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Problem Sequence for MAT 511

By Dana C. Ernst
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1 Introduction to Groups

1.1 Binary Operations

Definition 1.1. A binary operation * on a set A is a function from A x A into A. For each (4,b) € AX A,
we denote the element #(a, b) via a=b. If the context is clear, we may abbreviate a* b as ab.

Do not misunderstand the use of * in this context. We are not implying that = is the ordinary multi-
plication of real numbers. We are using * to represent a generic binary operation. Notice that since the
codomain of a binary operation on a set A is A, binary operations require that we yield an element of
A when combining two elements of A. In this case, we say that A is closed under . Binary operations
have this closure property by definition. Also, since binary operations are functions, any attempt to
combine two elements from A should result in a unique element of A. Moreover, since the domain of *
is A x A, it must be the case that * is defined for all pairs of elements from A.

Problem 1.2. Let A be a set. Feel free to consult outside resources for parts (a) and (d).
(a) If = is a binary operation on A, what does it mean for * to be associative?
(b) Provide an example of a set together with a binary operation that is associative.

)
(c) Provide an example of a set together with a binary operation that is not associative.
(d) If = is a binary operation on A, what does it mean for * to be commutative?

(e) Provide an example of a set together with a binary operation that is commutative.

(f) Provide an example of a set together with a binary operation that is not commutative.

Problem 1.3. Provide an example of a set A and a binary operation * on A such that (a*b)? = a® * b?
for some a,b € A. Under what conditions will (a * b)2 = g%« b? for all a,b € A? Note: The notation x? is
shorthand for x * x.

Problem 1.4. Determine whether each of the following binary operations is (i) associative and (ii) com-
mutative.
(a) The operation % on R defined via ax b = 1+ab. In this case, ab denotes the ordinary multiplication
of the real numbers a and b.
a+b

(b) The operation o on QQ defined viaaob = 5

(c) The operation ® on Z x Z defined via (a,b) ® (c,d) = (ad + bc, bd).

(d) The operation ® on Q\ {0} defined viaa® b = %.
(e) The operation © on R/I :={x e R| 0 < x < 1} defined viaa© b =a+b-|a+b] (ie., a© b is the
fractional part of a+b).

Problem 1.5. Prove that if A is a nonempty set and F is the set of functions from A to A, then function
composition is an associative binary operation on F.
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When the set A is finite, we can represent a binary operation on A using a table in which the elements
of the set are listed across the top and down the left side (in the same order). The entry in the ith row
and jth column of the table represents the output of combining the element that labels the ith row with
the element that labels the jth column (order matters).

Example 1.6. Consider the following table.

*

a
b
c

Sl
[V T O

[SIRSE R RN

This table represents a binary operation on the set A = {a,b,c}. In this case, a*b = ¢ while b+a = a. This
shows that * is not commutative.

Problem 1.7. What property must the table for a binary operation have in order for the operation to be
commutative?

Problem 1.8. Consider the following table that displays the binary operation * on the set {x,y,z}.

+ | x|y|z
x| x|v|z
vy |x|x
z|v|x|x

(a) Determine whether * is commutative.
(b) Determine whether = is associative.
Problem 1.9. Let n be a fixed positive integer. Define =, on Z via
a=,bif and only if n| (b -a).

It turns out that =, is an equivalence relation (you may take this for granted). If a =, b, then we say, “a
is congruent to b mod n.” The equivalence classes determined by =, are defined via

a={a+kn|keZl.

There are precisely n equivalence classes mod 1, namely 0,1,...,n— 1 determined by the possible re-
mainders after division by n. We denote the collection of equivalence classes mod n by Z/nZ. For
a,b € Z/nZ, we define addition mod # via

a+b=a+b.

Similarly, we define multiplication mod n via

Prove each of the following.

(a) Addition mod # is a well-defined binary operation on Z/nZ.

(b) Multiplication mod # is a well-defined binary operation on Z/nZ.
Problem 1.10. Write down the table that represents addition mod 4 on Z/4Z.

Definition 1.11. Suppose * is a binary operation on a set A and let T C A. If the restriction of * to T is
a binary operation on T, then we say that T is closed under *.

