.

Problem 5.42. Explain why all groups with a single element are isomorphic.

In this case, we say that “up to isomorphism” there is only one group with a single
element.

Problem 5.43. Consider a group (G,⇤) of order 2. Suppose that G = {e,a}. Complete the
following group table for G.

⇤ e a

e

a

Explain why every group with 2 elements must be isomorphic to S2.

The previous problem implies that up to isomorphism, there is only one group of
order 2.

Problem 5.44. Consider a group (G,⇤) of order 3. Suppose that G = {e,a,b}. Complete the
following group table for G.

⇤ e a b

e

a

b

Explain why every group with 3 elements must be isomorphic to R3.

Problem 5.45. Consider a group (G,⇤) of order 4. Suppose that G = {e,a,b, c}. Assuming
that e is the identity, the first row and first column of the corresponding group table must
be completed as follows.

⇤ e a b c

e e a b c

a a ?
b b

c c
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The cell with the question mark cannot be filled with an a. So, this entry must be either
e, b, or c. However, it should be easy to see the cases with b and c are symmetric. Thus,
there are two cases: (i) the entry with the question mark is filled with e, (ii) the entry with
the question mark is (without loss of generality) filled with b. Complete the group table
in each of these two cases. Recall that we’ve seen two non-isomorphic groups of order 2,
namely R4 and V4. What conclusion can you make about groups of order 4?

So far we’ve seen that there are unique groups up to isomorphism of orders 1, 2, and
3, but that there are two groups up to isomorphism of order 4. A general question we will
want to address is, how many groups are there of order n?

In a future chapter we will be able to prove that there is only one group up to isomor-
phism of order 5, namely those groups isomorphic to R5 (i.e., rotation group of a regular
pentagon).

We’ve seen three groups of order 6, namely R6, D3, and S3. However, D3 � S3 (see
Problem 4.28) while R6 is not isomorphic to either of these (see Problem 4.22). So, we can
conclude that there are at least two groups up to isomorphism of order 6. But are there
others? It turns out that the answer is no, but why?

The group R7 is the group of rotations of a regular 7-sided polygon. This group has
order 7. Are there other groups of order 7 that are not isomorphic to R7?

We’ve encountered four groups of order 8, namely D4, Spin1⇥2, Q8, and R8. Of these,
only D4 and Spin1⇥2 are isomorphic. Thus, there are at least three groups up to isomor-
phism of order 8. However, are these the only ones? It turns out that the answer is no.
What are the missing ones?

5.4 Revisiting Cayley Diagrams and Our Original Defini-
tion of a Group

Let’s begin with a couple of exercises.

Exercise 5.46. Consider the diagram given in Figure 5.1. This is identical to the diagram
that appeared in Figure 3.5 that we saw at the end of Chapter 3.

(a) Consider Rules 1–4 of our original definition of a group (see Definition 2.15). Does
the diagram in Figure 5.1 satisfy Rules 1–4?

(b) Try to convert this diagram into a group table. Does the table represent a group?
What goes wrong?

Exercise 5.47. Consider the diagram given in Figure 5.2

(a) Does the diagram in Figure 5.2 satisfy Rules 1–4 of Definition 2.15?

(b) Try to convert this diagram into a group table. Does the table represent a group?
What goes wrong?
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a b c d

efgh

Figure 5.1. Diagram for Exercise 5.46.

a b c d

e f g h

Figure 5.2. Diagram for Exercise 5.47.

As the previous two exercises indicate, the moral of the story is that our original intu-
itive definition of a group has a weakness. It does not agree with our formal definition of
a group given in Definition 5.18. Let’s see if we can figure out what goes wrong.

Consider the Cayley diagram forD3 with generating set {r, s} that is given in Figure 5.3.
Notice that we labeled the lower right corner of the Cayley diagram with the word r

2
s.

This means that we first followed a blue arrow out of e and then two red arrows. However,
we could also get to this vertex by first doing a red arrow out of e followed by a blue arrow.
So, we could also have labeled this vertex with the word sr. The upshot is that r2s = sr.
These types of group equations are called relations.

