
Chapter 3

Subgroups and Isomorphisms

For the next two sections, it would be useful to have all of the Cayley diagrams we’ve
encountered in one place for reference. So, before continuing, gather up the following
Cayley diagrams:

• Spin1⇥2. There are 3 of these. I drew one for you in Section 2.6 and you discovered
two more in Problem 2.69.

• S2. See Problem 2.72(a).

• R4. See Problem 2.72(b).

• V4. See Problem 2.72(c).

• D3. There are two of these. See Problems 2.72(d) and 2.72(e).

• S3. See Problem 2.72(f).

• D4. See Problem 2.72(g).

3.1 Subgroups
Problem 3.1. Recall the definition of “subset.” What do you think “subgroup” means?
Try to come up with a potential definition. Try not to read any further before doing this.

Problem 3.2. Examine your Cayley diagrams for D4 (with generating set {r, s}) and R4
(with generating set {r}) and make some observations. How are they similar and how are
they di↵erent? Can you reconcile the similarities and di↵erences by thinking about the
actions of each group?

Hopefully, one of the things you noticed in the previous problem is that we can “see”
R4 inside of D4. You may have used di↵erent colors in each case and maybe even labeled
the vertices with di↵erent words, but the overall structure of R4 is there nonetheless.
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Problem 3.3. If you ignore the labels on the vertices and just pay attention to the config-
uration of arrows, it appears that there are two copies of the Cayley diagram for R4 in the
Cayley diagram for D4. Isolate these two copies by ignoring the edges that correspond to
the generator s. Now, paying close attention to the words that label the vertices from the
original Cayley diagram for D4, are either of these groups in their own right?

Recall that the identity must be one of the elements included in a group. If this didn’t
occur to you when doing the previous problem, you might want to go back and rethink
your answer. Just like in the previous problem, we can often “see” smaller groups living
inside larger groups. These smaller groups are called subgroups.

Definition 3.4. Let G be a group and let H be a subset of G. Then H is a subgroup of
G, written H  G, provided that H is a group in its own right under the binary operation
inherited from G.

The phrase “under the binary operation inherited from G” means that to combine two
elements in H , we should treat the elements as if they were in G and perform the binary
operation of G.

In light of Problem 3.3, we would write R4  D4. The second sub-diagram of the
Cayley diagram for D4 (using {r, s} as the generating set) that resembles R4 cannot be a
subgroup because it does not contain the identity. However, since it looks a lot like R4,
we call it a “clone” of R4. We formalize the notion of a clone shortly.

Problem 3.5. Let G be a group and let H ✓ G. If we wanted to determine whether H is a
subgroup of G, can we skip checking any of the axioms? Which axioms must we verify?

Let’s make the observations of the previous problem a bit more formal.

Theorem 3.6 (Two Step Subgroup Test). SupposeG is a group andH is a nonempty subset
of G. ThenH  G if and only if (i) for all h 2H , h�1 2H , as well, and (ii)H is closed under
the binary operation of G.

Notice that one of the hypotheses of Theorem 3.6 is that H be nonempty. This means
that if we want to prove that a certain subset H is a subgroup of a group G, then one of
the things we must do is verify that H is in fact nonempty. In light of this, the “Two Step
Subgroup Test” should probably be called the “Three Step Subgroup Test”.

As Theorems 3.7 and 3.9 will illustrate, there are a couple of subgroups that every
group contains.

Theorem 3.7. If G is a group, then {e}  G.

The subgroup {e} is referred to as the trivial subgroup. All other subgroups are called
nontrivial.

Problem 3.8. Let G be a group. What does the Cayley diagram for the subgroup {e} look
like? What are you using as your generating set?

Earlier, we referred to subgroups as being “smaller.” However, our definition does not
imply that this has to be the case.
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Theorem 3.9. If G is a group, then G  G.

We refer to subgroups that are not equal to the whole group as proper subgroups. If
H is a proper subgroup, then we may write H < G.

Recall Theorem 2.52 that states that if G is a group under ⇤ and S is a subset of G, then
hSi is also a group under ⇤. Let’s take this a step further.

Theorem 3.10. If G is a group and S ✓ G, then hSi  G. In particular, hSi is the smallest
subgroup of G containing S .

The subgroup hSi is called the subgroup generated by S . In the special case when S

equals a single element, say S = {g}, then

hgi = {gk | k 2 Z},

which is called the (cyclic) subgroup generated by g . Every subgroup can be written in
the “generated by” form. That is, ifH is a subgroup of a group G, then there always exists
a subset S of G such that hSi =H . In particular, hHi =H for H  G, and as a special case,
we have hGi = G.

