Appendix A

Prerequisites

I'll organize this section better later, but for now, here’s a brain dump of some concepts
you should be familiar with.

A.1 Basic Set Theory

Definition A.1. A set is a collection of objects called elements. If A is a set and x is an
element of A, we write x € A. Otherwise, we write x € A.

Definition A.2. The set containing no elements is called the empty set, and is denoted
by the symbol 0.

If we think of a set as a box containing some stuff, then the empty set is a box with
nothing in it.

Definition A.3 (Interval Notation). For a,b € R with a < b, we define the following.
1. (a,b)={xeR|a<x<b)}
2. (a,0)={xeR|a<x}
3. (—oo,b)={xeR|x< b}
4. [a,b]={xeR|a<x <D}
We analogously define [a,b), (a,b], [4, ), and (-0, b].
Remark A.4. There are a few sets with common names that we should be familiar with.
1. Natural Numbers: N=1{1,2,3,...}
2. Integers: Z ={...,-3,-2,-1,0,1,2,3,...}

3. Real Numbers: R = (—c0, 00)*

“This is really a cop out. If you look at the definition of the interval (—co, o), we are being circular.
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4. Complex Numbers: C ={a+bi|a,b € R}, where i = V-1 is the imaginary unit.

Definition A.5. The language associated to sets is specific. We will often define sets using
the following notation, called set builder notation.

S = {x € A| x satisfies some condition}

The first part “x € A” denotes what type of x is being considered. The statements to the
right of the colon are the conditions that x must satisfy in order to be members of the set.
This notation is read as “The set of all x in A such that x satisfies some condition,” where
“some condition” is something specific about the restrictions on x relative to A.

Definition A.6. If A and B are sets, then we say that A is a subset of B, written A C B,
provided that every element of A is also an element of B.

Remark A.7. Observe that A C B is equivalent to “For all x (in the universe of discourse),
if x € A, then x € B.” Since we know how to deal with “for all” statements and conditional
propositions, we know how to go about proving A C B.

Theorem A.8 (Transitivity of subsets). Suppose that A, B, and C are sets. If A C B and
BCC,then ACC.

Definition A.9. If A C B, then A is called a proper subset provided that A # B. In this
case, we may write ACBor A C B.T

Definition A.10. Let A and B be sets.
1. The union of the sets Aand Bis AUB={xe U |xe€Aor xe€B}.
2. The intersection of the sets Aand Bis ANB={xe U |x€ A and x € B}.
3. The set difference of the sets Aand BisA\B={xe€ U |x€Aand x ¢ B}.
4. The complement of A (relative to U) is theset A=U\A={xe U |x¢A}.

Definition A.11. If two sets A and B have the property that AN B =0, then we say that A
and B are disjoint sets.

Theorem A.12. Let A and B be sets. If A C B, then B¢ C A-.

Definition A.13. Two sets A and B are equal if and only if A C B and B C A. In this case
we write A = B.

Remark A.14. Given two sets A and B, if we want to prove A = B, then we have to do two
separate “mini” proofs: one for A C B and one for BC A.

Theorem A.15. Let A and B be sets. Then A\ B=A N B°.

Theorem A.16 (DeMorgan’s Law). Let A and B be sets. Then

*Warning: Some books use C to mean C.
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1. (AUB)*=A°NB,
2. (ANB)*=A°UB".
Theorem A.17 (Distribution of Union and Intersection). Let A, B, and C be sets. Then
1. AU(BNC)=(AUB)N(AUC),
2. AN(BUC)=(ANB)U(ANC).
Definition A.18. Suppose we have a collection {A,}4ea.

1. The union of the entire collection is defined via

UA {x|xe€ A, for some a € A}.

a€eA

2. The intersection of the entire collection is defined via

ﬂA {x|x€A, forall @ € A

a€eA

Example A.19. In the special case that A = N, we write

UA {x|x€A, forsomeneN}=A;UA,UA3U---

and

ﬂA (x|xeA, forallneN}=A; NA,NA;N---

Similarly, if A ={1, 2, 3,4}, then

UAH:A1UA2UA3UA4

n=1
and

ﬂAn:AlmAzmA3mA4.

n=1

Remark A.20. Notice the difference between “(J” and “U” (respectively, “()” and “N”).
The larger versions of the union and intersection symbols very much like the notation

that you’ve likely seen for sums (e.g., Ziz).
i=1

Definition A.21. We say that a collection of sets {A,}4cn is pairwise disjoint if A,NAg =0
whenever a = 8.
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Exercise A.22. Draw a Venn diagram of a collection of 3 sets that are pairwise disjoint.

