
Chapter 6

Products and Quotients of Groups

6.1 Products of Groups
In this section, we will discuss a method for using existing groups as building blocks to
form new groups.

Suppose (G,⇤) and (H,�) are two groups. Recall that the Cartesian product of G and
H is defined to be

G ⇥H = {(g,h) | g 2 G,h 2H}
Using the binary operations for the groups G and H , we can define a binary operation on
the set G ⇥H . Define ? on G ⇥H via

(g1,h1) ? (g2,h2) = (g1 ⇤ g2,h1 � h2).

This looks fancier than it is. We’re just doing the operation of each group in the appro-
priate component. It turns out that (G ⇥H,?) is a group.

Theorem 6.1. Suppose (G,⇤) and (H,�) are two groups, where e and e
0 are the identity

elements of G and H , respectively. Then (G ⇥ H,?) is a group, where ? is defined as
above. Moreover, (e, e0) is the identity of G⇥H and the inverse of (g,h) 2 G⇥H is given by
(g,h)�1 = (g�1,h�1).

We refer to G ⇥H as the direct product of the groups G and H . In this case, each of
G and H is called a factor of the direct product. We often abbreviate (g1,h1) ? (g2,h2) =
(g1 ⇤ g2,h1 � h2) by (g1,h1)(g2,h2) = (g1g2,h1h2). One exception to this is if we are using
the operation of addition in each component. For example, consider Z4 ⇥ Z2 under the
operation of addition mod 4 in the first component and addition mod 2 in the second
component. Then

Z4 ⇥Z2 = {(0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (3,1)}.

In this case, we will use additive notation in Z4 ⇥Z2. For example, in Z4 ⇥Z2 we have

(2,1) + (3,1) = (1,0)
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and
(1,0) + (2,1) = (3,1).

Moreover, the identity of the group is (0,0). As an example, the inverse of (1,1) is (3,1)
since (1,1) + (3,1) = (0,0). There is a very natural generating set for Z4 ⇥ Z2, namely,
{(1,0), (0,1)} since 1 2 Z4 and 1 2 Z2 generate Z4 and Z2, respectively. The corresponding
Cayley diagram is given in Figure 6.1.

(0,1) (1,1)

(2,1)(3,1)

(0,0) (1,0)

(2,0)(3,0)

Figure 6.1. Cayley diagram for Z4 ⇥Z2 with generating set {(1,0), (0,1)}.

Problem 6.2. Consider the group Z4 ⇥ Z2. Is this group abelian? Is the group cyclic?
Determine whether Z4 ⇥Z2 is isomorphic to any of D4, Q8, Z8, or L3.

The upshot of the previous problem is that there are at least five groups of order
8 up to isomorphism. It turns out that there are exactly five groups of order 8 up to
isomorphism. In particular, every group of order 8 is isomorphic to one of the following
groups: Z8, Z4 ⇥ Z2, L3, D4, and Q8. Note that R8 � Z8 and Spin1⇥2 � D4. Three of
the isomorphism classes correspond to abelian groups while the other two correspond to
non-abelian groups. Unfortunately, we will not develop the tools necessary to prove that
this classification is complete.

The next two theorems should not be terribly surprising.

Theorem 6.3. If G1 and G2 are groups, then G1 ⇥G2 � G2 ⇥G1.

Theorem 6.4. Suppose G1 and G2 are groups with identities e1 and e2, respectively. Then
{e1}⇥G2 � G2 and G1 ⇥ {e2} � G1.

There’s no reasonwe can’t take the direct product ofmore than two groups. IfA1,A2, . . . ,An

is a collection of sets, we define

nY

i=1

Ai := A1 ⇥A2 ⇥ · · ·⇥An.

Each element of
Q

n

i=1Ai is of the form (a1, a2, . . . , an), where ai 2 Ai .
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Theorem 6.5. Let G1,G2, . . . ,Gn be groups. For (a1, a2, . . . , an), (b1, b2, . . . , bn) 2
Q

n

i=1Gi , de-
fine

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Then
Q

n

i=1Gi , the direct product of G1, . . . ,Gn, is a group under this binary operation.

One way to think about direct products is that we can navigate the product by nav-
igating each factor simultaneously but independently. Computing the order of a group
that is a direct product is straightforward.

Theorem 6.6. Let G1,G2, . . . ,Gn be finite groups. Then

|G1 ⇥G2 ⇥ · · ·⇥Gn| = |G1| · |G2| · · · |Gn|.