Problem 1.12. Provide an example of a set A and a proper subset T of A together with a binary opera-
tion * on A such that T is closed under =.

Problem 1.13. Provide an example of a set A and a proper subset T of A together with a binary opera-
tion = on A such that T is not closed under .

Problem 1.14. Suppose * is an associative binary operation on A and let T C A such that T is closed
under *. Is * an associative binary operation on T? Justify your assertion.

Problem 1.15. Suppose * is a commutative binary operation on A and let T C A such that T is closed
under *. Is + a commutative binary operation on T? Justify your assertion.
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1.2 Groups

Definition 1.16. A group (G,*) is a set G together with a binary operation = such that the following
axioms hold.

0) The set G is closed under .

(

(1) The operation = is associative.

(2) There is an element e € G such that for all g € G, e g = g*e = g. We call e the identity.!

(3) Corresponding to each g € G, there is an element ¢’ € G such that g+ ¢’ = g’+ ¢ = e. In this case, ¢’
is said to be an inverse of g.

The order of G, denoted |G|, is the cardinality of the set G. If |G| is finite, then we say that G has finite
order. Otherwise, we say that G has infinite order.

In the definition of a group, the binary operation * is not required to be commutative. If * is commu-
tative, then we say that G is abelian?. A few additional comments are in order.

* Axiom 2 forces G to be nonempty.
» If (G,*) is a group, then we say that G is a group under =.
* We refer to a=b as the product of a and b even if * is not actually multiplication.

 For simplicity, if (G,*) is a group, we will often refer to G as being the group and suppress any
mention of » whatsoever. In particular, we will often abbreviate ax b as ab.

* We shall see that each g € G has a unique inverse. From that point on, we will denote the inverse
of gby g71.
Problem 1.17. Explain why Axiom 0 is unnecessary.

Problem 1.18. Explain why every group is nonempty.

Problem 1.19. Consider a square puzzle piece that fits perfectly into a square hole. Let R4 be the set of
net actions consisting of the rotations of the square by an appropriate amount so that it fits back into
the hole. For example, rotating by 90° clockwise and 270° counterclockwise are considered the same
net action. Assume we can tell the corners of the square apart from each other so that if the square has
been rotated and put back in the hole we can notice the difference. Each net action is called a symmetry
of the square.

(a) Describe all of the distinct symmetries in R4. How many distinct symmetries are in Ry?
(b) Explain why Ry is a group under composition of symmetries.

(c) Describe the identity of this group.

(d) Describe the inverse of each element in this group.

(e) Is R4 an abelian group?

Let’s pause for a moment to make sure we understand our use of the word symmetry in this context.
A fundamental question in mathematics is “When are two things the same?”, where “things” can be
whatever mathematical notion we happen to be thinking about at a particular moment. Right now we
need to answer, “When do we want to consider two symmetries to be the same?” To be clear, this is
a choice, and different choices can lead to different, interesting, and equally valid mathematics. For
symmetries, one natural thought is that symmetries are equal when they produce the same net action
on the square, meaning that when applied to a square in a particular starting position, they both yield
the same ending position. In general, two symmetries are equal if they produce the same net action on
the object in question. Notice that we are really defining an equivalence relation here.

The set Ry is called the rotation group for the square. For n > 3, R, is the rotation group for the
regular n-gon and consists of the rotational symmetries for a regular n-gon. Every R, really is a group
under composition of symmetries.

IThe origin of using the letter e for the identity of a group appears to be due to German mathematician Heinrich Weber, who
uses “einheit” (German for “unit” or “unity”) and e in his Lehrbuch der Algebra (1896).
2Commutative groups are called abelian in honor of the Norwegian mathematician Niels Abel (1802-1829).
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Problem 1.20. Consider a puzzle piece like the one in the previous problem, except this time, let’s
assume that the piece and the hole are an equilateral triangle. Let D3 be the full set of symmetries that
allow the triangle to fit back in the hole. In addition to rotations, we will also allow the triangle to be
flipped over—called a reflection.

(a) Describe all of the distinct symmetries in D3. How many distinct symmetries are in D5?
(b) Explain why Dj is a group under composition of symmetries.

(c) Describe the identity of this group.

(d) Describe the inverse of each element in this group.

(e) Is D5 an abelian group?