Exercise A.23. Provide an example of a collection of three sets, say {41, A,, A3}, such that
the collection is not pairwise disjoint, but

Definition A.24. An ordered pair is an object of the form (x,y). Two ordered pairs (x,y)
and (a,b) are equal if x=a and y = b.

Definition A.25. An n-tuple is an object of the form (xy,x,,...,x,). Each x; is referred to
as the ith component.

Note that an ordered pair is just a 2-tuple.
Definition A.26. If X and Y are sets, the Cartesian product of X and Y is defined by

XxY={xyp)|xeXypeY}

That is, X x Y is the set of all ordered pairs where the first element is from X and the
second element is from Y. The set X x X is sometimes denoted by X2. We similarly define
the Cartesian product of n sets, say Xj,...,X,, by

n
l_[Xi =Xy x--x X, ={(xq,...,x,) | each x; € X;}.
i=1

Exercise A.27. What general conclusion can you make about X x Y versus Y x X? When
will they be equal?

Exercise A.28. If X and Y are both finite sets, then how many elements will X x Y have?
Be as specific as possible.

Exercise A.29. Let X =[0,1] and let Y = {1}. Describe geometrically what X xY, Y x X,
X xX,and Y x Y look like.

A.2 Relations

Definition A.30. Let X and Y be sets. A relation from a set X to a set Y is a subset of
X xY. A relation on X is a subset of X x X.

Remark A.31. Different notations for relations are used in different contexts. When talk-
ing about relations in the abstract, we indicate that a pair (a,b) is in the relation by some
notation like a ~ b, which is read “a is related to b.”

Remark A.32. We can often represent relations using graphs or digraphs. Given a finite
set X and a relation ~ on X, a digraph (short for directed graph) is a discrete graph having
the members of X as vertices and a directed edge from x to y iff x ~ .
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7/

Figure A.1. An example of a digraph for a relation.

Example A.33. Figure A.1 depicts a digraph that represents a relation R given by
R={(a,b),(a,c) (b,D),(b,c) (c,d) (c,e) (d,d),(d,a),(ea).

Exercise A.34. Let A = {a,b,c} and define ~= {(a,a),(a,b),(b,¢),(c,b),(c,a)}. Draw the di-
graph for ~.

Definition A.35. Let ~ be a relation on a set A.
1. ~isreflexive if for all x € A, x ~ x (every element is related to itself).
2. ~is symmetric if for all x,y € A, if x ~ y, then y ~ x.
3. ~is transitive if for all x,y,z€ A, if x ~y and y ~ z, then x ~ z.

Exercise A.36. Given a finite set A and a relation ~, describe what each of reflexive,
symmetric, and transitive look like in terms of a digraph.

Exercise A.37. Let P be the set of people at a party and define N via (x,y) € N iff x
knows the name of y. Describe what it would mean for N to be reflexive, symmetric, and
transitive.

Definition A.38. Let ~ be a relation on a set A. Then ~ is called an equivalence relation
if ~ is reflexive, symmetric, and transitive.

Exercise A.39. Determine which of the following are equivalence relations.

1. Let Py denote the set of all people with accounts on Facebook. Define F via xFy iff x
is friends with y.

2. Let P be the set of all people and define H via xHy iff x and y have the same height.
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3. Let P be the set of all people and define T via xTy iff x is taller than y.
4. Consider the relation “divides” on N.
5. Let L be the set of lines and define || via [;|], iff I, is parallel to I,.

6. Let C[0,1] be the set of continuous functions on [0, 1]. Define f ~ g iff

1 1
jo f (o)l dx = fo o)l dx.

7. Define ~ on N via n ~ m iff n+ m is even.
8. Define D on R via (x,p) € D iff x = 2y.
9. Define ~ on Z via a ~ b iff a— b is a multiple of 5.
10. Define ~ on R? via (x1,;) ~ (x3,v,) iff x% +y12 = x% +y§.

