
Chapter 2

An Intuitive Approach to Groups

One of the major topics of this course is groups. The area of mathematics that is con-
cerned with groups is called group theory. Loosely speaking, group theory is the study
of symmetry, and in my opinion is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics.

Instead of starting with an abstract formal definition, we will begin our study of
groups by developing some intuition about what groups actually are. To get started,
we will be exploring the game SpinpossibleTM(which used to be available for iOS and
Android devices). The game is played on a 3 ⇥ 3 board of scrambled tiles numbered 1
to 9, each of which may be right-side-up or up-side-down. The objective of the game is
to return the board to the standard configuration where tiles are arranged in numerical
order and right-side-up. This is accomplished by a sequence of “spins”, where a spin
consists of rotating an m ⇥ n subrectangle by 180�. The goal is to minimize the number
of spins used. The following figure depicts a scrambled board on the left and the solved
board on the right. The sequence of arrows is used to denote some sequence of spins that
transforms the scrambled board into the solved board.
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Example 2.1. Let’s play with an example. Suppose we start with the following scrambled
board.

2 9 1

4 6 5

7 3 8
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The underlines on the numbers are meant to help us tell whether a tile is right-side-up
or up-side-down. Our goal is to use a sequence of spins to unscramble the board. Before
we get started, let’s agree on some conventions. When we refer to tile n, we mean the
actual tile that is labeled by the number n regardless of its position and orientation on
the board. On the other hand, position n will refer to the position on the board that tile
n is supposed to be in when the board has been unscrambled. For example, in the board
above, tile 1 is in position 3 and tile 7 happens to be in position 7.

It turns out that there are multiple ways to unscramble this board., but I have one par-
ticular sequence in mind. First, let’s spin the rectangle determined by the two rightmost
columns. Here’s what we get. I’ve shaded the subrectangle that we are spinning.

2 9 1

4 6 5

7 3 8
!

2 8 3

4 5 6

7 1 9

Okay, now let’s spin the middle column.

2 8 3

4 5 6

7 1 9
!

2 1 3

4 5 6

7 8 9

Hopefully, you can see that we are really close to unscrambling the board. All we need to
do is spin the rectangle determined by the tiles in positions 1 and 2.

2 1 3

4 5 6

7 8 9
!

1 2 3

4 5 6

7 8 9

Putting all of our moves together, here is what we have.

2 9 1

4 6 5

7 3 8
!

2 8 3

4 5 6

7 1 9
!

2 1 3

4 5 6

7 8 9
!

1 2 3

4 5 6

7 8 9

In this case, we were able to solve the scrambled board in 3 moves. It’s not immediately
obvious, but it turns out that there is no way to unscramble the board in fewer than 3
spins. However, there is at least one other solution that involves exactly 3 spins. We
won’t worry about proving this; right now we are just trying to gain some intuition.

Exercise 2.2. Without worrying about whether your solution is optimal, try to find a dif-
ferent sequence of spins that unscrambles the initial board in Example 2.1. Your answer
should be a sequence of spins. Describe your sequence in a way that makes sense. Can
you find a sequence of 3 spins that is di↵erent from the one described in Example 2.1 that
unscrambles the board?
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Exercise 2.3. How many scrambled 3 ⇥ 3 Spinpossible boards are there? To answer this
question, you will need to rely on some counting principles such as factorials. Note: In
this context, we want to include the solved board as one of the scrambled boards. It’s just
not very scrambled.

Exercise 2.4. A natural question to ask is whether every possible scrambling of a board
in Spinpossible can be unscrambled using only spins. It turns out that the answer is
yes. Justify this fact by describing an algorithm that will always unscramble a scrambled
board. It does not matter whether your algorithm is e�cient. That is, we don’t care how
many steps it takes to unscramble the board as long as it works in a finite number of
steps. Also, if it didn’t occur to you yet, we can always spin a single tile (referred to as
toggling a tile).

Exercise 2.5. Does the order in which you apply spins matter? Does it always matter?
Let’s be as specific as possible. If the order in which we apply two spins does not matter,
then we say that the spins commute. However, if the order does matter, then the spins
do not commute. When will two spins commute? When will they not commute? Provide
some specific examples.

Exercise 2.6. How many possible spins are there? We are referring to the moves you are
allowed to do at any stage in the game. Don’t forget that you are allowed to toggle a single
tile.

