Homework 3

Abstract Algebra I

Complete the following problems. Assume that the dihedral group of order 2n is defined by $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$.

Problem 1. Consider the dihedral group D_{10} .

- (a) Draw the Cayley diagram for D_{10} using the generators r and s. Be sure to label the vertices as words in r and s and use two different colors for the edges.
- (b) Find the order of each of the elements in D_{10} .

Problem 2. Consider the dihedral group D_{2n} .

- (a) Use the generators and relations of D_{2n} to show that every element of D_{2n} that is not a power of r has order 2.
- (b) Prove that D_{2n} is generated by *s* and *sr*.
- (c) Prove that $\langle a, b | a^2 = b^2 = (ab)^n = 1 \rangle$ gives a presentation for D_{2n} in terms of the generators a = s and b = sr. *Hint:* Check that each set of relations can be built from the other.
- (d) Draw the Cayley diagram for D_{10} using the generators *s* and *sr*. Be sure to label the vertices and use two different colors for the edges.

Problem 3. Consider the dihedral group D_{2n} .

- (a) If *n* is odd and $n \ge 3$, prove that the identity is the only element of D_{2n} that commutes with all the elements of D_{2n} .
- (b) What happens if *n* is even and at least 4? That is, if *n* is even and $n \ge 4$, are there any non-identity elements in D_{2n} that commute with all of the elements of D_{2n} ? You do not need to prove your claim.

Problem 4. Let $Y = \langle u, v | u^4 = v^3 = 1, uv = v^2 u^2 \rangle$.

- (a) Prove that $v^2 = v^{-1}$.
- (b) Prove that v commutes with u^3 . *Hint*: Try messing with $(v^2u^2)(uv)$.
- (c) Prove that v commutes with u. *Hint:* First produce $u^9 = u$ and then use a previous part.
- (d) Prove that uv = 1.
- (e) Prove that u = 1 = v and deduce that $Y = \{1\}$. *Hint:* Do something clever with $u^4v^3 = 1$.

The upshot of this problem is that sometimes innocent-looking presentations can collapse to the trivial group.

Problem 5. Let *G* be the group of rigid motions in \mathbb{R}^3 of a cube. Prove that |G| = 24. *Hint:* One approach is to find the number of positions to which an adjacent pair of vertices can be sent.

Problem 6. Consider the symmetric group S_3 .

- (a) Explicitly show that the adjacent 2-cycles (1, 2) and (2, 3) generate S_3 .
- (b) Draw the Cayley diagram for S_3 using (1, 2) and (2, 3) as generators. Be sure to label the vertices and use two different colors for the edges.

Problem 7. Find the order of (1, 12, 8, 10, 4)(2, 13)(5, 11, 7)(6, 9) in S₁₃.

Problem 8. Prove that if $\sigma = (a_1, a_2, \dots, a_m) \in S_n$, then $|\sigma| = m$.

Problem 9. Prove that the order of an element in S_n equals the least common multiple of the lengths of the cycles in its cycle decomposition.

Problem 10. We define the **quaternion group** to be the group $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$ having the Cayley diagram with generators i, j, -1 given below. In this case, 1 is the identity.

- (a) Create the group table for Q_8 .
- (b) Find the orders of each of the elements in Q_8 .
- (c) The Cayley diagram given above was created using a generating set of size 3. Can you identify a smaller generating set?