11. Define ~ on R via x ~ y iff |[x] = |y], where |x] is the greatest integer less than or
equal to x (e.g., |[7] =3, |-1.5] = -2, and | 4] = 4).

12. Define ~ on Rvia x ~ p iff [x —y| < 1.

Definition A.40. Let ~ be a relation on a set A (not necessarily an equivalence relation)
and let x € A. Then we define the set of relatives of x via

[x]={yeAlx~y).

Also, define
Q. ={[x]|xeA}.

Notice that ()_ is a set of sets. In particular, an element in Q) _ is a subset of A (equiva-
lently, an element of P(A)). Other common notations for [x] include X and R,.

Exercise A.41. Find [1] and [2] for the relation given in part 9 of Exercise A.39. How
many different sets of relatives are there? What are they?

Exercise A.42. If ~is an equivalence relation on a finite set A, then what is the connection
between the equivalence classes and the corresponding digraph?

Theorem A.43. Suppose ~ is an equivalence relation on a set A and let a,b € A. Then
[a] = [b]iff a ~D.

Theorem A.44. Suppose ~ is an equivalence relation on a set A. Then
1. Uyealx]=A, and

2. for all x,y € A, either [x] =[y] or [x]N[y] = 0.
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Definition A.45. In light of Theorem A.44, if ~ is an equivalence relation on a set A, then
we refer to each [x] as the equivalence class of x. In this case, Q) _ is the set of equivalence
classes determined by ~.

Remark A.46. The upshot of Theorem A.44 is that given an equivalence relation, every
element lives in exactly one equivalence class. We’ll see in the next section of notes that
we can run this in reverse. That is, if we separate out the elements of a set so that every
element is an element of exactly one subset (like the bins of my kid’s toys), then this
determines an equivalence relation. More on this later.

A.3 Partitions

Definition A.47. A collection () of nonempty subsets of a set A is said to be a partition
of A if the elements of () satisfy:

1. Given X,Y € ), either X =Y or X NY =0 (We can’t have both at the same time. Do
you see why?), and

2. UX:A.

That is, the elements of (2 are pairwise disjoint and their union is all of A.

The next theorem spells out half of the close connection between partitions and equiv-
alence relations. Hopefully you were anticipating this.

Theorem A.48. Let ~ be an equivalence relation on a set A. Then (). forms a partition of
A.

Exercise A.49. Consider the equivalence relation
~={(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(4,5),(5,4),(5,5),(6,6),(5,6),(6,5), (4,6),(6,4)}
on the set A=1{1,2,3,4,5,6}. Find the partition determined by (...

It turns out that we can reverse the situation, as well. That is, given a partition, we
can form an equivalence relation. Before proving this, we need a definition.

Definition A.50. Let A be a set and () any collection of subsets from P(A) (not necessarily
a partition). If a,b € A, we will define a to be ()-related to b if there exists an R € () that
contains both a and b. This relation is denoted by ~n and is called the relation on A
associated to Q.

Remark A.51. This definition may look more awkward than the actual underlying con-
cept. The idea is that if two elements are in the same subset, then they are related. For
example, when my kids pick up all their toys and put them in the appropriate toy bins,
we say that two toys are related if they are in the same bin.

Remark A.52. Notice that we have two notations that looks similar: QO _ and ~,.
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1. Q) is the collection of subsets of A determined by the relation ~.
2. ~q is the relation determined by the collection of subsets ).

Theorem A.53. Let A be a set and let () be a partition of A. Then ~( is an equivalence
relation.

Remark A.54. The previous theorem says that every partition determines a natural equiv-
alence relation. Namely, two elements are related if they are in the same equivalence
class.

A.4 Functions

Definition A.55. Let X and Y be two nonempty sets. A function from set X to set Y,
denoted f : X — Y, is a relation (i.e., subset of X x Y) such that:

1. For each x € X, there exists y € Y such that (x,y) € f, and
2. If (6, 91),(x,92) € f, then p; = p,.
Note that if (x,y) € f, we usually write y = f(x) and say that “f maps x to y.”

Remark A.56. Item 1 of Definition A.55 says that every element of X appears in the first
coordinate of an ordered pair in the relation. Item 2 says that each element of X only
appears once in the first coordinate of an ordered pair in the relation. It is important to
note that there are no restrictions on whether an element of Y ever appears in the second
coordinate. Furthermore, if an element of B appears in the second coordinate, it may
appear again in a different ordered pair.