Earlier we mentioned that the Cayley diagram for the subgroup R4 (using {r} as the
generating set) of D4 had a clone in the Cayley diagram for D4 (using the generating set
{s, t}). Loosely speaking, a clone is a sub-diagram in a Cayley diagram that looks just like
the Cayley diagram for a subgroup. More formally, suppose G is a group with generating
set S . If H  G such that H = hT i for some T ✓ S , then H will be visually apparent in
the Cayley diagram for G using S as the generating set. In particular, the Cayley diagram
for H will appear in the Cayley diagram for G using some subset of the arrow types
determined by S . Any collection of vertices C in the Cayley diagram for G whose induced
subgraph (i.e., the diagram that results from using the vertices in C and only those arrows
connecting vertices inC) is identical to the Cayley diagram forH while ignoring the labels
on the vertices is called a clone of H . For convenience, we also say that H is a clone of
itself. In Section 5.1, we will see that the clones of a subgroup correspond to the “right
cosets” of a subgroup.

Example 3.11. Consider the Cayley diagram of the left given in Problem 2.74. LetH = hsi
(i.e., the cyclic subgroup generated by r). Then H = {e, s, s2, s3}, which we can visualize as
the subgraph that is the four-cycle at the top of the Cayley diagram. Then H has three
clones, one of which is itself. The other two clones are {t, st, s2t, t2s} and {t2, st2, t2s2, ts},
neither of which are subgroups since they do not contain the identity. Let K = hti, so that
K = {e, t, t2, s2, s2t, t2s2}. Then K has two clones, namely K is itself and {s, ts, t2s, s3, st2, st}.

Problem 3.12. Consider Spin1⇥2 with generating set {s11, s22, s12}.

(a) Find the Cayley diagram for the subgroup hs11i inside the Cayley diagram for Spin1⇥2.
Identify all of the clones of hs11i inside Spin1⇥2.

(b) Find the Cayley diagram for the subgroup hs11, s22i inside the Cayley diagram of
Spin1⇥2. Identify the clones of hs11, s22i inside Spin1⇥2.
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One of the benefits of Cayley diagrams is that they are useful for visualizing sub-
groups. However, recall that if we change our set of generators, we might get a very
di↵erent looking Cayley diagram. The upshot of this is that we may be able to see a sub-
group in one Cayley diagram for a given group, but not be able to see it in the Cayley
diagram arising from a di↵erent generating set.

Problem3.13. We currently have two di↵erent Cayley diagrams forD3 (see Problems 2.21
and 2.57).

(a) Can you find the Cayley diagram for the trivial subgroup hei in either Cayley dia-
gram for D3? Identify all of the clones of hei in both Cayley diagrams for D3.

(b) Can you find the Cayley diagram for the subgroup hri = R3 in either Cayley diagram
for D3? If possible, identify all of the clones of R3 in the Cayley diagrams for D3.

(c) Can you find the Cayley diagrams for hsi and hs0i in either Cayley diagram for D3?
If possible, identify all of the clones of hsi and hs0i in the Cayley diagrams for D3.

Problem 3.14. Consider D4. Let h be the reflection of the square over the horizontal
midline and let v be the reflection over the vertical midline. Which of the following are
subgroups of D4? In each case, justify your answer. If a subset is a subgroup, try to find
a minimal generating set. Also, determine whether you can see the subgroups in our
Cayley diagram for D4 with generating set {r, s}.

(a) {e, r2}

(b) {e,h}

(c) {e,h,v}

(d) {e,h,v, r2}

Perhaps you recognized the set in part (d) of the previous problem as being the Klein
four-group V4. It follows that V4 D4.

Let’s introduce a group we haven’t seen yet. Define the quaternion group to be the
group Q8 = {1,�1, i,�i, j,�j,k,�k} having the Cayley diagram with generating set {i, j,�1}
given in Figure 3.1. In this case, 1 is the identity of the group.

Notice that I did not mention what the actions actually do. For now, let’s not worry
about that. The relationship between the arrows and vertices tells us everything we need
to know. Also, let’s take it for granted that Q8 actually is a group.

Problem 3.15. Consider the Cayley diagram for Q8 given in Figure 3.1.

(a) Which arrows correspond to which generators in our Cayley diagram for Q8?

(b) What is i2 equal to? That is, what element of {1,�1, i,�i, j,�j,k,�k} is i2 equal to?
How about i3, i4, and i

5?

(c) What are j2, j3, j4, and j
5 equal to?
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1 i

kj

�1 �i

�k�j

Figure 3.1. Cayley diagram for Q8 with generating set {�1, i, j}.

(d) What is (�1)2 equal to?

(e) What is ij equal to? How about ji?

(f) Can you determine what k2 and ik are equal to?

(g) Can you identify a generating set consisting of only two elements? Can you find
more than one?

(h) What subgroups of Q8 can you see in the Cayley diagram in Figure 3.1?

(i) Find a subgroup of Q8 that you cannot see in the Cayley diagram.

