Chapter 2

An Intuitive Approach to Groups

One of the major topics of this course is groups. The area of mathematics that is con-
cerned with groups is called group theory. Loosely speaking, group theory is the study
of symmetry, and in my opinion is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics.

Instead of starting with an abstract formal definition, we will begin our study of
groups by developing some intuition about what groups actually are. To get started,
we will be exploring the game Spinpossible™, which is a free game that is available for
iOS and Android devices. Alternatively, you can just play the game in any modern web
browser (https://spinpossible.com). The game is played on a 3 x 3 board of scrambled
tiles numbered 1 to 9, each of which may be right-side-up or up-side-down. The objective
of the game is to return the board to the standard configuration where tiles are arranged
in numerical order and right-side-up. This is accomplished by a sequence of “spins”,
where a spin consists of rotating an m x n subrectangle by 180°. The goal is to minimize
the number of spins used. The following figure depicts a scrambled board on the left and
the solved board on the right. The sequence of arrows is used to denote some sequence
of spins that transforms the scrambled board into the solved board.
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Example 2.1. Let’s play with an example. Suppose we start with the following scrambled
board.
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The underlines on the numbers are meant to help us tell whether a tile is right-side-up
or up-side-down. Our goal is to use a sequence of spins to unscramble the board. Before
we get started, let’s agree on some conventions. When we refer to tile n, we mean the
actual tile that is labeled by the number n regardless of its position and orientation on
the board. On the other hand, position #n will refer to the position on the board that tile
n is supposed to be in when the board has been unscrambled. For example, in the board
above, tile 1 is in position 3 and tile 7 happens to be in position 7.

It turns out that there are multiple ways to unscramble this board., but I have one par-
ticular sequence in mind. First, let’s spin the rectangle determined by the two rightmost
columns. Here’s what we get. I've shaded the subrectangle that we are spinning.
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Okay, now let’s spin the middle column.
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Hopefully, you can see that we are really close to unscrambling the board. All we need to
do is spin the rectangle determined by the tiles in positions 1 and 2.
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Putting all of our moves together, here is what we have.
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In this case, we were able to solve the scrambled board in 3 moves. It’s not immediately
obvious, but it turns out that there is no way to unscramble the board in fewer than 3
spins. However, there is at least one other solution that involves exactly 3 spins. We
won’t worry about proving this; right now we are just trying to gain some intuition.

Exercise 2.2. Without worrying about whether your solution is optimal, try to find a dif-
ferent sequence of spins that unscrambles the initial board in Example 2.1. Your answer
should be a sequence of spins. Describe your sequence in a way that makes sense. Can
you find a sequence of 3 spins that is different from the one described in Example 2.1 that
unscrambles the board?
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Exercise 2.3. How many scrambled 3 x 3 Spinpossible boards are there? To answer this
question, you will need to rely on some counting principles such as factorials. Note: In
this context, we want to include the solved board as one of the scrambled boards. It’s just
not very scrambled.

Exercise 2.4. A natural question to ask is whether every possible scrambling of a board
in Spinpossible can be unscrambled using only spins. It turns out that the answer is
yes. Justify this fact by describing an algorithm that will always unscramble a scrambled
board. It does not matter whether your algorithm is efficient. That is, we don’t care how
many steps it takes to unscramble the board as long as it works in a finite number of
steps. Also, if it didn’t occur to you yet, we can always spin a single tile (referred to as
toggling a tile).

Exercise 2.5. Does the order in which you apply spins matter? Does it always matter?
Let’s be as specific as possible. If the order in which we apply two spins does not matter,
then we say that the spins commute. However, if the order does matter, then the spins
do not commute. When will two spins commute? When will they not commute? Provide
some specific examples.

Exercise 2.6. How many possible spins are there? We are referring to the moves you are
allowed to do at any stage in the game. Don’t forget that you are allowed to toggle a single
tile.

In a 2011 paper, Alex Sutherland and Andrew Sutherland (a father and son team)
present a number of interesting results about Spinpossible and list a few open problems.
You can find the paper at http://arxiv.org/abs/1110.6645. As a side note, Alex is one
of the developers of the game and his father, Andrew, is a mathematics professor at MIT.
Using a brute-force computer algorithm, the Sutherlands verified that every scrambled
3 x 3 board can be solved in at most 9 moves. However, a human readable mathematical
proof of this fact remains elusive. By the way, mathematics is chock full of open prob-
lems and you can often get to the frontier of what is currently known without too much
trouble. Mathematicians are in the business of solving open problems.