We discovered this relation by starting at e and then traveling a sequence of arrows
to get to the vertex in the lower right corner. However, notice that following a blue and
then two red arrows is always the same as following a red arrow and then a blue arrow
regardless of which vertex we start at. That is, the relation r

2
s = sr holds universally

across the entire Cayley diagram.
Cayley diagrams for groups will always have this uniform symmetry. The fancy way

of saying this is that Cayley diagrams are regular. In other words, a diagram is regular if
every internal pattern repeats itself throughout the diagram.

Exercise 5.48. Identify two other relations that the Cayley diagram for D3 given in Fig-
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e

rr
2

s

rs r
2
s

Figure 5.3. Cayley diagram for D3 with generating set {r, s}.

ure 5.3 exhibits. Find one that involves both r
�1 (i.e., following a red arrow backwards)

and s. Convince yourself that your relations appear throughout the diagram.

Exercise 5.49. Verify that the diagrams in Exercise 5.46 and 5.47 are not regular.

Problem 5.50. Explain why the Cayley diagram for a group must be regular.

The discussion and exercises above lead us to conclude that one thing missing from
our original intuitive definition of a group is regularity. It turns out that this is the only
thing missing. That is, if we add the requirement of regularity to our intuitive defini-
tion, we could convert it into a rigorous definition that is equivalent to Definition 5.18.
However, we won’t bother doing this since our intuitive definition served its purpose.

We close this section with a problem that asks you to think about the structure of the
Cayley diagrams for an abelian group.

Problem 5.51. Suppose (G,⇤) is a group and suppose S is a generating set for G. Consider
the Cayley diagram for G with generating set S .

(a) If G is abelian and a,b 2 S , then what relationship must be true for the arrows in the
Cayley diagram corresponding to the elements a and b?

(b) Is the converse of your claim true? That is, if every pair of edges in a Cayley diagram
for G has the property you stated above, will the group be abelian?

5.5 Revisiting Subgroups
Back in Section 4.1, we introduced the notion of subgroup. In light of our o�cial defini-
tion of a group, we more or less have the same definition as before, but let’s restate it here
using slightly more formal language.

Definition 5.52. Let (G,⇤) be a group and letH be a subset of G. ThenH is a subgroup of
G, written H  G, provided that H is a group in its own right under the binary operation
inherited from G.
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The phrase “under the binary operation inherited from G” means that to combine two
elements in H , we should treat the elements as if they were in G and perform G’s binary
operation.

Recall that Theorems 4.6 and 4.8 tell us that hei = {e} andG are always subgroups ofG.
This is still true even using our o�cial definition of a group. The subgroup {e} is referred
to as the trivial subgroup. All other subgroups are called nontrivial. If H is a subgroup
of a group G with H , G, then we may write H < G and refer to H as a proper subgroup
of G.

The next theorem tells us that we don’t need to verify all the axioms of a group to
determine whether a nonempty subset is a subgroup.

Theorem 5.53. Suppose (G,⇤) is a group and H is a nonempty subset of G. Then H  G

if and only if (i) for all h 2 H , h�1 2 H , as well, and (ii) H is closed under the binary
operation of G.

Remark 5.54. Notice that one of the hypotheses of Theorem 5.53 is that H be nonempty.
This means that if we want to prove that a certain subset H is a subgroup of a group G,
then one of the things we must do is verify that H is in fact nonempty.

Exercise 5.55. Consider (R3
,+), where R

3 is the set of all 3-entry row vectors with real
number entries (e.g., (a,b,c) where a,b,c 2 R) and + is ordinary vector addition. It turns
out that (R3

,+) is an abelian group with identity (0,0,0).

(a) Let H be the subset of R3 consisting of vectors with first coordinate 0. Is H a sub-
group of R3? Prove your answer.

(b) Let K be the subset of R
3 consisting of vectors whose entries sum to 0. Is K a

subgroup of R3? Prove your answer.

(c) Construct a subset of R3 (di↵erent from H and K) that is not a subgroup of R3.

Exercise 5.56. Consider the group (Z,+) (under ordinary addition).