Problem 3.16. Consider (R3
,+), where R

3 is the set of all 3-entry row vectors with real
number entries (e.g., (a,b,c) where a,b,c 2 R) and + is ordinary vector addition. It turns
out that (R3

,+) is an abelian group with identity (0,0,0).

(a) Let H be the subset of R3 consisting of vectors with first coordinate 0. Is H a sub-
group of R3? Prove your answer.

(b) Let K be the subset of R
3 consisting of vectors whose entries sum to 0. Is K a

subgroup of R3? Prove your answer.

(c) Construct a subset of R3 (di↵erent from H and K) that is not a subgroup of R3.

Problem 3.17. Consider the group (Z,+) (under ordinary addition).

(a) Show that the even integers, written 2Z := {2k | k 2 Z}, form a subgroup of Z.

(b) Show that the odd integers are not a subgroup of Z.

(c) Show that all subsets of the form nZ := {nk | k 2 Z} for n 2 Z are subgroups of Z.

(d) Are there any other subgroups besides the ones listed in part (c)? Explain your
answer.

(e) For n 2 Z, write the subgroup nZ in the “generated by” notation. That is, find a set
S such that hSi = nZ. Can you find more than one way to do it?
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Problem 3.18. Consider the group of symmetries of a regular octagon. This group is
denoted by D8, where the operation is composition of actions. The group D8 consists of
16 elements (8 rotations and 8 reflections). LetH be the subset consisting of the following
clockwise rotations: 0�, 90�, 180�, and 270�. Determine whether H is a subgroup of D8
and justify your answer.

Problem 3.19. Find all finite subgroups of (R \ {0}, ·).

Problem 3.20. Consider the groups (R,+) and (R \ {0}, ·). Explain why R \ {0} is not a
subgroup of R despite the fact that R \ {0} ✓ R and both are groups (under the respective
binary operations).

Theorem 3.21. If G is an abelian group such that H  G, then H is an abelian subgroup.

Problem 3.22. Is the converse of the previous theorem true? If so, prove it. Otherwise,
provide a counterexample.

As we’ve seen, some groups are abelian and some are not. If G is a group, then we
define the center of G to be

Z(G) := {z 2 G | zg = gz for all g 2 G}.

Notice that if G is abelian, then Z(G) = G. However, if G is not abelian, then Z(G) will be
a proper subset of G. In some sense, the center of a group is a measure of how close G is
to being abelian.

Theorem 3.23. If G is a group, then Z(G) is an abelian subgroup of G.

Problem 3.24. Find the center of each of the following groups.

(a) S2

(b) V4

(c) S3

(d) D3

(e) D4

(f) R4

(g) R6

(h) Spin1⇥2

(i) Q8

(j) (Z,+)

(k) (R \ {0}, ·)
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3.2 Subgroup Lattices
One of the goals of this section is to gain better understanding of the structure of groups
by studying their subgroups.

Suppose we wanted to find all of the subgroups of a finite group G. Theorems 3.7 and
3.9 tell us that {e} and G itself are subgroups of G, but there may be others. Theorem 3.6
tells us that if we want to find other subgroups of G, we need to find nonempty subsets
of G that are closed and contain all the necessary inverses. So, one method for finding
subgroups would be to find all possible nonempty subsets of G and then go about deter-
mining which subsets are subgroups by verifying whether a given subset is closed under
inverses and closed under the operation of G. This is likely to be fairly time consuming.

Another approach would be to utilize the fact that every subgroup H of G has a gen-
erating set. That is, if H is a subgroup of a group G, then there always exists a subset
S of G such that hSi = H . Given a subset S of G, hSi is guaranteed to be closed under
inverses and the operation of the group G. So, we could determine all of the subgroups
of G by generating groups with various subsets S of G. Of course, one drawback is that it
might take a bit of e↵ort to determine what hSi actually is. Another drawback is that two
di↵erent subsets S and T may generate the same subgroup.

Let’s make this a bit more concrete by exploring an example. Consider the group
R4. What are the subgroups of R4? Since the order of R4 is 4, we know that there are
24 � 1 = 15 nonempty subsets of R4. Some of these are subgroups, but most of them are
not. Theorems 3.7 and 3.9 guarantee that {e} and R4 itself are subgroups of R4. That’s
2 out of 15 so far. Are there any others? Let’s do an exhaustive search by playing with
generating sets. We can certainly be more e�cient, but below we list all of the possible
subgroups we can generate using subsets of R4. As you scan the list, you should take a
moment to convince yourself that the list is accurate.

hei = {e}
hri = {e, r, r2, r3}
hr2i = {e, r2}
hr3i = {e, r3, r2, r}
he, ri = {e, r, r2, r3}
he, r2i = {e, r2}
he, r3i = {e, r3, r2, r}
hr, r2i = {e, r, r2, r3}

hr, r3i = {e, r, r2, r3}

hr2, r3i = {e, r, r2, r3}

he, r, r2i = {e, r, r2, r3}

he, r, r3i = {e, r, r2, r3}

he, r2, r3i = {e, r, r2, r3}

hr, r2, r3i = {e, r, r2, r3}

he, r, r2, r3i = {e, r, r2, r3}

Let’s make a few observations. Scanning the list, we see only three distinct subgroups:

{e}, {e, r2}, {e, r, r2, r3}.