Theorem 6.7. Let G1,G2, . . . ,Gn be groups. Then |G1 ⇥G2 ⇥ · · ·⇥Gn| is infinite if and only
if at least one |Gi | is infinite.

The following theorem should be clear.

Theorem 6.8. Let G1,G2, . . . ,Gn be groups. Then
Q

n

i=1Gi is abelian if and only if each Gi

is abelian.

Let’s play with a few more examples.

Problem 6.9. Draw the Cayley diagram for Z2 ⇥Z3 using {(1,0), (0,1)} as the generating
set. Is Z2 ⇥Z3 an abelian group? Is it cyclic? What familiar group is Z2 ⇥Z3 isomorphic
to?

Problem 6.10. Consider Z2 ⇥Z2 under the operation of addition mod 2 in each compo-
nent. Find a generating set for Z2 ⇥Z2 and then create a Cayley diagram for this group.
What well-known group is Z2 ⇥Z2 isomorphic to?

Consider the similarities and di↵erences between Z2⇥Z3 and Z2⇥Z2. Both groups are
abelian by Theorem 6.8, but only the former is cyclic. Here’s another exercise.

Problem 6.11. Consider the group Z2⇥Z2⇥Z2. Find a generating set for Z2⇥Z2⇥Z2 and
then create a Cayley diagram for this group. Is there a group that we have seen before
that Z2 ⇥Z2 ⇥Z2 isomorphic to?

The next theorem tells us how to compute the order of an element in a direct product
of groups.

Theorem 6.12. Suppose G1,G2, . . . ,Gn are groups and let (g1, g2, . . . , gn) 2
Q

n

i=1Gi . If |gi | =
ri <1, then |(g1, g2, . . . , gn)| = lcm(r1, r2, . . . , rn).

Problem 6.13. Find the order of each of the following elements.

(a) (6,5) 2 Z12 ⇥Z7.

(b) (r, i) 2D3 ⇥Q8.
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(c) ((1,2)(3,4),3) 2 S4 ⇥Z15.

Problem 6.14. Find the largest possible order of elements in each of the following groups.

(a) Z6 ⇥Z8

(b) Z9 ⇥Z12

(c) Z4 ⇥Z18 ⇥Z15

Theorem 6.15. The group Zm ⇥Zn is cyclic if and only if m and n are relatively prime.

Corollary 6.16. The group Zm ⇥Zn is isomorphic to Zmn if and only if m and n are rela-
tively prime.

The previous results can be extended to more than two factors.

Theorem 6.17. The group
Q

n

i=1Zmi
is cyclic and isomorphic to Zm1m2···mn

if and only if
every pair from the collection {m1,m2, . . . ,mn} is relatively prime.

Problem 6.18. Determine whether each of the following groups is cyclic.

(a) Z7 ⇥Z8

(b) Z7 ⇥Z7

(c) Z2 ⇥Z7 ⇥Z8

(d) Z5 ⇥Z7 ⇥Z8

Theorem 6.19. Suppose n = p
n1
1 p

n2
2 · · ·p

nr
r , where each pi is a distinct prime number. Then

Zn � Z
p
n1
1
⇥Z

p
n2
2
⇥ · · ·⇥Z

p
nr
r
.

The next theorem tells us that the direct product of subgroups is always a subgroup.

Theorem 6.20. Suppose G1 and G2 are groups such that H1  G1 and H2  G2. Then
H1 ⇥H2  G1 ⇥G2.

However, not every subgroup of a direct product has the form above.

Problem 6.21. Find an example that illustrates that not every subgroup of a direct prod-
uct is the direct product of subgroups of the factors.

Problem 6.22. Can we extend Theorem 6.20 to normal subgroups? That is, if H1 E G1
and H2 E G2, is it the case that H1 ⇥H2 E G1 ⇥G2? If so, prove it. Otherwise, provide a
counterexample.

The next theorem describes precisely the structure of finite abelian groups. We will
omit its proof, but allow ourselves to utilize it as needed.
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Theorem6.23 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group G is isomorphic to a direct product of cyclic groups of the form

Z
p
n1
1
⇥Z

p
n2
2
⇥ · · ·⇥Z

p
nr
r
⇥Zk

,

where each pi is a prime number (not necessarily distinct). The product is unique up to
rearrangement of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group
is finite if and only if the Betti number is 0.