(a) Show that the even integers, written 2Z := {2k | k 2 Z}, form a subgroup of Z.

(b) Show that the odd integers are not a subgroup of Z.

(c) Show that all subsets of the form nZ := {nk | k 2 Z} for n 2 Z are subgroups of Z.

(d) Are there any other subgroups besides the ones listed in part (c)? Explain your
answer.

Exercise 5.57. Consider the group of symmetries of a regular octagon. This group is
denoted by D8, where the operation is composition of actions. The group D8 consists of
16 elements (8 rotations and 8 reflections). LetH be the subset consisting of the following
clockwise rotations: 0�, 90�, 180�, and 270�. Determine whether H is a subgroup of D8
and justify your answer.
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Exercise 5.58. Consider the groups (R,+) and (R \ {0}, ·). Explain why R \ {0} is not a
subgroup of R despite the fact that R \ {0} ✓ R and both are groups (under the respective
binary operations).

Theorem 5.59. Suppose (G,⇤) is a group and let H,K  G. Then H \K  G.

Problem 5.60. Can we replace intersection with union in the theorem above? If so, prove
the corresponding theorem. If not, then provide a specific counterexample.

Theorem 5.61. Suppose (G,⇤) is an abelian group and let H  G. Then H is an abelian
subgroup.

Problem 5.62. Is the converse of the previous theorem true? If so, prove it. Otherwise,
provide a counterexample.

Theorem 5.63. Suppose (G,⇤) is a group. Define

Z(G) := {z 2 G | zg = gz for all g 2 G}

(called the center of G). Then Z(G) is an abelian subgroup of G.

Exercise 5.64. Find the center of each of the following groups.

(a) S2

(b) V4

(c) S3

(d) D3

(e) D4

(f) R4

(g) R6

(h) Spin1⇥2

(i) Q8

(j) (Z,+)

(k) (R \ {0}, ·)

The following definition formalizes Definition 4.9.

Definition 5.65. Let (G,⇤) be a group and let S be a nonempty subset of G. Then we
define hSi to be the set consisting of all possible (finite) products of elements from S and
their inverses. The set hSi is called the subgroup generated by S . The elements of S are
called generators of hSi.
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Note that S may be finite or infinite. Moreover, even if S is finite, hSi may be infinite.
Also, it is important to point out that we are not putting any restrictions about e�ciency
on S in the definition above. That is, it is possible that some elements are included in S

that are not necessary to generate all of the elements of hSi.
In cases when we know what the elements of S actually are, then we will list them

inside the angle brackets without the set braces. For example, if S = {a,b,c}, then we will
write ha,b,ci instead of h{a,b,c}i. In the special case when S equals a single element, say
S = {a}, then

hai = {an | n 2 Z},
which is called the subgroup generated by a.

The set hSi is called the “subgroup generated by S”, so it better be a subgroup!

Theorem 5.66. Let (G,⇤) be a group and let S ✓ G, where S , ;. Then hSi  G. In particu-
lar, hSi is the smallest subgroup of G containing S .

Exercise 5.67. In Exercise 5.56 we introduced the notation nZ. Write these subgroups in
the “generated by” notation. That is, find a set S such that hSi = nZ. Can you find more
than one way to do it?

Every subgroup can be written in the “generated by” form. That is, if H is a subgroup
of a group G, then there always exists a subset S of G such that hSi = H . In particular,
hHi =H .

Let’s explore a couple of examples. First, consider the group R4 (where the operation
is composition of actions). What are the subgroups of R4? Theorems 4.6 and 4.8 tell us
that {e} and R4 itself are subgroups of R4. Are there any others? Theorem 5.53 tells us that
if we want to find other subgroups of R4, we need to find nonempty subsets of R4 that are
closed and contain all the necessary inverses. However, the previous paragraph indicates
that we can find all of the subgroups of R4 by forming the subgroups generated by various
combinations of elements from R4. We can certainly be more e�cient, but below we list
all of the possible subgroups we can generate using subsets of R4. We are assuming that r
is rotation by 90� clockwise. As you scan the list, you should take a moment to convince
yourself that the list is accurate.