Out of 15 nonempty subsets of R4, only 3 subsets are subgroups. Our exhaustive search
guarantees that these are the only subgroups of R4. It is also worth pointing out that
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if a subset contains either r or r
3, then that subset generates all of R4. The reason for

this is that {r} and {r3} are each minimal generating sets for R4. More generally, observe
that if we increase the size of the generating subset using an element that was already
contained in the subgroup generated by the set, then we don’t get anything new. For
example, consider hr2i = {e, r2}. Since e 2 hr2i, we don’t get anything new by including e

in our generating set. We can state this as a general fact.

Theorem 3.25. Let G be a group and let g1, g2, . . . , gn 2 G. If x 2 hg1, g2, . . . , gni, then
hg1, g2, . . . , gni = hg1, g2, . . . , gn,xi.

In the previous theorem, we are not claiming that {g1, g2, . . . , gn} is a generating set for
G—although this may be the case. Instead, are simply making a statement about the
subgroup hg1, g2, . . . , gni, whatever it may be.

We can capture the overall relationship between the subgroups of a group G using a
subgroup lattice. Given a group G, the lattice of subgroups of G is the partially ordered
set whose elements are the subgroups of G with the partial order relation being set inclu-
sion. It is common to depict the subgroup lattice for a group using aHasse diagram. The
Hasse diagram of subgroup lattice is drawn as follows:

(1) Each subgroup H of G is a vertex.

(2) Vertices corresponding to subgroups with smaller order are placed lower in the
diagram than vertices corresponding to subgroups with larger order. In particular,
the vertex for {e} is placed at the bottom of the diagram and the vertex for G is
placed at the top.

(3) There is an edge going up from H to K if H  K and there is no subgroup L such
that H  L  K with L ,H,K .

Notice that there is an upward path of edges in the Hasse diagram from H to K if and
only if H  K . For convenience we will not make a distinction between the subgroup
lattice for a group G and the corresponding Hasse diagram.

The Hasse diagram for the subgroup lattice for R4 is given in Figure 3.2.
Let’s see what we can do with V4 = {e,v,h,vh}. Using an exhaustive search, we find

that there are five subgroups:

hei = {e}

hhi = {e,h}

hvi = {e,v}

hvhi = {e,vh}

hv,hi = hv,vhi = hh,vhi = {e,v,h,vh} = V4

For each subgroup above, we’ve used minimal generating sets to determine the subgroup.
The subgroup lattice for V4 is given in Figure 3.3. Notice that there are no edges among
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hei = {e}

hr2i = {e, r2}

hri = R4

Figure 3.2. Subgroup lattice for R4.

hei = {e}

hhi = {e,h}hvi = {e,v} hvhi = {e,vh}

hv,hi = V4

Figure 3.3. Subgroup lattice for V4.

hvi,hhi, and hvhi. The reason for this is that none of these groups are subgroups of each
other.

The next two theorems provide some further insight into the overall structure of sub-
groups of a group. Note that a set L is the largest subset contained in both A and B if
L ✓ A and L ✓ B and whenever C ✓ A and C ✓ B, we have C ✓ L. Similarly, a set S is
the smallest subset containing both A and B if A ✓ S and B ✓ S and whenever A ✓ C and
B ✓ C, we have S ✓ C.

Theorem 3.26. If G is a group such that H,K  G, then H\K  G. Moreover, H\K is the
largest subgroup contained in both H and K .

It turns out that we cannot simply replace “intersection” with “union” in the previous
theorem to obtain the corresponding result involving the smallest subgroup containing
two subgroups.
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Problem 3.27. Provide an example of a group G and subgroups H and K such that H[K
is not a subgroup of G.

Theorem 3.28. IfG is a group such thatH,K  G, then hH[Ki  G. Moreover, hH[Ki  G

is the smallest subgroup containing both H and K .

Theorems 3.26 and 3.28 justify the use of the word “lattice” in “subgroup lattice”. In
general, a lattice is a partially ordered set in which every two elements have a unique
meet (also called a greatest lower bound or infimum) and a unique join (also called a
least upper bound or supremum). In the case of a subgroup lattice for a group G, the
meet of subgroupsH and K isH\K and the join is hH[Ki. Figure 3.4 illustrates the meet
(Theorem 3.26) and join (Theorem 3.28) in the case when H and K are not comparable.

H \K

H K

hH [Ki

Figure 3.4. Meet and join for subgroups H and K .

In the next few problems, you are asked to create subgroup lattices. As you do this,
try to minimize the amount of work it takes to come up with all the subgroups.