At least for now, let’s ignore the optimality requirement of the game. That is, let’s not
worry about how many spins it takes to solve a scrambled board. It turns out that we
can “build” some spins from other spins. As an example, if I wanted to toggle the tile in
position 2, I could first spin the rectangle determined by positions 1 and 2, then toggle
the tile in position 1, and lastly spin the rectangle determined by positions 1 and 2 again.
Of course, this is horribly inefficient, but it works. Also, it is important to point out that I
was describing the tile positions we were spinning while not paying any attention to the
tiles occupying the corresponding positions.

It’s not too difficult to prove that we can build all of the possible spins by only using
the following spins. I've listed some shorter names for these spins in parentheses.

1. Toggle position 1 (t),
2. Spin rectangle determined by positions 1 and 2 (sy),

3. Spin rectangle determined by positions 2 and 3 (s,),
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4. Spin rectangle determined by positions 3 and 6 (s3),
5. Spin rectangle determined by positions 6 and 5 (s4),
6. Spin rectangle determined by positions 5 and 4 (ss),
7. Spin rectangle determined by positions 4 and 7 (s¢),
8. Spin rectangle determined by positions 7 and 8 (s7),
9. Spin rectangle determined by positions 8 and 9 (sg).

We can describe any of the allowable spins in the game by writing down a sequence
consisting of t,51,5,,...,5s.

Example 2.7. Spinning the subrectangle determined by positions 1 and 4 is an allowable
spin, but it’s not on our list above. We can build this spin by using the following sequence
of spins:

§] = Sp —> 83 —> 54 —> S5 — S4 —> S3 —> 5p — 5.

Exercise 2.8. Toggling the tile in position 3 is an allowable spin. Try to find a sequence
of spins involving t,s1,s,,...,5g only that yields this toggle.

In addition to building all of the allowable spins, we can also describe any possible
rearrangement of tiles (position and/or orientation) using just these 9 spins. For example,
if we apply s,, followed by s3, and then s, again, the net result is swapping the tiles in
positions 2 and 6 while maintaining their orientation. You should take the time to verify
this. However, notice that the net action is not an allowable spin. That is, not every
sequence of the 9 spins t,sy,s,,...,5g results in an allowable spin.

Exercise 2.9. What is the net action of applying s, then s,, and then s;? Is the net action
an allowable spin? How about s,, then s;, and then s,?

We say that the set {t,s1,...,55} generates all possible scramblings of the 3 x 3 board.
In this case, we refer to {t,sq,...,5g} as a set of generators. It turns out that this generating
set is minimal in the sense that if we tried to get rid of any one of ¢,s,,...,sg, we would no
longer be able to generate all scramblings. Note that there are other minimal generating
sets and there are lots of sets that will generate all the scramblings that are not minimal.

We need to establish some conventions about how to write down sequences of spins
involving the generators. Since we are doing spins on top of spins, we will follow the
convention of function notation that says the function on the right goes first. For example,
ts;s3 means do s3 first, then do sy, and lastly do ¢. This will take some getting used to,
but just remember that it is just like function notation (stuff on the right goes first). We
will refer to sequences like ts;s; as words in the generators ¢,s;,...,55. We can also use
exponents to abbreviate. For example, s% is the same as s,s, (which in this case has the
net action of doing nothing) and (s;s,)? is the same as s;5,5;5,.

Exercise 2.10. It turns out that there is an even simpler word (i.e., a shorter word) that
yields the same net action as (s;5,)%. Can you find one?
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Exercise 2.11. Try to write the spin that rotates the entire top row (i.e., spin the top row)
as a sequence of moves involving only ¢,sy,...,sg.

Let’s make a couple more observations. First, every spin is reversible (i.e., has an
inverse). In this case, we could just apply the same spin again to undo it. For example,
sf is the same as doing nothing. This means that the reverse of s;, denoted 51_1, is s;
itself. Symbolically, we write s;' = s;. Warning: Remember that we are exploring the
game Spinpossible; it won’t always be the case that repeating a generator will reverse the
action. In the same vein, every sequence of spins is reversible. For example, if we apply
s15, (remember that’s do s, first and then s;) to some scrambled board, we could undo
the net action by applying s,s;. That is, the reverse (or inverse) of s;s;, is s,s;. Written
symbolically, we have

. e
(s152)7 =s5"5] =5351
since 551 =5, and sfl =5.