In a 2011 paper, Alex Sutherland and Andrew Sutherland (a father and son team)
present a number of interesting results about Spinpossible and list a few open problems.
You can find the paper at http://arxiv.org/abs/1110.6645. As a side note, Alex is one
of the developers of the game and his father, Andrew, is a mathematics professor at MIT.
Using a brute-force computer algorithm, the Sutherlands verified that every scrambled
3⇥ 3 board can be solved in at most 9 moves. However, a human readable mathematical
proof of this fact remains elusive. By the way, mathematics is chock full of open prob-
lems and you can often get to the frontier of what is currently known without too much
trouble. Mathematicians are in the business of solving open problems.

At least for now, let’s ignore the optimality requirement of the game. That is, let’s not
worry about how many spins it takes to solve a scrambled board. It turns out that we
can “build” some spins from other spins. As an example, if I wanted to toggle the tile in
position 2, I could first spin the rectangle determined by positions 1 and 2, then toggle
the tile in position 1, and lastly spin the rectangle determined by positions 1 and 2 again.
Of course, this is horribly ine�cient, but it works. Also, it is important to point out that I
was describing the tile positions we were spinning while not paying any attention to the
tiles occupying the corresponding positions.

It’s not too di�cult to prove that we can build all of the possible spins by only using
the following spins. I’ve listed some shorter names for these spins in parentheses.

1. Toggle position 1 (t),

2. Spin rectangle determined by positions 1 and 2 (s1),

3. Spin rectangle determined by positions 2 and 3 (s2),

http://arxiv.org/abs/1110.6645
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4. Spin rectangle determined by positions 3 and 6 (s3),

5. Spin rectangle determined by positions 6 and 5 (s4),

6. Spin rectangle determined by positions 5 and 4 (s5),

7. Spin rectangle determined by positions 4 and 7 (s6),

8. Spin rectangle determined by positions 7 and 8 (s7),

9. Spin rectangle determined by positions 8 and 9 (s8).

We can describe any of the allowable spins in the game by writing down a sequence
consisting of t, s1, s2, . . . , s8.

Example 2.7. Spinning the subrectangle determined by positions 1 and 4 is an allowable
spin, but it’s not on our list above. We can build this spin by using the following sequence
of spins:

s1! s2! s3! s4! s5! s4! s3! s2! s1.

Exercise 2.8. Toggling the tile in position 3 is an allowable spin. Try to find a sequence
of spins involving t, s1, s2, . . . , s8 only that yields this toggle.

In addition to building all of the allowable spins, we can also describe any possible
rearrangement of tiles (position and/or orientation) using just these 9 spins. For example,
if we apply s2, followed by s3, and then s2 again, the net result is swapping the tiles in
positions 2 and 6 while maintaining their orientation. You should take the time to verify
this. However, notice that the net action is not an allowable spin. That is, not every
sequence of the 9 spins t, s1, s2, . . . , s8 results in an allowable spin.

Exercise 2.9. What is the net action of applying s1, then s2, and then s1? Is the net action
an allowable spin? How about s2, then s1, and then s2?

We say that the set {t, s1, . . . , s8} generates all possible scramblings of the 3 ⇥ 3 board.
In this case, we refer to {t, s1, . . . , s8} as a set of generators. It turns out that this generating
set is minimal in the sense that if we tried to get rid of any one of t, s1, . . . , s8, we would no
longer be able to generate all scramblings. Note that there are other minimal generating
sets and there are lots of sets that will generate all the scramblings that are not minimal.

We need to establish some conventions about how to write down sequences of spins
involving the generators. Since we are doing spins on top of spins, we will follow the
convention of function notation that says the function on the right goes first. For example,
ts1s3 means do s3 first, then do s1, and lastly do t. This will take some getting used to,
but just remember that it is just like function notation (stu↵ on the right goes first). We
will refer to sequences like ts1s3 as words in the generators t, s1, . . . , s8. We can also use
exponents to abbreviate. For example, s22 is the same as s2s2 (which in this case has the
net action of doing nothing) and (s1s2)2 is the same as s1s2s1s2.

Exercise 2.10. It turns out that there is an even simpler word (i.e., a shorter word) that
yields the same net action as (s1s2)2. Can you find one?
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Exercise 2.11. Try to write the spin that rotates the entire top row (i.e., spin the top row)
as a sequence of moves involving only t, s1, . . . , s8.

Let’s make a couple more observations. First, every spin is reversible (i.e., has an
inverse). In this case, we could just apply the same spin again to undo it. For example,
s21 is the same as doing nothing. This means that the reverse of s1, denoted s�11 , is s1
itself. Symbolically, we write s�11 = s1. Warning: Remember that we are exploring the
game Spinpossible; it won’t always be the case that repeating a generator will reverse the
action. In the same vein, every sequence of spins is reversible. For example, if we apply
s1s2 (remember that’s do s2 first and then s1) to some scrambled board, we could undo
the net action by applying s2s1. That is, the reverse (or inverse) of s1s2 is s2s1. Written
symbolically, we have

(s1s2)�1 = s�12 s�11 = s2s1

since s�12 = s2 and s�11 = s1.