Problem 3.29. Find all the subgroups of R5 = {e, r, r2, r3, r4} (where r is clockwise rotation
of a regular pentagon by 72�) and then draw the subgroup lattice for R5.

Problem 3.30. Find all the subgroups of R6 = {e, r, r2, r3, r4, r5} (where r is clockwise rota-
tion of a regular hexagon by 60�) and then draw the subgroup lattice for R6.

Problem 3.31. Find all the subgroups ofD3 = {e, r, r2, s, sr, sr2} (where r and s are the usual
symmetries of an equilateral triangle) and then draw the subgroup lattice for D3.

Problem 3.32. Find all the subgroups of S3 = hs1, s2i (where s1 is the action that swaps
the positions of the first and second coins and s2 is the action that swaps the second and
third coins; see Problem 2.59) and then draw the subgroup lattice for S3. How does your
lattice compare to the one in Problem 3.31? You should look back at parts (e) and (f) of
Problem 2.72 and ponder what just happened.

Problem 3.33. Find all the subgroups of D4 = {e, r, r2, r3, s, sr, sr2, sr3} (where r and s are
the usual symmetries of a square) and then draw the subgroup lattice for D4.
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Problem 3.34. Find all the subgroups of Q8 = {1,�1, i,�i, j,�j,k,�k} and then draw the
subgroup lattice for Q8.

3.3 Isomorphisms
As we have been exploring various groups, I’m sure you’ve noticed that some groups
seem to look and behave the same. For example, if we choose the same colors for our
arrows and ignore the labels on the vertices, the Cayley diagram for D3 with generating
set {s, s0} looks the same as the Cayley diagram for S3 with generating set {s1, s2}. That
is, if we pick the appropriate colors and set the Cayley diagram for D3 (with generating
set {s, s0}) on top of the Cayley diagram for S3 (with generating set {s1, s2}) such that the
identities match up, then the two Cayley diagrams are identical up to relabeling the rest
of the vertices. Figure 3.5 should make this clear. This act of matching up the Cayley
diagrams establishes a correspondence between the elements of the two groups:

e 7! e

s 7! s1

s
0 7! s2

ss
0 7! s1s2

s
0
s 7! s2s1

ss
0
s 7! s1s2s1

Notice that each correspondence is compatible with the correspondence of the generators,
namely: s 7! s1 and s

0 7! s2. Given this correspondence, it should not be surprising that
the subgroup lattices for D3 and S3 have the same structure.

s
0
s

s

e

s
0

ss
0

ss
0
s

D3

s2s1

s1

e

s2

s1s2

s1s2s1

S3

Figure 3.5. Cayley diagrams for D3 and S3 with generating sets {s, s0} and {s1, s2}, respec-
tively.

The goal of this section is to formalize this phenomenon by introducing the notion of
an isomorphism. First, let’s develop a little more intuition.
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If two groups G1 and G2 have generating sets T1 and T2 such that we can color the
edges of the corresponding Cayley diagrams so that the diagrams are identical up to
relabeling of the vertices, then we say that there is amatching betweenG1 andG2. Above,
we showed thatD3 and S3 have a matching. It’s important to emphasize that the existence
of a matching between two groups depends on our choice of generating set. If two Cayley
diagrams do not look alike, it does not immediately imply that there is not a matching
between the groups since it might be the case that choosing di↵erent generating sets for
the two groups leads to a matching.

Perhaps you’ve noticed that the Cayley diagram for R4 with generating set {r} looks
like the Cayley diagram for the subgroup hji = {±1,±j} with generating set {j} in Q8. That
is, there is a matching between R4 and hji, which we’ve depicted in Figure 3.6. Similarly,
the Cayley diagram for S2 with generating set {s} looks like the Cayley diagram for the
subgroup h�1i = {±1} with generating set {�1} in Q8. The matching between S2 and h�1i
is depicted in Figure 3.7. It’s fairly easy to see that there is also a matching between S2
and the subgroup hvi = {e,v} of V4. Since there is a matching between S2 and h�1i and a
matching between S2 and hvi, there is a matching between h�1i and hvi.

1 i

kj

�1 �i

�k�j

Q8

re

r
3

r
2

R4

Figure 3.6. A matching between R4 = hri and hji Q8.

Problem 3.35. We have seen two di↵erent Cayley diagrams for D3, one with generating
set {s, r} and one with generating set {s, s0}. As Figure 3.5 illustrates, there is a matching
between D3 and S3 that relies on the generating sets {s, s0} and {s1, s2}, respectively. Find a
di↵erent matching between D3 and S3 that utilizes the generating set {r, s} for D3.

The next theorem follows immediately from the definition of matching.

Theorem 3.36. If there is a matching between G1 and G2 using the generating sets T1 and
T2, respectively, then |G1| = |G2| and T1 and T2 have the same cardinality.