Definition A.57. The set X from Definition A.55 is called the domain of f and is denoted
by Dom(f). The set Y is called the codomain of f and is denoted by Codom(f). The set

Rng(f) = {y € Y | there exists x such that y = f(x)}

is called the range of f or the image of X under f.

Remark A.58. It follows immediately from the definition that Rng(f) € Codom(f). How-
ever, it is possible that the range of f is strictly smaller.

Remark A.59. If f is a function and (x,y) € f, then we may refer to x as the input of f
and p as the output of f.

Exercise A.60. Let X = {o,[],A,®}and Y ={a,b,c,d, e}. Determine whether each of the fol-
lowing represent functions. Explain. If the relation is a function, determine the domain,
codomain, and range.

1. f:X — Y defined via f ={(0,a),(3,b),(A,¢),(®,d)}.
2. g: X — Y defined via g = {(0,a),(1J, b),(4,¢),(®,c)}.
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3. h: X — Y defined via h = {(o,a),(d, b), (A, c), (o, d)}.

4. k: X — Y defined via k = {(o,a), (1, b), (A, ¢),(©,4d), (T, e)}.
5. 1: X — Y defined via I = {(o,¢),([J,e),(A,e),(O,e)}.

6. m: X — Y defined via m ={(o,a), (A, b),(®,c)}.

7. happy:Y — X defined via happy(y) =® forally e Y.

8. id: X — X defined via id(x) = x for all x € X.

\O

. nugget : X — X defined via

x, if x is a geometric shape,

nugget(x) = {

O, otherwise.

Exercise A.61. Let f : X — Y be a function and suppose that X and Y have n and m
elements in them, respectively. Also, suppose that n < m. Is it possible for Rng(f) =
Codom(f)? Explain.

Exercise A.62. In high school I am sure that you were told that a graph represents a
function if it passes the vertical line test. Using our terminology of ordered pairs, explain
why this works.

Definition A.63. Two functions are equal if they have the same domain, same codomain,
and the same set of ordered pairs in the relation.

Remark A.64. If two functions are defined by the same algebraic formula, but have dif-
ferent domains, then they are not equal. For example, the function f : R — R defined via
f(x) = x? is not equal to the function g : N — N defined via g(x) = x°.

Theorem A.65. If f : X —» Y and g: X — Y are functions, then f = g iff f(x) = g(x) for all
x € X.

Definition A.66. Let f : X — Y be a function.

1. The function f is said to be one-to-one (or injective) if for all y € Rng(f), there is a
unique x € X such that y = f(x).

2. The function f is said to be onto (or surjective) if for all y € Y, there exists x € X
such that y = f(x).

3. If f is both one-to-one and onto, we say that f is a one-to-one correspondence (or
a bijection).

Exercise A.67. Provide an example of each of the following. You may draw a bubble
diagram, write down a list of ordered pairs, or write a formula (as long as the domain
and codomain are clear). Assume that X and Y are finite sets.
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1. A function f : X — Y that is one-to-one but not onto.

2. A function f : X — Y that is onto but not one-to-one.

3. A function f : X — Y that is both one-to-one and onto.
4. A function f : X — Y that is neither one-to-one nor onto.

Theorem A.68. Let f : X — Y be a function. Then f is one-to-one iff for all x,x; € X, if
f(x1) = f(x,), then x; = x,.

Remark A.69. The previous theorem gives a technique for proving that a given function
is one-to-one. Start by assuming that f(x;) = f(x,) and then work to show that x; = x,.

Remark A.70. To show that a given function is onto, you should start with an arbitrary
v € Rng(f) and then work to show that there exists x € X such that y = f(x).

Definition A.71. If f : X — Y and g: Y — Z are functions, then a new function go f :
X — Z can be defined by (g o f)(x) = g(f(x)) for all x € Dom(f).

Remark A.72. It is important to notice that the function on the right is the one that “goes
first.”

Exercise A.73. In each case, give examples of finite sets X, Y, and Z, and functions f :
X — Y and g : Y — Z that satisfy the given conditions. Drawing bubble diagrams is
sufficient.

1. f is onto, but g o f is not onto.

2. gisonto, but go f is not onto.

