
Chapter 3

Sequences and Completeness

Throughout this chapter, our universe of discourse will be the real numbers. Any time we
refer to a generic set, we mean a subset of real numbers. We will often refer to an element
in a subset of real numbers as a point. We begin with a definition.

Definition 3.1. If M is a set, we say that p is an accumulation point of M if every finite
length open interval containing p also contains a point of M di↵erent from p.

That is, p is an accumulation point ofM if and only if for each open intervalO containing
p, (O \ {p})\M , ;. Notice that if p is an accumulation point ofM , then p may or may not
be in M .

Problem 3.2. Show that if M is an open interval and p 2 M , then p is an accumulation
point of M .

Problem 3.3. Show that ifM is a closed interval and p <M , then p is not an accumulation
point of M .

Problem 3.4. Determine whether the endpoints of an open interval (a,b) are accumula-
tion points of the interval.

It is worth exploring exactly how many points it is possible or impossible for M to have.
The next two problems are just a start in investigating that.

Problem 3.5. Show that if M is a set having an accumulation point, then M contains at
least two points. Determine whether M must contain at least three points.

Problem 3.6. Show that Z has no accumulation points.

Problem 3.7. Given sets H and K , determine whether each of the following is true or
false. If the statement is true, prove it. Otherwise, provide a counterexample.

(a) If p is an accumulation point of H \K , then p is an accumulation point of both H
and K .

(b) If p is an accumulation point of H [K , then p is an accumulation point of H or p is
an accumulation point of K .
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Problem 3.8. Prove that if M is the set of all reciprocals of elements of N, then zero is an
accumulation point of M .

We will now begin connecting the concepts of sets to more familiar ones from calculus,
beginning with sequences.

Definition 3.9. A sequence (of real numbers) is a function p from N to R.

If n 2 N, it is common to write pi := p(i). We refer to pi as the ith term of the sequence.
We will abuse notation and associate a sequence with its list of outputs, namely:

(pi)1i=1 := (p1,p2, . . .) ,

which we may abbreviate as (pi) .

Example 3.10. Define p : N! R via p(i) = 1
2i . Then we have

p =
✓1
2
,
1
4
, . . .

◆
=
✓ 1
2i

◆1

i=1
.

It is important to point out that not every sequence has a description in terms of an
algebraic formula. For example, we could form a sequence out of the digits to the right of
the decimal in the decimal expansion of ⇡, namely the ith term of the sequence is the ith
digit to the right of the decimal. But then there is no nice algebraic formula for describing
the ith term of this sequence.

Problem 3.11. Write down several sequences p you are familiar with. If possible, give an
algebraic formula for each pi in terms of i.

Problem 3.12. Give an example of a sequence where the image set of a sequence {pi}1i=1
is finite. In general, what’s the di↵erence between {pi}1i=1 and (pi)1i=1?

There is a deep connection between sequences and accumulation points, which the next
few problems will elucidate. First, a definition—one you may have seen in calculus in
a di↵erent form. When digesting the following definition, try to think about how this
definition is capturing the notion that the sequence is getting “closer and closer” to the
point that the sequence converges to.

Definition 3.13. We say that the sequence p = (pi)1i=1 converges to the point x if for every
open interval S containing x, there exists an N 2 N such that for all natural numbers
n �N , pn 2 S .

In the definition above, we sometimes refer to all pn with n � N as the tail of the se-

quence. Notice that the tail of the sequence depends on N , and hence on the interval S .
Informally, we write p! x or (pi)! x to mean that the sequence p converges to the
point x. We simply say that p converges if there exists a point x to which the sequence
converges. If a sequence does not converge to any point x, then we say it diverges.
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The first problem about this should be used as a place to test ideas for how to prove
convergence. Take a moment to recall all of our axioms and results from Chapter 2—you
may need them! As you tackle the next few problems, it might be useful to begin by
writing down the first several terms of the sequences.

Problem 3.14. Consider the sequence given by pn = 1
n (remember, n 2 N is part of the

definition of a sequence). Show that p = (pi)1i=1 converges to 0.

Problem 3.15. Consider the sequence given by pn = 1� 1
n . Show that p converges to 1.

Problem 3.16. Consider the sequence with even terms p2n = 1
2n�1 and odd terms p2n�1 =

1
2n . Show that p converges to 0.

Problem 3.17. Consider the sequence with odd terms p2n�1 = 1
2n�1 and even terms p2n =

1+ 1
2n . Determine whether p converges to 0.

The following problem connects accumulation points and sequences. The most profound
property of the real numbers is part of this connection, as we shall soon see.

Problem 3.18. Show that if p converges to the point x and for each i 2 N, pi , pi+1, then x
is an accumulation point of the image set of (pi)1i=1. Why do we need the restriction that
pi , pi+1? Is this an absolutely necessary restriction for x to be an accumulation point of
the image set?

Problem 3.19. Show that the sequence from Problem 3.14 does not converge to a point
other than zero.

Problem 3.20. Show that if p converges to the point x and y is a point di↵erent from x,
then p does not converge to y.

We now explore some basic facts concerning the convergence of sequences. In these
proofs, you may have to think a little more explicitly about what the intervals around
x look like in order to combine sequences. Try doing some examples with explicit num-
bers in order to get a sense of how to approach the proofs.

Problem 3.21. Show that if c is a real number and p = (pi)1i=1 converges to x, then the
sequence cp = (cpi)1i=1 converges to cx.

Problem 3.22. Show that if p = (pi)1i=1 converges to x and q = (qi)1i=1 converges to y, then
(pi + qi)1i=1 converges to x + y.