Problem 1.21. Repeat the above problem, but do it for a square instead of a triangle. The corresponding
group is called Dy.

The sets D3 and D, are examples of dihedral groups. In general, for n > 3, D,, consists of the symme-
tries (rotations and reflections) of a regular n-gon and is called the dihedral group of order 2n. Do you
see why D,, consists of 2n net actions? As expected, every D, really is a group.

Problem 1.22. Consider the set S3 consisting of the net actions that permute the positions of three coins
(without flipping them over) that are sitting side by side in a line. Assume that you can tell the coins
apart.

(a) Write down all distinct net actions in S; using verbal descriptions. Some of these will be tricky to
describe. How many distinct net actions are in S3?

(b) Explain why S3 is a group under composition of symmetries.
(c) Describe the identity of this group.

(d) Describe the inverse of each element in this group.

(e) Is S3 an abelian group?

The set S; is an example of a symmetric group. In general, S, is the symmetric group on # objects and
consists of the net actions that rearrange the n objects. Such rearrangements are called permutations.
Later we will prove that each S, is a group under composition of permutations.

Problem 1.23. Determine whether each of the following is a group. If the pair is a group, determine
the order, identify the identity, describe the inverses, and determine whether the group is abelian. If
the pair is not a group, explain why.

(@) (Z,+)

(b) (N,4)

(c) (Z,-)

(d) (Z,=)

(e) (R,+)

(f) (C+)

(8) (R,)

(h) (@\{0},)
(i) (z\{0},")
() (Maxa(R),+)

(k) (Mjyx2(R),*), where * is matrix multiplication.
) (
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(m) ({a,b,c},*), where # is the operation determined by the table in Example 1.6.
n) ({x,v,z},*), where * is the operation determined by the table in Problem 1.8.

)
(n)
(0) Z/nZ under addition mod n.
(p) Z/nZ under multiplication mod n.
)

(q) Set of rational numbers in lowest terms whose denominators are odd under addition. Note: Since
we can write 0 = 0/1, 0 is included in this set.

(r) Set of rational numbers in lowest terms whose denominators are even together with 0 under
addition.

(s) Set of rational numbers of absolute value less than 1 under addition.
(t) R/I under © as defined in Problem 1.4(e).
Problem 1.24. Let G={a+ V2 | a,b € Q}. Prove each of the following.
(a) The set G is a group under addition.
(b) If H= G\ {0}, then H is a group under multiplication.

Notice that in Axiom 2 of Definition 1.16, we said the identity and not an identity. Implicitly, this
implies that the identity is unique. You’ll notice that I even said “the identity” in Problems 1.19-1.23.

Problem 1.25. Prove that if G is a group, then there is a unique identity element in G. That is, there is
only one element e € G such that ge =eg =g forall g€ G.

Problem 1.26. Provide an example of a group of order 1. Can you find more than one such group?

Any group of order 1 is called a trivial group. It follows immediately from the definition of a group
that the element of a trivial group must be the identity.

It is important to note that if we have an equation involving the product of group elements, we can
still “do the same thing to both sides” and maintain equality. However, because general groups are
not necessarily abelian, we have to be careful that we truly operate in the same way on each side. For
example, if we have the equation g = I in some group, then we also have ag = ah, where we “multiplied”
both sides on the left by the group element a. We could not necessarily conclude that ag = ha, unless
one pair of the elements happen to commute with each other.

The following theorem is crucial for proving many theorems about groups.

Problem 1.27 (Cancellation Law). Let G be a group and let g,x,v € G. Prove that gx = gy if and only if
x =y. Similarly, we have xg = yg if and only if x = y.

Problem 1.28. Show that (R, ) fails the Cancellation Law confirming the fact that it is not a group.

Recall that Axiom (3) of Definition 1.16 states that each element of a group has at least one inverse.
The next theorem tells us that each element has exactly one inverse. Again, you’ll notice that I already
cheated at wrote “the inverse” in Problems 1.19-1.23.

Problem 1.29. Prove that if G is a group, then each g € G has a unique inverse.

In light of the previous problem, the unique inverse of g € G will be denoted as g~!. In groups, it
turns out that inverses are always “two-sided”. That is, if G is a group and g,h € G such that gh =,
then it must be the case that hg = e, as well. In this case, g”! = h and h™! = g. However, there are
mathematical structures where a “left inverse” exists but the “right inverse” does not.