Exercise 2.12. Imagine we started with a scrambled board and you were then able to
unscramble the board using some sequence from t, s1, . . . , s8. In this case, you would have
some word in t, s1, . . . , s8 (with repeats allowed). Let’s call it w. Now, imagine you have the
solved board. How could you obtain the scrambled board that w unscrambled using only
t, s1, . . . , s8? How is this related to w�1?

The upshot of the previous exercise is that the action of any sequence of generators
can be reversed and is itself an action.

At this time, I think we are ready to summarize some of our observations of the game
Spinpossible and to make a few general claims, which we will state as a list of rules.

Rule 1. There is a predefined list of actions that never changes.

Rule 2. Every action is reversible.⇤

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

Rule 1 states that we must start with some fixed set of actions. These are our gen-
erators. Not every action must appear on the predefined list of generators. In the case
of Spinpossible, we encountered two possible generating sets. First, there was the set
of allowable spins, which you counted in Exercise 2.6. Second, we considered the set
{t, s1, . . . , s8}, which is a much smaller list of predefined actions.

Rule 2 tells us that every action (whether is appears on the list in Rule 1 or not) has an
inverse.

By deterministic, we mean that we know exactly what will happen when we apply
an action. In contrast, pulling a card o↵ the top of a shu✏ed deck of cards is not deter-
ministic because we don’t know which card we will end up with. Certainly, every spin is
deterministic. For example, if we apply s6, we know exactly what will happen.
⇤Implicit in this rule is that the reverse of an action is also an action.
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Rule 4 provides us with a way to build new actions from other other actions. In par-
ticular, we can form new actions from the actions given in Rule 1. For example, if we are
given {t, s1, . . . , s8} as our predefined list of actions (Rule 1) for Spinpossible, then Rule 4
guarantees that s1s2s1 is also an action.

Exercise 2.13. In the paragraph above, notice that we referred to s1s2s1 as an action, but
didn’t refer to this sequence as a spin. Is s1s2s1 a spin? Can you describe what this action
does in words?

Exercise 2.14. Notice that there is no explicit rule that says that every sequence of con-
secutive actions is reversible. Is this a consequence of Rules 1–4? Explain your answer.

Alright, we are finally ready for our intuitive and uno�cial definition of a group.

Intuitive Definition 2.15. A group is a system or collection of actions that satisfies Rules
1–4 above.

Our first example of a group is the set of actions that rearranges and reorients the tiles
on the 3⇥ 3 Spinpossible board. Notice that I didn’t say that the set of scrambled boards
was a group. It turns out that there is a one-to-one correspondence between actions for
Spinpossible and scrambled boards, but for now let’s focus on the actions.

Exercise 2.16. Describe how the Rubik’s Cube fits into the framework of Rules 1–4.

Exercise 2.17. Place two coins side by side on a table. Consider just one predefined
action: swapping the positions of the two coins (but not flipping them over). Can we
form a group of actions using this one action as our starting point? If so, completely
describe the collection of actions. If not, explain why.

Exercise 2.18. Consider three coins in a row on a table and for your actions take all
possible actions of rearranging (but not flipping over) the coins. It turns out that this is a
group.

(a) One of the actions is to swap the second and third coins. What happens if you do
this action twice? Is this an action?

(b) How many actions does this group have? Describe them all.

(c) Can you think of a small set of actions that would generate all the other actions?
Can you find a minimal one (in the sense that removing one of your initial actions
would result in a di↵erent group)? Write each of the actions of this group as a word
in your generators? Do some actions have more than one word representing it?

In part (a) of the previous exercise you encountered the “do-nothing” action, which
we will refer to as the identity of the group.

Exercise 2.19. Explain why every group has a do-nothing action (i.e., an identity).
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Exercise 2.20. Imagine you have a square puzzle piece that fits perfectly in a square hole.
Consider these actions: pick up the square and rotate it an appropriate amount (but do
not flip it over) so that it fits back in the hole. Is this a group? Explain your answer. If it
is a group, how many distinct actions are there?

Exercise 2.21. Can you describe a group that has exactly n actions for any natural number
n?

Exercise 2.22. Pick your favorite integer. Consider these actions: add any integer to the
one you chose. This is an infinite set of actions. Does this set of actions form a group?
If so, can you find a relatively small set of generators? Does the choice of your favorite
integer matter?

Exercise 2.23. Consider the previous exercise, but this time multiply instead of add. Is
this a group? Explain your answer. Does the choice of your favorite integer matter?
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