Problem 6.24. Find all abelian groups up to isomorphism of order 8. Howmany di↵erent
groups up to isomorphism (both abelian and non-abelian) have we seen and what are
they?

Problem 6.25. Find all abelian groups up to isomorphism for each of the following or-
ders.

(a) 16

(b) 12

(c) 25

(d) 30

(e) 60

6.2 Quotients of Groups
In the previous section, we discussed a method for constructing “larger” groups from
“smaller” groups using a direct product construction. In this section, we will in some
sense do the opposite.

Problem 5.28 hinted that if H  G and we arrange the group table according to the
left cosets of H , then the group table will have checkerboard pattern if and only if H is
normal in G (i.e., the left and right cosets ofH are the same). For example, see the colored
table prior to Problem 5.3 versus the ones you created in Exercises 5.3, 5.4. If we have
the checkerboard pattern in the group table that arises from a normal subgroup, then by
“gluing together” the colored blocks, we obtain a group table for a smaller group that has
the cosets as the elements.

For example, let’s consider H = h�1i  Q8. Problem 5.4 showed us that K is normal
Q8. The left (and right) cosets of H in Q8 are

K = {1,�1}, iH = {i,�i}, jH = {j,�j}, and kH = {k,�k}.

As you found in Problem 5.4, if we arrange the rows and columns of Q8 according to
these cosets, we obtain the following group table.
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⇤ 1 �1 i �i j �j k �k
1 1 �1 i �i j �j k �k
�1 �1 1 �i i �j j �k k

i i �i �1 1 k �k �j j

�i �i i 1 �1 �k k j �j
j j �j �k k �1 1 i �i
�j �j j k �k 1 �1 �i i

k k �k j �j �i i �1 1
�k �k k �j j i �i 1 �1

If we consider the 2 ⇥ 2 blocks as elements, it appears that we have a group table for
a group with 4 elements. Closer inspection reveals that this looks like the table for V4
(compare with Figure 3.8). If the table of 2 ⇥ 2 blocks is going to represent a group, we
need to understand the binary operation. How do we “multiply” cosets? For example, the
table suggests that the coset jH (colored in purple) times the coset iH (colored in orange)
is equal to kH (colored in light purple) despite the fact that ji = �k , k. Yet, it is true
that the product ji = �k is an element in the coset kH . In fact, if we look closely at the
table, we see that if we pick any two cosets, the product of any element of the first coset
times any element of the second coset will always result in an element in the same coset
regardless of which representatives we chose.

In other words, it looks like we can multiply cosets by choosing any representative
from each coset and then seeing what coset the product of the representatives lies in.
However, it is important to point out that this will only work if we have a checkerboard
pattern of cosets, which we have seen evidence of only happening when the correspond-
ing subgroup is normal.

Before continuing, let’s continue tinkering with the same example. Consider the Cay-
ley diagram for Q8 with generators {i, j,�1} that is given in Figure 6.2(a).

1 i

kj

�1 �i

�k�j

(a)

K Ki

KkKj

(b)

Figure 6.2. The left subfigure shows the Cayley diagram for Q8 with generating set
{i, j,�1}. The right subfigure shows the collapsed Cayley diagram for Q8 according to
the right cosets of K = h�1i.

We can visualize the right cosets of K as the four clumps of vertices connected together
with the two-way green arrows. These are the clones of K . In this case, we are also seeing
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the left cosets since K is normal in Q8. If we collapse the right cosets onto each other
and collapse the corresponding arrows, we obtain the diagram given in Figure 6.2(b). It
is clear that this diagram is the Cayley diagram for a group that is isomorphic to V4.

This process of collapsing a Cayley diagram for a groupG according to the right cosets
of a subgroup H is called the quotient process. The vertices in the resulting diagram are
the right cosets (i.e., clones) of H . If there is an arrow from g1 to g2 in the Cayley diagram
for G such that g1 and g2 are in di↵erent right cosets, then there is an arrow of the same
color from the right coset containing g1 (i.e., Hg1) to the right coset containing g2 (i.e.,
Hg2).

For reasons we will understand shortly, applying the quotient process to G according
to a subgroupH results in the Cayley diagram for a group if and only ifH is normal in G.

Problem 6.26. Let’s see what happens if we attempt the quotient process for a subgroup
that is not normal. Consider H = hsi  D3. In Problem 5.2, we discovered that the left
cosets of H are not the same as the right cosets of H . This implies that H is not normal in
D3. Consider the standard Cayley diagram for D3 that uses the generators r and s. Draw
the diagram that results from attempting the quotient process on D3 using the subgroup
H . Explain why this diagram cannot be the diagram for a group.