Problem 1.30. Prove that if G is a group, then for all g,k € G, the equation gx = h has a unique solution
for x in G. Similarly, the equation xg = has a unique solution.

The next result should not be surprising.
Problem 1.31. Prove that if G is a group, then (g7!)~! = ¢ for all g € G.

The next result is analogous to the “socks and shoes theorem” for composition of functions.
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Problem 1.32. Prove that if G is a group, then (gh)™! =h~1¢g~! forall g,h € G.

Problem 1.33 (Generalized Associative Law). Prove that if G is a group, then for any ¢1,%,...,8, € G,
the value of g1 ¢, - g, is independent of how the product is bracketed. Consider using induction on #.

Definition 1.34. If G is a group and g € G, then for all n € N, we define:
(a) g"=g8-¢

~——
n factors

(b) g"=g7"g g

——————
n factors

(c) g'=e

Remark 1.35. If G is a group under +, then we can reinterpret Definition 1.34 as:

(a) ng=g+g+--+g
——

n summands

(b) -ng=-g+-g+---+-¢
R ——
n summands

(c) 0g=0

Notice all that we have done is taken the statements of Definition 1.34, which use multiplicative no-
tation for the group operation, and translated what they say in the case that the group operation uses
additive notation.

The good news is that the many of the rules of exponents you are familiar with still hold for groups.
Problem 1.36. Prove that if G is a group and g € G, then for all n,m € Z, we have the following;:

(a) g"g" =g"™,

(b) (g7 =g7"

(c) ()" =g""
Problem 1.37. Reinterpret problem 1.36 if G is a group under addition.

Unfortunately, there are some rules of exponents that do not apply for general groups.

Problem 1.38. Assume G is a group and let a,b € G. Is it true that (ab)" = a”b"? If not, under what
minimal conditions would it be true? Prove the statement that you think is true.

Problem 1.39. Assume G is a group. Prove that if g> = ¢ for all g € G, then G is abelian. Is the converse
true?

Problem 1.40. Assume G = {e,a,b,c} is a group under * with the property that x2=x*forall xe G
(where e is the identity). Complete the following group table, where x* y is defined to be the entry in
the row labeled by x and the column labeled by y.

(S|
[ IKS S RSSO KoY

Is your table unique? That is, did you have to fill it out the way you did? Deduce that G is abelian.

Problem 1.41. Assume G is a finite group. Prove that every element of G must appear exactly once in
every row and column of the group table for G. (Of course, we are not counting the row and column
headings.)

Problem 1.42. Prove that if G is a group and g € G, then the two functions /,(x) := gx and r¢(x) := xg
are both permutations of G (i.e., I and r, are bijections from G to G).
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1.3 Generating Sets

In this section, we explore the concept of a generating set for a group.

Definition 1.43. Let G be a group and let S be a subset of G. A finite product (under the operation of
G) consisting of elements from S or their inverses is called a word in S. That is, a word in S is of the
form
5‘;1 522 e Sfl”,

where each s; € S and ¢; € {£1}. Each s; is called a letter and the set S is called the alphabet. By
convention, the identity of G can be represented by the empty word, which is the word having no
letters. The set of elements of G that can be written as words in S is denoted by (S) and is called the
group generated by S.

It is worth mentioning that we are slightly abusing notation here. For nonempty S C G, we can form
infinitely many words in (S), but often there are many words that represent the same group element.
We can partition the collection of words in the alphabet S into equivalence classes based on which
group element a word represents. Strictly speaking, each group element is an equivalence class of
words. When we say two words are equal in the group, what we really mean is that both words are in
the same equivalence class.

Moreover, while S and (S) are both sets, the latter set is the set of elements we can build using letters
and their inverses from S. It turns out that if S is itself a group, then S = (S). Otherwise, S is a proper
subset of (S).

If we know what the elements of S actually are, then we will list them inside the angle brackets
without the set braces. For example, if S = {a,b,c}, then we will write (4, b, c) instead of ({a, b, c}). In the
special case when the generating set S consists of a single element, say g, we have

G=(g)=1{g" ke
and say that G is a cyclic group. As we shall see, (g) may be finite or infinite.