Unfortunately, the converse of the previous theorem is not true in general. That is,
two groups that have the same order may or may not have a matching.

Loosely speaking, if two groups have a matching, then the two groups have the same
structure and characteristics. In other words, the two groups essentially do the “same
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1 i

kj

�1 �i

�k�j

es Q8

S2

Figure 3.7. A matching between S2 = hsi and h�1i Q8.

kind” of thing. In particular, the corresponding elements in each group have the same
characteristics.

On the other hand, if one group has a property that the other does not have, then the
two groups cannot have a matching. For example, if one group is abelian and the other
is not, then the two groups cannot have a matching. Moreover, for each element g in one
group with the property g

k = e for some k 2 Z, there must be a corresponding element in
the other group with the same property. Otherwise, there cannot be a matching between
the two groups.

Problem 3.37. Determine whether there is a matching between D4 and Spin1⇥2.

Problem 3.38. Determine whether there is a matching between R4 and V4.

Problem 3.39. Determine whether there is a matching between D3 and R6.

Problem 3.40. Determine whether there is a matching between any pair of the following
groups: R8 (i.e., the group of rotational symmetries of a regular octagon), D4, Q8.

Problem 3.41. Consider two light switches on a wall side by side. Consider the group of
actions that consists of all possible actions that you can do to the two light switches. For
example, one action is toggle the left light switch while leaving the right alone. Let’s call
this group L2.

(a) How many distinct actions does L2 have?

(b) Can you find a minimal generating set for L2? If so, give these actions names and
then write all of the actions of L2 as words in your generator(s).

(c) Using your generating set from part (b), draw the corresponding Cayley diagram
for L2.

(d) Determine whether there is a matching between L2 and either of R4 or V4.

Problem 3.42. Consider three light switches on a wall side by side. Consider the group
of actions that consists of all possible actions that you can do to the three light switches.
Let’s call this group L3. It should be easy to see that L3 has 8 distinct actions.
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(a) Can you find a minimal generating set for L3? If so, give these actions names and
then write all of the actions of L3 as words in your generator(s).

(b) Using your generating set from part (a), draw the corresponding Cayley diagram
for L3.

(c) Is L3 cyclic? Briefly justify your answer.

(d) Is L3 abelian? Briefly justify your answer.

(e) Determine whether there is a matching between L3 and any of R8, D4, Spin1⇥2, or
Q8.

At the end of Section 2.5, we tinkered with coloring a group table. Let’s revisit this
idea. Suppose G is a finite group and consider the group table for G. A coloring for the
group table is an assignment of a unique color to each element of the group. For example,
Figure 3.8 depicts a coloring for the group table of V4.

� e v h vh

e e v h vh

v v e vh h

h h vh e v

vh vh h v e

Figure 3.8. A coloring for the group table of V4.

We say that two finite groups have an identical table coloring, if we can arrange the
rows and columns of each table and choose colorings for each table so that the pattern
of colors is the same for both tables. Clearly, this is only possible if the two groups have
the same order. In Problem 2.66, we showed that R4 and V4 never have an identical table
coloring.

Problem 3.43. Determine whether V4 and L2 have an identical table coloring.

Problem 3.44. Suppose there is a matching between finite groups G1 and G2. Explain
why G1 and G2 must have an identical table coloring.

Problem 3.45. Is the converse of the previous problem true? That is, if G1 and G2 are
finite groups that have an identical table coloring, will there be a matching between G1
and G2?

Problem 3.46. Suppose there is a matching between G1 and G2 and suppose T1 is a gener-
ating set for G1. Explain why there must be a generating set T2 for G2 and an appropriate
choice of colors such that the Cayley diagrams for G1 and G2 using the generating sets T1
and T2, respectively, are identical up to relabeling of the vertices.

The last few problems have led us to the following theorem.
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Theorem 3.47. If G1 and G2 are two finite groups, then there is a matching between G1
and G2 if and only if G1 and G2 have an identical table coloring.

As you’ve likely discovered, matchings and identical table coloring (or the lack thereof)
are great for developing intuition about when two groups have identical structure, but
the process of finding matchings and identical table colorings is cumbersome. Moreover,
it turns out to not be a very useful approach for proving theorems. We need a di↵erent
approach if we want to develop the general theory any further.

If two finite groups G1 and G2 have an identical table coloring, then

the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.
Let’s try to make this a little more precise. Suppose (G1,⇤) and (G2,�) are two finite

groups that have an identical table coloring and let x1, y1 2 G1. Then these two elements
have corresponding elements in the group table for G2, say x2 and y2, respectively. In
other words, x1 and x2 have the same color while y1 and y2 have the same color. Since
G1 is closed under its binary operation ⇤, there exists z1 2 G1 such that z1 = x1 ⇤ y1. But
then there must exist a z2 2 G2 such that z2 has the same color as z1. What must be true
of x2 � y2? Since the two tables exhibit the same color pattern, it must be the case that
z2 = x2 � y2. This is what it means for the product of corresponding elements to yield the
corresponding result. Figure 3.9 illustrates this phenomenon for group tables.