The problem that arises in Problem 6.26 is that if the same arrow types (i.e., those
representing the same generator) leaving a right coset do not point at elements in the
same right coset, attempting the quotient process will result in a diagram that cannot be
a Cayley diagram for a group since we have more than one arrow of the same type leaving
a vertex. In Figure 6.3(a), we illustrate what goes wrong if all the arrows for a generator
pointing out of a right coset (i.e., clone) do not unanimously point to elements in the same
right coset. In Figure 6.3(b), all the arrows point to elements in the same right coset, and
in this case, it appears that everything works out just fine.

Hg2 Hg3

Hg1
• • • •

• • • •

�!

Hg1

Hg2 Hg3

(a)

Hg2

Hg1
• • • •

•
• •

•

�!

Hg1

Hg2

(b)

Figure 6.3. In the left subfigure, blue arrows go from elements of the right coset Hg1 to
elements of multiple left cosets, which results in ambiguous blue arrows in the diagram
resulting from the quotient process. This implies that right coset multiplication is not
well defined in this case. In the right subfigure, blue arrows go from elements of the right
coset Hg1 to elements inside a unique right coset, which does not result in any ambiguity
in the diagram resulting from the quotient process.

Problem 6.27. In Problem 5.3, we learned that the subgroup K = hri is normal in D3
since the left cosets are equal to the right cosets. Note that this follows immediately from
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Theorem 5.33 since [D3 : K] = 2. Draw the diagram that results from performing the
quotient process to D3 using the subgroup K . Does the resulting diagram represent a
group? If so, what group is it isomorphic to?

Problem 6.28. Consider the left Cayley diagram for A4 given in Problem 4.122.

(a) Let H be the subgroup generated by the element that corresponds to the orange
arrow. Draw the diagram that results from performing the quotient process to A4
using the subgroup H . Does the resulting diagram represent a group? If so, what
group is it isomorphic to? Compare with Problem 5.32.

(b) Let K be the subgroup generated by the element that corresponds to the purple
arrow. Draw the diagram that results from performing the quotient process to A4
using the subgroup K . Does the resulting diagram represent a group? If so, what
group is it isomorphic to?

Problem 6.29. Consider the Cayley diagram for Z4 ⇥Z2 given in Figure 6.1.

(a) Let H = h(1,0)i. Draw the diagram that results from performing the quotient pro-
cess to Z4⇥Z2 using the subgroupH . Does the resulting diagram represent a group?
If so, what group is it isomorphic to?

(b) LetK = h(0,1)i. Draw the diagram that results from performing the quotient process
to Z4 ⇥Z2 using the subgroup K . Does the resulting diagram represent a group? If
so, what group is it isomorphic to?

Now, suppose G is an arbitrary group and let H  G. Consider the set of left cosets of
H . We would like to define

(aH)(bH) = (ab)H.

The natural question to ask is whether this operation is well defined. That is, does the re-
sult of multiplying two left cosets depend on our choice of representatives? More specif-
ically, suppose c 2 aH and d 2 bH . Then cH = aH and dH = bH . According to the
operation defined above, (cH)(dH) = cdH . It better be the case that cdH = abH , otherwise
the operation is not well defined.

Problem 6.30. Let H = hsi D3. Find specific examples of a,b,c,d 2D3 such that

(aH)(bH) , (cH)(dH)

even though aH = cH and bH = dH .

Theorem 6.31. Let G be a group and letH  G. Then left coset multiplication (as defined
above) is well defined if and only if H E G.

Theorem 6.32. Let G be a group and letH E G. Then the set of left cosets ofH in G forms
a group under left coset multiplication.
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The group from Theorem 6.32 is denoted by G/H , read “G mod H”, and is referred
to as the quotient group (or factor group) of G by H . If G is a finite group, then G/H is
exactly the group that arises from “gluing together” the colored blocks in a checkerboard-
patterned group table. It’s also the group that we get after applying the quotient process
to the Cayley diagram. It’s important to point out once more that this only works properly
if H is a normal subgroup.

Recall that Theorem 5.30 tells us that if G is abelian, then every subgroup is normal.
This implies that when G is abelian, G/H is a well-defined group for every subgroupH of
G. However, it is not necessary for G to be abelian in order for G/H to be a well-defined
group. The quotient group Q8/h�1i is an example where this happens.