Example 1.44. Suppose G is a group such that a,b,c € G and let S = {a,b,c}. Then ab, c"'acc, and
ab~'caa'bc™! are words in (S). If any one of these words is not equal to 4, b, or c, then S is a proper
subset of (S).

Problem 1.45. Prove that if G is a group under = and S is a subset of G, then (S) is also a group under =.

Definition 1.46. If G is a group and S is a subset of G such that G = (S), then S is called a generating
set of G. In other words, S is a generating set of G if every element of G can be expressed as a word in
S. In this case, we say S generates G. A generating set S for G is a minimal generating set if S\ {x} is
no longer a generating set for G for all x € S.

A generating set for a group is analogous to a spanning set for a vector space and a minimal generating
set for a group is analogous to a basis for a vector space.

Problem 1.47. Consider the rotation group R4 that we introduced in Problem 1.19. Let r be the element
of R4 that rotates the square by 90° clockwise.

1

(a) Describe the action of r~! on the square and express r~! as a word using r only.

(b) Prove that Ry = (r) by writing every element of Ry as a word using r only.
(c) Is {r} a minimal generating set for R4?
(d) Is R4 a cyclic group?

Problem 1.48. Consider the dihedral group D; introduced in Problem 1.20. To give us a common
starting point, let’s assume the triangle and hole are positioned so that one of the tips of the triangle is
pointed up. Let r be rotation by 120° in the clockwise direction and let s be the reflection in D3 that
fixes the top of the triangle.

1

(a) Describe the action of r~! on the triangle and express r~! as a word using r only.

1

(b) Describe the action of s™! on the triangle and express s™! as a word using s only.
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(c) Prove that D5 = (r,s) by writing every element of D3 as a word in r or s.
(d) Is {r,s} a minimal generating set for D3?

(e) Explain why there is no single generating set for D5 consisting of a single element. This proves
that D3 is not cyclic.

It is important to point out that the fact that {r,s} is a minimal generating set for D3 does not im-
mediately imply that D3 is not a cyclic group. There are examples of cyclic groups that have minimal
generating sets consisting of more than one element as the next problem illustrates.

Problem 1.49. Let R4 denote the group of rotational symmetries of a regular hexagon and let r be
rotation by 60° clockwise.
(a) Is Rg cyclic?
(b) Is Rg abelian?

(c) Write r~! as a word in 7.

)
)
)
(d) Can you find a shorter word to describe r8?
(e) Does r? generate the group?

(f) Does r® generate the group?

(g) Does r> generate the group?

(h) Is {r?,73} a minimal generating set for Ry?

Problem 1.50. Let’s consider the group D3 again. Let s be the same reflection as in Problem 1.48 and
let s” be the reflection in Dj that fixes the bottom right corner of the triangle.

(a) Express rasawordinsands’.
(b) Use part (a) together with Problem 1.48 to prove that (s,s’) = Dj.

Problem 1.51. Consider the dihedral group D, introduced in Problem 1.21. Let r be clockwise rotation
by 90° and let s be the reflection over the vertical midline of the square.

(a

(b) Describe the action of s™! on the square and express s

1

Describe the action of 7! on the square and express r~! as a word using  only.

~! as a word using s only.

)
)
(c) Prove that {r,s} is generating set for Dy.
(d) Is {r,s} a minimal generating set for D4?
(e) Find a different generating set for Dy.
(f) Is Dy a cyclic group?

Problem 1.52. Consider the symmetric group S; that was introduced in Problem 1.22. Let s; be the
action that swaps the positions of the first and second coins and let s, be the action that swaps the
positions of the second and third coins.

(a) Prove that S3 = (s1,5,).
(b) Is {s1,s,} a minimal generating set for S5?

Problem 1.53. Consider a rectangle (which may or may not be a square) oriented so that one side is
parallel to the ground. Let /& be the symmetry that reflects the rectangle over the horizontal midline
and let v be the symmetry that reflects the rectangle over the vertical midline. Define V, := (v, h). This
group is called the Klein group (or Vierergruppe, which is German for “four-group”) after the German
mathematician Felix Klein (1849-1925).

