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Maximal and Prime Ideals

This section of notes roughly follows Section 7.4 in Dummit and Foote.

In this section of notes, we will study two important classes of ideals, namely maximal and
prime ideals, and study the relationship between them.

Definition 36. An ideal M in a ring R is called a maximal ideal if M , R and the only ideals
containing M are M and R.

Example 37. Here are a few examples. Checking the details is left as an exercise.

(1) In Z, all the ideals are of the form nZ for n ∈ Z+. The maximal ideals correspond to the
ideals pZ, where p is prime.

(2) Consider the integral domain Z[x]. The ideals (x) (i.e., the subring containing polynomi-
als with 0 constant term) and (2) (i.e, the set of polynomials with even coefficients) are
not maximal since both are contained in the proper ideal (2,x). However, as we shall see
soon, (2,x) is maximal in Z[x].

(3) The zero ring has no maximal ideals.

(4) Consider the abelian group Q under addition. We can turn Q into a trivial ring by defin-
ing ab = 0 for all a,b ∈Q. In this case, the ideals are exactly the additive subgroups of Q.
However, Q has no maximal subgroups, and so Q has no maximal ideals.

The next result states that rings with an identity 1 , 0 always have maximal ideals. It turns
out that we won’t need this result going forward, so we’ll skip its proof. However, it is worth
noting that all known proofs make use of Zorn’s Lemma (equivalent to the Axiom of Choice),
which is also true for the proofs that a finitely generated group has maximal subgroups or that
every vector spaces has a basis.

Theorem 38. In a ring with 1, every proper ideal is contained in a maximal ideal.

For commutative rings, there is a very nice characterization about maximal ideals in terms of
the structure of their quotient rings.

Theorem 39 (Student Presentation 9). Assume R is commutative. The ideal M is maximal iff
R/M is a field.

Example 40. We can use the previous theorem to verify whether an ideal is maximal.

(1) Recall that Z/nZ � Zn and that Zn is a field iff n is prime. We can conclude that nZ is a
maximal ideal precisely when n is prime.

(2) Define φ : Z[x] → Z via φ(p(x)) = p(0). Then φ is surjective and ker(φ) = (x). By the
First Isomorphism Theorem for Rings, we see that Z[x]/(x) � Z. However, Z is not a
field. Hence (x) is not maximal in Z[x]. Now, define ψ : Z → Z2 via ψ(x) = x mod 2
and consider the composite homomorphism ψ ◦φ : Z→ Z2. It is clear that ψ ◦φ is onto
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and the kernel of ψ ◦φ is given by {p(x) ∈ Z[x] | p(0) ∈ 2Z} = (2,x). Again by the First
Isomorphism Theorem for Rings, Z[x]/(2,x) � Z2. Since Z2 is a field, (2,x) is a maximal
ideal.

Definition 41. Assume R is commutative. An ideal P is called a prime ideal if P , R and
whenever the product ab ∈ P for a,b ∈ R, then at least one of a or b is in P .

Example 42. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring is not an
integral domain?

Note 43. The notion of a prime ideal is a generalization of “prime” in Z. Suppose n ∈ Z+ \ {1}
such that n divides ab. In this case, n is guaranteed to divide either a or b exactly when n is
prime. Now, let nZ be a proper ideal in Z with n > 1 and suppose ab ∈ Z for a,b ∈ Z. In order
for nZ to be a prime ideal, it must be true that n divides either a or b. However, this is only
guaranteed to be true for all a,b ∈ Z when p is prime. That is, the nonzero prime ideals of Z
are of the form pZ, where p is prime. Note that in the case of the integers, the maximal and
nonzero prime ideals are the same.

Theorem 44. Assume R is a commutative ring. Then the ideal P is a prime ideal in R iff the
quotient ring R/P is an integral domain.

Corollary 45. Assume R is a commutative ring. Every maximal ideal of R is a prime ideal.

Example 46. Recall that Z[x]/(x) � Z. Since Z is an integral domain, it must be the case that
(x) is a prime ideal in Z[x]. However, as we saw in an earlier example, (x) is not maximal in
Z[x] since Z is not a field. This shows that the converse of the previous corollary is not true.
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