Exercise 2.12. Imagine we started with a scrambled board and you were then able to
unscramble the board using some sequence from t,sy,...,sg. In this case, you would have
some word in t,sy,...,sg (with repeats allowed). Let’s call it w. Now, imagine you have the
solved board. How could you obtain the scrambled board that w unscrambled using only
t,s1,...,55? How is this related to w™!?

The upshot of the previous exercise is that the action of any sequence of generators
can be reversed and is itself an action.

At this time, I think we are ready to summarize some of our observations of the game
Spinpossible and to make a few general claims, which we will state as a list of rules.

Rule 1. There is a predefined list of actions that never changes.
Rule 2. Every action is reversible.”

Rule 3. Every action is deterministic.

Rule 4. Any sequence of consecutive actions is also an action.

Rule 1 states that we must start with some fixed set of actions. These are our genera-
tors. In the case of Spinpossible, we encountered two possible generating sets. First, there
was the set of allowable spins, which you counted in Exercise 2.6. Second, we considered
the set {t,51,...,sg}, which is a much smaller list of predefined actions.

Rule 2 tells us that every action given in Rule 1 has an inverse. In the case of Spinpos-
sible, every predefined spin is its own inverse.

By deterministic, we mean that we know exactly what will happen when we we apply
an action. In contrast, pulling a card off the top of a shuffled deck of cards is not deter-
ministic because we don’t know which card we will end up with. Certainly, every spin is
deterministic. For example, if we apply sq, we know exactly what will happen.

Rule 4 provides us with a way to build new actions from the actions given in Rule 1.
For example, if we are given {t,sy,...,5g} as our predefined list of actions (Rule 1), then
Rule 4 guarantees that s;s,s3t is also an action (but does not have to be a spin).

“Implicit in this rule is that the reverse of an action is also an action.
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Exercise 2.13. Notice that there is no explicit rule that says that every sequence of con-
secutive actions is reversible. Is this a consequence of Rules 1-4? Explain your answer.

Alright, we are finally ready for our intuitive and unofficial definition of a group.

Intuitive Definition 2.14. A group is a system or collection of actions that satisfies Rules
1-4 above.

Our first example of a group is the set of actions that rearranges and reorients the tiles
on the 3 x 3 Spinpossible board. Notice that I didn’t say that the set of scrambled boards
was a group. It turns out that there is a one-to-one correspondence between actions for
Spinpossible and scrambled boards, but for now let’s focus on the actions.

Exercise 2.15. Describe how the Rubik’s Cube fits into the framework of Rules 1-4.

Exercise 2.16. Place a penny and a nickel side by side on a table. Consider just one action:
swapping the positions of the two coins. Is this a group? Explain your answer.

Exercise 2.17. Consider Exercise 2.16, but add a dime to the right of the other two coins.
The only action is still the one from the previous exercise. Is this a group? Explain your
answer.

Exercise 2.18. Consider your three coins from the previous exercise. Now, for your ac-
tions take all possible rearrangements of the coins. It turns out that this is a group.

(a) One of the actions is to swap the second and third coins. What happens if you do
this action twice? Is this an action?

(b) How many actions does this group have? Describe them all.

(c) Can you think of a small set of actions that would generate all the other actions?
Can you find a minimal one? Write each of the actions of this group as a word in
your generators? Do some actions have more than one word representing it?

In part (a) of the previous exercise you encountered the “do-nothing” action, which
we will refer to as the identity of the group.

Exercise 2.19. Explain why every group has a do-nothing action (i.e., an identity).

Exercise 2.20. Imagine you have 10 coins in your left pocket. Consider two actions: (1)
move a coin from your left pocket to your right pocket, and (2) move a coin from your
right pocket to your left pocket. Is this a group? Explain your answer.

Exercise 2.21. Imagine you have a square puzzle piece that fits perfectly in a square hole.
Consider these actions: pick up the square and rotate it an appropriate amount so that
it fits back in the hole. Is this a group? Explain your answer. If it is a group, how many
distinct actions are there?

Exercise 2.22. Can you describe a group that has exactly n actions for any natural number
n?
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Exercise 2.23. Can you describe a situation that satisfies Rules 1-3, but not Rule 4?

Exercise 2.24. Pick your favorite integer. Consider these actions: add any integer to the
one you chose. This is an infinite set of actions. Is this a group? If so, how small a set of
generators can you find?

Exercise 2.25. Consider the previous exercise, but this time multiply instead of add. Is
this a group? Explain your answer.
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