3. f is one-to-one, but g o f is not one-to-one.
4. gis one-to-one, but go f is not.

Theorem A.74. If f : X — Y and g: Y — Z are both functions that are onto, then go f is
also onto.

Theorem A.75. If f : X — Y and g: Y — Z are both functions that are one-to-one, then
go f is also one-to-one.

Corollary A.76. If f : X —» Y and g: Y — Z are both one-to-one correspondences, then
go f is also a one-to-one correspondence.

Definition A.77. Let f : X — Y be a function. The relation f~!, called f inverse, is
defined via

FH=1f (), %) | x e X).

Remark A.78. Notice that we called f! a relation and not a function. In some circum-
stances f~! will be a function and sometimes it won’t be.
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Exercise A.79. Provide an example of a function f : X — Y such that f~! is not a function.
A bubble diagram is sufficient.

Theorem A.80. Let f : X — Y be a function. Then f~! is a function iff f is 1-1.
Theorem A.81. Let f : X — Y be a function and suppose that f~! is a function. Then
1. (fof ) (x)=xforall xeY,and
2. (f~1o f)(x)=x for all x € X.
(You only need to prove one of these statements; the other is similar.)

Theorem A.82. Let f : X —» Y and g : Y — X be functions such that f is a one-to-one
correspondence. If (f o g)(x) = x forall x € Y and (g o f)(x) = x for all x € X, then g = f L.

Remark A.83. The upshot of the previous two theorems is that if f~! is a function, then it
is the only one satisfying the two-sided “undoing” property exhibited in Theorem A.81.

The next theorem can be considered to be a converse of Theorem A.82.

Theorem A.84. Let f : X — Y and g: Y — X be functions satisfying (f o g)(x) = x for all
x€Y and (go f)(x) = x for all x € X. Then f is a one-to-one correspondence.

Theorem A.85. Let f : X —» Y and g: Y — Z be functions. If f and g are both one-to-one
correspondences, then (go f)™' = flog™!.

A.5 Induction

Induction is a technique for proving statements of the form “For all n € N, P(n),” where
P(n) is some predicate involving n. Notice that this is a statement about natural numbers
and not some other set.

Axiom A.86 (Axiom of Induction). Let S C N such that both
1. 1 €S, and
2. iftkeS,thenk+1€S.

Then S =N.

Remark A.87. Recall that an axiom is a basic mathematical assumption. That is, we are
assuming that the Axiom of Induction is true, which I'm hoping that you can agree is
a pretty reasonable assumption. I like to think of the first hypothesis of the Axiom of
Induction as saying that we have a first rung of a ladder. The second hypothesis says that
if we have some random rung, we can always get to the next rung. Taken together, this
says that we can get from the first rung to the second, from the second to the third, and
so on. Again, we are assuming that the “and so on” works as expected here.
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Theorem A.88 (Principle of Mathematical Induction). Let P(1), P(2), P(3),... be a sequence
of statements, one for each natural number.¥ Assume

1. P(1)is true, and
2. If P(k) is true, then P(k + 1) is true.
Then P(n) is true for all n € N.8

Remark A.89. The Principal of Mathematical Induction (PMI) provides us with a process
for proving statements of the form: “For all n € N, P(n),” where P(n) is some predicate
involving n. Hypothesis (1) above is called the base step while (2) is called the inductive
step.

Skeleton Proof A.90 (Proof by induction for (Vn € N)P(n)). Here is what the general
structure for a proof by induction looks like. Remarks are in parentheses.

Proof. We proceed by induction.

(i) Base step: (Verify that P(1) is true. This often, but not always, amounts to plug-
ging n = 1 into two sides of some claimed equation and verifying that both sides
are actually equal. Don’t assume that they are equal!)

(ii) Inductive step: (Your goal is to prove that “For all k € N, if P(k) is true, then P(k+1)
is true.”) Let k € N and assume that P(k) is true. (Now, do some stuff to show that
P(k+1) is true.) Therefore, P(k + 1) is true.

Thus, by the PMI, P(n) is true for all n € N. O

Hn this case, you should think of P(n) as a predicate, where P(1) is the statement that corresponds to
substituting in the value 1 for n.

SHint: Let S = {k € N| P, is true} and use the Axiom of Induction. The set S is sometimes called the truth
set. Your job is to show that the truth set is all of N.
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