⇤ y1

x1 z1  !

� y2

x2 z2

Figure 3.9

We can describe the identical table matching between G1 and G2 using a function.
Let � : G1 ! G2 be the one-to-one and onto function that maps elements of G1 to their
corresponding elements in G2. Then �(x1) = x2, �(y1) = y2, and �(z1) = z2. Since z2 =
x2 � y2, we obtain

�(x1 ⇤ y1) = �(z1) = z2 = x2 � y2 = �(x1)��(y1).

In summary, it must be the case that

�(x1 ⇤ y1) = �(x1)��(y1).

We are now prepared to state a formal definition of what it means for two groups to be
isomorphic.
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Definition 3.48. Let (G1,⇤) and (G2,�) be two groups. Then G1 is isomorphic to G2,
written G1 � G2, if and only if there exists a one-to-one and onto function � : G1 ! G2
such that

�(x ⇤ y) = �(x)��(y). (3.1)

The function � is referred to as an isomorphism. Equation 3.1 is often referred to as the
homomorphic property.

It should be clear from the development that two finite groups are isomorphic if and
only if they have an identical table coloring. Moreover, since two finite groups have an
identical table coloring if and only if there is a matching between the two groups, it must
be the case that two groups are isomorphic if and only if there is a matching between the
two groups. The upshot is that we have three di↵erent ways to think about what it means
for two groups to be isomorphic:

(1) There exists generating sets for the two groups such that the respective Cayley dia-
grams are identical up to relabeling of the vertices.

(2) There exists a choice of colors and an arrangement of the rows and columns of the
group tables such that the two tables exhibit the same pattern of colors.

(3) There exists a bijective function between the two groups that satisfies the homomor-
phic property.

Problem 3.49. Using the work that you did earlier in this section, determine which of the
following groups are isomorphic to each other: S2, h�1i in Q8, R3, R4, V4, L2, hii in Q8,
hsr, sr3i in D4, R5, R6, D3, S3, R7, R8, D4, Spin1⇥2, Q8, L3.

Problem 3.50. Consider the groups (R,+) and (R+
, ·), where R

+ is the set of positive real
numbers. It turns out that these two groups are isomorphic, but this would be di�cult
to discover using our previous techniques because the groups are infinite. Define � :
R ! R

+ via �(r) = e
r (where e is the natural base, not the identity). Prove that � is an

isomorphism.

Problem 3.51. For each of the following pairs of groups, determine whether the given
function is an isomorphism from the first group to the second group.

(a) (Z,+) and (Z,+), �(n) = n+1.

(b) (Z,+) and (Z,+), �(n) = �n.
(c) (Q,+) and (Q,+), �(x) = x/2.

Problem 3.52. Show that the groups (Z,+) and (2Z,+) are isomorphic.

Perhaps one surprising consequence of the previous problem is that when dealing
with infinite groups, a group can have a proper subgroup that it is isomorphic to. Of
course, this never happens with finite groups.

Once we know that two groups are isomorphic, there are lots of interesting things we
can say. The next theorem tells us that isomorphisms map the identity element of one
group to the identity of the second group. This was already clear using Cayley diagrams
and groups tables, but you should try to prove the theorem directly using Definition 3.48.
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Theorem 3.53. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If e1 and e2 are the identity elements of G1 and G2, respectively, then
�(e1) = e2.

The next theorem tells us that isomorphisms respect inverses.

Theorem 3.54. If � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the group
(G2,�), then �(g�1) = [�(g)]�1.

It turns out that “isomorphic” (�) determines an equivalence relation on the class of
all possible groups. The next two theorems justify that � is symmetric and transitive.

Theorem 3.55. If � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the group
(G2,�), then the function ��1 : G2! G1 is an isomorphism.

Theorem 3.56. If � : G1! G2 and  : G2! G3 are isomorphisms from the groups (G1,⇤)
to (G2,�) and (G2,�) to (G3,?), respectively, then the composite function  �� is an iso-
morphism of G1 and G3.

The only thing left to do in order to justify the next theorem is prove that � is reflexive.

Theorem 3.57. If G is any nonempty collection of groups, then the relation � is an equiv-
alence relation on G.

Mathematicians love to classify things. In particular, mathematicians want to classify
groups. One can think of this pursuit as a taxonomy of groups. In order to simplify the
task, one can classify isomorphism classes (i.e., the equivalence classes determined by �)
instead of classifying groups. If two groups are isomorphic, then we say that the groups
are the same up to isomorphism. If there are k isomorphism classes of order n, then we
say that there are k groups of order n up to isomorphism.

Problem 3.58. Explain why all groups with a single element are isomorphic. Justify your
answer using group tables.