hei = {e}
hri = {e, r, r2, r3}
hr2i = {e, r2}
hr3i = {e, r3, r2, r}
he, ri = {e, r, r2, r3}
he, r2i = {e, r2}
he, r3i = {e, r3, r2, r}
hr, r2i = {e, r, r2, r3}

hr, r3i = {e, r, r2, r3}

hr2, r3i = {e, r, r2, r3}

he, r, r2i = {e, r, r2, r3}

he, r, r3i = {e, r, r2, r3}

he, r2, r3i = {e, r, r2, r3}

hr, r2, r3i = {e, r, r2, r3}

he, r, r2, r3i = {e, r, r2, r3}
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Let’s make a few observations. Scanning the list, we see only three distinct subgroups:
{e}, {e, r2}, {e, r, r2, r3}. Our exhaustive search guarantees that these are the only subgroups
of R4. It is also worth pointing out that if a subset contains either r or r

3, then that
subset generates all of R4. The reason for this is that r and r

3 are each generators for R4,
respectively. Also, observe that if we increase the size of the subset using an element that
was already contained in the subgroup generated by the smaller set, then we don’t get
anything new. For example, consider hr2i = {e, r2}. Since e 2 hr2i, we don’t get anything
new by including e in our generating set. We can state this as a general fact.

Theorem 5.68. Let (G,⇤) be a group and let g1, g2, . . . , gn 2 G. If x 2 hg1, g2, . . . , gni, then
hg1, g2, . . . , gni = hg1, g2, . . . , gn,xi.

It is important to point out that in the theorem above, we are not saying that {g1, g2, . . . , gn}
is a generating set for G—although this may be the case. Instead, are simply making a
statement about the subgroup hg1, g2, . . . , gni, whatever it may be.

Let’s return to our example involving R4. We have three subgroups, namely the two
trivial subgroups {e} and R4 itself, together with one nontrivial subgroup {e, r2}. Notice
that {e} is also a subgroup of {e, r2}. We can capture the overall relationship between the
subgroups using a subgroup lattice, which we depict in Figure 5.4 case of R4.

hei = {e}

hr2i = {e, r2}

hri = R4

Figure 5.4. Subgroup lattice for R4.

In general, subgroups of smaller order are towards the bottom of the lattice while
larger subgroups are towards the top. Moreover, an edge between two subgroups means
that the smaller set is a subgroup of the larger set.

Let’s see what we can do with V4 = {e,v,h,vh}. Using an exhaustive search, we find
that there are five subgroups:

hei = {e}

hhi = {e,h}

hvi = {e,v}
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hvhi = {e,vh}

hv,hi = hv,vhi = hh,vhi = {e,v,h,vh} = V4

For each subgroup above, we’ve used minimal generating sets to determine the group.
(Note that minimal generating sets are generating sets where we cannot remove any ele-
ments and still obtain the same group. Two minimal generating sets for the same group
do not have to have the same number of generators.) In this case, we get the subgroup
lattice in Figure 5.5.

hei = {e}

hhi = {e,h}hvi = {e,v} hvhi = {e,vh}

hv,hi = V4

Figure 5.5. Subgroup lattice for V4.

Notice that there are no edges among hvi,hhi, and hvhi. The reason for this is that
none of these groups are subgroups of each other. We already know that R4 and V4 are
not isomorphic, but this becomes even more apparent if you compare their subgroup
lattices.

In the next few exercises, you are asked to create subgroup lattices. As you do this, try
to minimize the amount of work it takes to come up with all the subgroups. In particular,
I do not recommend taking a full brute-force approach like we did for R4.

Exercise 5.69. Find all the subgroups of R5 = {e, r, r2, r3, r4} (where r is rotation clockwise
of a regular pentagon by 72�) and then draw the subgroup lattice for R5.

Exercise 5.70. Find all the subgroups of R6 = {e, r, r2, r3, r4, r5} (where r is rotation clock-
wise of a regular hexagon by 60�) and then draw the subgroup lattice for R6.