The next theorem tells us how to compute the order of a quotient group.

Theorem 6.33. Let G be a group and let H E G. Then |G/H | = [G : H]. In particular, if G
is finite, then |G/H | = |G|/ |H |.

It’s important to point out that the order of a quotient group might be finite even if G
has infinite order.

Problem 6.34. Consider the group (Z,+). Since Z is abelian, every subgroup is normal.
For example, 4Z E Z, which implies that Z/4Z is a well-defined quotient group. More-
over, both Z and 4Z have infinite order. What is |Z/4Z| equal to? Can you determine what
well-known group Z/4Z is isomorphic to?

Suppose G is a group and H E G, so that G/H is a group. Recall that the elements
of the group G/H are the left cosets of H , which are of the form aH where a 2 G. The
operation of the group is defined via

(aH)(bH) = abH.

Moreover, the identity in G/H is eH =H since (aH)(eH) = aH . By Corollary 4.20 |aH | = k

if and only if (aH)k = H and k is the smallest such positive exponent with this property.
But notice that (aH)k = a

k
H . So, in order to compute the order of aH , we need to find

the smallest positive exponent k such that akH =H , but akH =H exactly when a
k is in H .

The upshot is that to find the order of aH in G/H , we need the smallest positive k such
that ak is in H .

Problem6.35. Find the order of the given element in the quotient group. Youmay assume
that we are taking the quotient by a normal subgroup.

(a) shri 2D4/hri

(b) jh�1i 2Q8/h�1i

(c) 5 + h4i 2 Z12/h4i

(d) (2,1) + h(1,1)i 2 (Z3 ⇥Z6)/h(1,1)i

(e) (1,3) + h(0,2)i 2 (Z4 ⇥Z8)/h(0,2)i
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Problem 6.36. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) Q8/h�1i

(b) Q8/hii

(c) Z4/h2i

(d) V4/hhi

(e) A4/h(1,2)(3,4), (1,3)(2,4)i

(f) (Z2 ⇥Z2)/h(1,1)i

(g) Z/4Z

(h) S4/A4

(i) (Z4 ⇥Z2)/({0}⇥Z2)

Problem 6.37. Compute the order of every element in the quotient group (Z2⇥Z4)/h(0,2)i.
What well-known group is (Z2 ⇥Z4)/h(0,2)i isomorphic to?

Theorem 6.38. Let G be a group. Then

(a) G/{e} � G

(b) G/G � {e}

Theorem 6.39. We have the following.

(a) For n � 2, Sn/An � Z2.

(b) For all n 2 N, Z/nZ � Zn.

(c) For all n 2 N, R/nR � {e}.

Theorem 6.40. Let G be a group and let H E G. If G is abelian, then so is G/H .

Problem 6.41. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Problem 6.42. Consider the quotient group (Z4 ⇥Z6)/h(0,1)i.

(a) What is the order of (Z4 ⇥Z6)/h(0,1)i?

(b) Is the group abelian? Why?

(c) Write down all the elements of (Z4 ⇥Z6)/h(0,1)i.

(d) Does one of the elements generate the group?
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(e) What well-known group is (Z4 ⇥Z6)/h(0,1)i isomorphic to?

Theorem 6.43. Let G be a group and let H E G. If G is cyclic, then so is G/H .

Problem 6.44. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

The next result should be straightforward to proof.

Theorem 6.45. If G is a group, then Z(G)E G.

The next theorem is surprisingly useful at times.

Theorem 6.46. Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Problem 6.47. Is the converse of the previous theorem true? If so, prove it. Otherwise,
provide a counterexample.

Theorem 6.48. IfG is a group such that |G| = pq, where p and q are primes (not necessarily
distinct), then either Z(G) = {e} or G is abelian.

Problem 6.49. Recall that Q is a group under addition. Define Q
⇤ := Q \ {0}. It is easy

to verify that Q⇤ is a group under multiplication. Both groups are abelian, which implies
that all subgroups are normal.

(a) Describe the quotient group Q/h�1i. In particular, what do the elements (cosets)
look like?

(b) Describe the quotient group Q
⇤
/h�1i. In particular, what do the elements (cosets)

look like?

Here are few additional exercises. These ones are a bit tougher.

Problem 6.50. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) (Z4 ⇥Z6)/h(0,2)i

(b) (Z2 ⇥Z4)/h(0,2)

(c) (Z⇥Z)/h(1,1)i

(d) Q/h1i
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