Products and quotients of sequences behave like you think they will, as well. We will
include one special case soon.

Now we introduce a few more definitions that will lead us to one of the key axioms for
the real numbers (Completeness Axiom 3.37). We’ll continue to see interplay between
sequences and sets.

Definition 3.23. We say that a set M is bounded if M is a subset of some closed interval.
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Definition 3.24. We say that a set M is bounded above if there is a point z such that if
x 2M then x  z; such a point is an upper bound.

Problem 3.25. The property of a set M being bounded below and the notion of a lower

bound are defined similarly; try defining them.

Problem 3.26. Show that a set (in R) being bounded is the same as it being bounded
above and below.

Problem 3.27. Find all upper bounds for (0,1), [0,1], and (0,1)\QC (irrationals between
0 and 1).

Problem 3.28. If the sequence (pi)1i=1 converges to the point x, then the image set {pi}1i=1
is bounded.

You can use this concept to prove some of the more di�cult sequence convergence prop-
erties.

Problem 3.29. Show that if q converges to 0 and p converges to x, then (qi ·pi)1i=1 converges
to 0.

Now we start to approach the heart of why calculus works.

Definition 3.30. We say p is a supremum (or least upper bound) of a set M if p is an
upper bound of M and p  q for any other upper bound q of M . If the supremum of M
exists, it is denoted sup(M) .

Problem 3.31. Define the infimum (or greatest lower bound) by analogy. If the infimum
of M exists, it is denoted inf(M) .

Problem 3.32. Find the suprema of (0,1), and (0,1)\QC . If we could apply the definition
of supremum to ;, what would its supremum be?

Problem 3.33. Prove that the supremum of a set is unique, if it exists.

Problem 3.34. If M and N are sets with suprema, characterize the supremum of M [N .

If M and N are sets, define cM := {cx | x 2M} and M +N := {x + y | x 2M,y 2N }.

Problem 3.35. Assuming M and N have suprema, prove one of the following.

(a) If c > 0, then sup(cM) = c sup(M).

(b) sup(M +N ) = sup(M) + sup(N ).

Problem 3.36. Show that c inf(M) = sup(cM) if c < 0. What other properties are there
relating inf, sup, and c?

The reason the supremum is so important is because of the following fundamental axiom.
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Completeness Axiom 3.37. If M is a nonempty set that is bounded above, then M has a
supremum.

Given the Completeness Axiom, we say that the real numbers satisfy the least upper

bound property.

Problem 3.38. This problem was a duplicate of Problem 3.40. Leaving this placeholder
here so as not to mess up numbering.

Problem 3.39. Find an example of a sequence (pi)1i=1 such that its image set {pi}1i=1 is
unbounded and hence does not have a supremum.

Problem 3.40. Show that the Completeness Axiom is not true if one requires that the
supremum be a rational number. This shows that the rationals do not satisfy the Com-
pleteness Axiom.

It will be useful in the future to have an equivalent way to formulate completeness in
terms of sequences.

Definition 3.41. We say that a sequence p is nondecreasing if pi  pi+1 for all i 2 N. The
concept of nonincreasing is defined similarly. A function that is either nondecreasing or
nonincreasing is said to be monotone.

Problem 3.42. Replace  above with < to define the notion of (strictly) increasing. Find
examples of nondecreasing sequences that are not increasing. Similarly, define (strictly)
decreasing.

Problem 3.43 (Monotone Convergence Theorem). Prove that if (pi)1i=1 is a nondecreasing
sequence such that the image set {pi}1i=1 is bounded above, then (pi)1i=1 converges to some
point x.

The previous result is equivalent to the Completeness Axiom. The next problem asks
you to verify this, but this is not a result that we need going forward, but rather is an
interesting side story.

Problem 3.44. Assuming the result of Problem 3.43, prove the Completeness Axiom.

Why is all this so important? One reason is that we can use the completeness of the reals
to prove Axiom (07) (sometimes called the Archimedean Principle). It may be thought of
as the “real” reason why the following is true, since open intervals can be as small as we
need them to be.

Problem 3.45. Using Problem 3.43, show that for any point x, there is an n 2 Z such that
n > x.1

At this point, it is not necessary that we complete the following problem, but you might
find doing so to be an interesting challenge.

1Hint: Use a proof by contradiction.
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Problem 3.46. Prove that Axiom (O7) follows from the Completeness Axiom.

Problem 3.47. LetM be a nonempty set that is bounded above, with supremum x. Prove
that there exists a nondecreasing sequence (pi) that converges to x, where the image set
{pi} ✓M .

Definition 3.48. A sequence (bk)1k=1 is a subsequence of (an)1n=1 if there is a sequence of
natural numbers (ni)1i=1 with ni < ni+1 such that bk = ank .

Problem 3.49. Give some examples of subsequences of the sequence from Problem 3.14.

Problem 3.50. Prove that if a sequence converges to x, so does any subsequence of that
sequence.

Problem 3.51. Suppose (pik )
1
k=1 is a subsequence of (pi)

1
i=1. If pik converges to x, does this

imply that pi converges to x? Justify your answer.

Problem 3.52. Provide an example of a sequence (pi) with image set {pi} ✓ N such that
every sequence of natural numbers is a subsequence of (pi).

Problem 3.53. Prove that every sequence of real numbers has a nonincreasing or nonde-
creasing subsequence.

Problem 3.54 (Bolzano–Weierstrass Theorem). Prove that every sequence with bounded
image set has a convergent subsequence.
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