Exercise 5.71. Find all the subgroups ofD3 = {e, r, r2, s, sr, sr2} (where r and s are the usual
actions) and then draw the subgroup lattice for D3.

Exercise 5.72. Find all the subgroups of S3 = hs1, s2i (where s1 is the action is that swaps
the positions of the first and second coins and s2 is the action that swaps the second and
third coins; see Exercise 4.27) and then draw the subgroup lattice for S3. How does your
lattice compare to the one in Exercise 5.71? You should look back at Exercise 4.28 and
ponder what just happened.
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Exercise 5.73. Find all the subgroups of D4 = {e, r, r2, r3, s, sr, sr2, sr3} (where r and s are
the usual actions) and then draw the subgroup lattice for D4.

Exercise 5.74. Find all the subgroups of Q8 = {1,�1, i,�i, j,�j,k,�k} and then draw the
subgroup lattice for Q8.

Problem 5.75. What claims can be made about the subgroup lattices of two groups that
are isomorphic? What claims can be made about the subgroup lattices of two groups that
are not isomorphic? What claims can be made about two groups if their subgroup lattices
look nothing alike? Hint: The answers to two of these questions should be obvious, but
the answer to the remaining question should be something like, “we don’t have enough
information to make any claims.”

Here are two final problems to conclude this section.

Problem 5.76. Several times we’ve referred to the fact that some subgroups are visible in
a Cayley diagram for the parent group and some subgroups are not. Suppose (G,⇤) is a
group and let H  G. Can you describe a process for creating a Cayley diagram for G that
“reveals” the subgroup H inside of this Cayley diagram?

Problem 5.77. Suppose (G,⇤) is a finite group and let H  G. Can you describe a process
that “reveals” the subgroup H inside the group table for G? Where will the clones for H
end up?

5.6 Revisiting Isomorphisms
Suppose (G1,⇤) and (G2,�) are two groups. Recall that G1 and G2 are isomorphic, writ-
ten G1 � G2, provided that we can choose generating sets for G1 and G2, respectively, so
that the Cayley diagrams for both groups are identical (ignoring the labels on the ver-
tices). When two groups are isomorphic, it means that they have identical structure up
to relabeling the names of the elements of the group.

One consequence of two groups being isomorphic is that there is a one-to-one corre-
spondence between the elements of the group. This correspondence is referred to as an
isomorphism. In other words, an isomorphism is a one-to-one and onto function that
preserves the structure of the two groups.

Having an isomorphism between two groups immediately implies that they have the
same order, i.e., |G1| = |G2| (see Theorem 4.20). However, it is extremely important to
remember that two groups having the same order does not imply that the two groups are
isomorphic. Said another way, having a one-to-one correspondence between two groups
does not imply that the two groups are isomorphic. They must also have the same struc-
ture!

Exercise 5.78. Provide an example of two groups that have the same order but are not
isomorphic.

After we introduced groups tables, we also discussed the fact that G1 � G2 exactly
when we can arrange the rows and columns and color elements in such a way that the
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⇤ y

x z  !

� y
0

x
0

z
0

Figure 5.6

colorings for the two group tables agree (see Problem 5.39). The upshot of this is that if
G1 � G2, then

the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.
Let’s try to make a little more sense of this. Suppose thatG1 � G2 and imagine we have

arranged the rows and columns of their respective group tables and colored the elements
in such a way that the colorings for the two group tables agree. Now, let x,y 2 G1. Then
these two elements have corresponding elements in the group table for G2, say x

0 and
y
0, respectively. In other words, x and x

0 have the same color while y and y
0 have the

same color. Since G1 is closed under its binary operation ⇤, there exists z 2 G1 such that
z = x ⇤ y. There must exist a z

0 2 G2 such that z0 has the same color as z. What must be
true of x0 �y0? Since the two tables exhibit the same color pattern, it must be the case that
z
0 = x

0 � y0. This is what it means for the product of corresponding elements to yield the
corresponding result. Figure 5.6 depicts this phenomenon for group tables.