In light of the previous problem, we say that there is one group of order one up to
isomorphism.

Problem 3.59. Suppose that (G,⇤) is a group of order 2 such that G = {e,a}. Complete the
following group table for G.

⇤ e a

e

a

Explain why every group of order 2 must be isomorphic to S2.

The previous problem implies that up to isomorphism, there is only one group of
order 2.

Problem 3.60. Suppose (G,⇤) is a group of order 3 such that G = {e,a,b}. Complete the
following group table for G.
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⇤ e a b

e

a

b

Explain why every group of order 3 must be isomorphic to R3.

Problem 3.61. Suppose (G,⇤) is a group of order 4 such that G = {e,a,b, c}. Assuming that
e is the identity, the first row and first column of the corresponding group table must be
completed as follows.

⇤ e a b c

e e a b c

a a ?
b b

c c

The cell with the question mark cannot be filled with an a. So, this entry must be either e,
b, or c. However, it should be easy to see that the cases with b and c are symmetric. Thus,
there are two cases: (i) the entry with the question mark is filled with e, or (ii) the entry
with the question mark is without loss of generality filled with b. Complete the group
table in each of these two cases. Are either of the resulting groups isomorphic to R4 or
V4. What conclusion can you make about groups of order 4?

So far we’ve seen that there are unique groups up to isomorphism of orders 1, 2, and
3, but that there are two groups up to isomorphism of order 4. A natural question to ask
is: how many groups are there of order n?

In a future chapter we will be able to prove that there is only one group up to isomor-
phism of order 5, namely those groups isomorphic to R5.

We’ve seen three groups of order 6, namely R6, D3, and S3. However, D3 � S3 while
R6 is not isomorphic to either of these. So, we can conclude that there are at least two
groups up to isomorphism of order 6. But are there others? It turns out that the answer
is no, but why?

The group R7 is the group of rotational symmetries of a regular 7-sided polygon. This
group has order 7. Are there other groups of order 7 that are not isomorphic to R7? It
turns out that the answer is no, but why?

We’ve encountered several groups of order 8, namely D4, Spin1⇥2, Q8, R8, and L3. Of
these, only D4 and Spin1⇥2 are isomorphic. Thus, there are at least four groups up to
isomorphism of order 8. Are these the only isomorphism types? It turns out that there
are five groups of order 8 up to isomorphism.

Let’s return to proving some general statements about isomorphisms.

Theorem 3.62. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If G1 is cyclic, then G2 is cyclic.

Problem 3.63. Is the converse of Theorem 3.62 true? That is, if � : G1! G2 is an isomor-
phism from the group (G1,⇤) to the group (G2,�) and G2 is cyclic, is G1 necessarily cyclic?
If the converse is true, then prove it. If the converse is false, provide a counterexample.
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Theorem 3.64. Suppose � : G1 ! G2 is an isomorphism from the group (G1,⇤) to the
group (G2,�). If G1 is abelian, then G2 is abelian.

If � : G1! G2 is a function, not necessarily an isomorphism, and X ✓ G1, then the set

�(X) := {y 2 G2 | there exists x 2 X such that �(x) = y}

is called the image of X. The next theorem tells us that the image of a subgroup under an
isomorphism is also a subgroup.

Theorem 3.65. If � : G1! G2 is an isomorphism and H  G1, then �(H)  G2.

Suppose G is a group and let g 2 G. Define �g : G! G via �g (x) = gxg
�1. The map �g

is called conjugation by g .

Problem 3.66. Consider the group D4. Compute the image of each element of D4 under
each of the following conjugation maps.

(a) �r :D4!D4 defined via �r(x) = rxr
�1.

(b) �s :D4!D4 defined via �s(x) = sxs
�1.

The next theorem states that conjugation by a fixed group element yields an isomor-
phism from a group to itself. An isomorphism from a group to itself is called an auto-
morphism. Conjugation is an example of an automorphism, but in general, there may
be automorphisms that are not equal to conjugation. Note that the identity map is an
automorphism of a group to itself that is equal to the map that results from conjugating
by the identity.

Theorem 3.67. If G is a group and g 2 G, then conjugation by g is an isomorphism from
G to G.

Now that you’ve proved the above theorems, it’s a good idea to review the key themes.
If you were really paying attention, you may have noticed that in a few of the proofs, we
did not use the fact that the function was one-to-one and onto despite assuming that the
function was an isomorphism.

Problem 3.68. For which of the recent theorems could we remove either the assumption
that the function is one-to-one or the assumption that the function is onto?

A function that satisfies the homomorphic property andmay or may not be one-to-one
or onto is called a homomorphism and will be the subject of a future chapter.

Problem 3.69. What claims can be made about the subgroup lattices of two groups that
are isomorphic? What claims can be made about the subgroup lattices of two groups that
are not isomorphic? What claims can be made about two groups if their subgroup lattices
look nothing alike?
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