We can describe the isomorphism between G1 and G2 using a function. Let � : G1!
G2 be the one-to-one and onto function that maps elements of G1 to their corresponding
elements in G2. Then �(x) = x

0, �(y) = y
0, and �(z) = z

0. Since z0 = x
0 � y0, we can obtain

�(x ⇤ y) = �(z) = z
0 = x

0 � y0 = �(x)��(y).

In summary, it must be the case that

�(x ⇤ y) = �(x)��(y).

We are now prepared to state a formal definition of what it means for two groups to be
isomorphic.

Definition 5.79. Let (G1,⇤) and (G2,�) be two groups. Then G1 is isomorphic to G2,
written G1 � G2, if and only if there exists a one-to-one and onto function � : G1 ! G2
such that

�(x ⇤ y) = �(x)��(y). (5.1)

The function � is referred to as an isomorphism. Equation 5.1 is often referred to as the
homomorphic property.

You should definitely take a fewminutes to convince yourself that the above definition
agrees with our previous informal approach to isomorphisms. For those of you that have
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had linear algebra, notice that our homomorphic property looks a lot like the require-
ment for a function on vector spaces to be a linear transformation. Linear transforma-
tions preserve the algebraic structure of vector spaces while the homomorphic property
is preserving the algebraic structure of groups.

We’ve seen several instances of two groups being isomorphic, but now that we have a
formal definition, we can open the door to more possibilities.

Problem 5.80. Consider the groups (R,+) and (R+
, ·), where R

+ is the set of positive real
numbers. It turns out that these two groups are isomorphic, but this would be di�cult
to discover using our previous techniques because the groups are infinite. Define � :
R ! R

+ via �(r) = e
r (where e is the natural base, not the identity). Prove that � is an

isomorphism.

Exercise 5.81. For each of the following pairs of groups, determine whether the given
function is an isomorphism from the first group to the second group.

(a) (Z,+) and (Z,+), �(n) = n+1.

(b) (Z,+) and (Z,+), �(n) = �n.

(c) (Q,+) and (Q,+), �(x) = x/2.

Problem 5.82. Show that the groups (Z,+) and (2Z,+) are isomorphic.

Perhaps one surprising consequence of the previous problem is that when dealing
with infinite groups, a group can have a proper subgroup that it is isomorphic to. Of
course, this never happens with finite groups.

Once we know that two groups are isomorphic, there are lots of interesting things
we can say. The next theorem tells us that isomorphisms map the identity element of one
group to the identity of the second group. It was already clear that this was the case using
our informal definition of isomorphic. Prove the next theorem using Definition 5.79

Theorem 5.83. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If e and e

0 are the identity elements of G1 and G2, respectively, then �(e) =
e
0.

Theorem 5.84. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). Then �(g�1) = [�(g)]�1.

Theorem 5.85. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If G1 is abelian, then G2 is abelian.

Theorem 5.86. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). Then the function ��1 : G2! G1 is an isomorphism.

Theorem 5.87. Suppose � : G1! G2 and  : G2! G3 are isomorphisms from the groups
(G1,⇤) to (G2,�) and (G2,�) to (G3,?), respectively. Then the composite function  �� is
an isomorphism of G1 and G3.
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Theorem 5.88. Let G be any nonempty collection of groups. Then the relation � of being
isomorphic is an equivalence relation.

Theorem 5.89. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If H  G1, then �(H)  G2, where

�(H) := {y 2 G2 | there exists h 2H such that �(h) = y}.

Note that �(H) is called the image of H .

Theorem 5.90. Suppose (G,⇤) is a group and let g 2 G. Define�g : G! G via�(x) = g
�1
xg .

Then �g is an isomorphism from G to G. Note that the map �g is called conjugation by
g .

Now that you’ve proved the above theorems, it’s a good idea to review the key themes.
If you were really paying attention, you may have noticed that in a few of the proofs, we
did not use the fact that the function was one-to-one and onto despite assuming that the
function was an isomorphism.

Problem 5.91. For which of the recent theorems could we remove the assumption that
the function is one-to-one and onto and only assume that it satisfies the homomorphic
property? Such functions are called homomorphisms and will be the subject of a future
chapter.
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