(a) Verify that |Vy| = 4 by describing the symmetries in the group.
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(b) Is V4 abelian?
(c) Is V4 cyclic?
Problem 1.54. Prove that the group (Z/nZ,+ mod n) is cyclic.
Problem 1.55. Consider the group (Z, +).
(a) Find a generating set that consists of a single element. Is Z a cyclic group under addition?

(b) If possible, find a minimal generating set that consists of two elements. If this is not possible,
explain way.

Problem 1.56. Consider the group (Q,+).
(a) Find a generating set that is a proper subset of Q.
(b) Is your generating set a minimal generating set?
Problem 1.57. Prove that if G is a cyclic group, then G is abelian.
Problem 1.58. Is the converse of the previous problem true? If so, prove it. Otherwise, find a coun-
terexample.
1.4 Group Presentations

In this section, we introduce the notion of a presentation of a group. We’ll only touch the surface here.
There’s a lot more going on behind the scenes!

Definition 1.59. Let G be a group and suppose S C G such that G =(S). Any equation that the genera-
tors satisfy is called a relation.

Example 1.60. Here are a few examples of relations.

(a) Recall that D3 = (r,s), where r and s are the actions described in Problem 1.48. In Dj, it’s easy to
verify that r3=¢, s? = e, and sr = r%s. Each of these equations is an example of a relation in Dj.

(b) We also have D3 = (s,s’), where s and s’ are the actions described in Problem 1.50. Using this set
of generators, Dj satisfies the relations s> = e (same as part (a)), (s')?> = ¢, and ss’s = 5’ss’.

4 3

(c) Similar to part (a), D4y = (r,s). In this case, Dy satisfies the relations r* =, s2=¢,and sr = r3s.

(d) According to Problem 1.52, S3 = (s1,s,). It is easy to verify that S; satisfies the relations sf =e,
sg =¢, and s15y51 = 5515

(e) Using the generating set {1} for Z, it turns out that there are no relations.
Problem 1.61. Complete each of the following.

(a) Prove that r> = r2, (sr)> = e, and (ss’)> = e are relations in D3 using the relations provided in
parts (a) and (b) of Example 1.60.

(b) Prove that sr? = r%s is a relation in D4 using the relations provided in part (c) of Example 1.60.
(c) Prove that (s,s1)> = e is a relation in S3 using the relations provided in part (d) of Example 1.60.

Definition 1.62. Let G be a group and suppose S C G such that G = (S). If there is a collection of
relations, say wy = e,w, =e,...,w,, = ¢, where each w; is a word consisting of elements from S or
inverses of elements from S, such that any relation among the elements of S can be derived from
wy =ewy =¢,..., Wy, = e, we say that (S,w; =e,w, =e,...,w,, = e) is a presentation of G and write

G=(S|wi=ewy=e,...,w, =e).

Officially, this is a finite presentation for G since there are finitely many relations. If instead we utilize
infinitely many relations, the corresponding presentation is an infinite presentation.
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Example 1.63. It is not immediately obvious, but it turns out that the relations described in Exam-
ple 1.60 determine presentations for D3, Dy, S3, and Z. In Problem 1.61, we verified that we can derive
some additional relations from the ones given in Example 1.60. The not obvious part is that every
relation in each of these groups can be deduced from the relations that were listed. That is, we have:

2 2 _

(@) Dy=(r,s|r3=e,s2=e,sr=1r%s)=(s,5"| s> =¢,(s')> =e,55's = s'ss").
(b) Dy=(r,s|r*=e,s> =e¢,sr=13)

(c)
(d) Z=(1)

2 2
S3=(s1,52 | 57 =,55 = €,51525] =525152)

It turns out that that the relations in each of the presentations are also minimal in the sense that we
cannot eliminate one of the relations and use the remaining ones to produce the eliminated one.

For n > 3, define the dihedral group D, to be the group of symmetries of a regular n-gon. It’s not
too hard to prove that D,, consists of #n distinct rotations and # distinct reflections, so that |D,| = 2n. In
particular, one can prove using geometric arguments that

D, =(r,s)={e,r,1%,...,r" L, s,51,51%,..., 57"}

rotations reflections

where r is equal to rotation by 360°/n clockwise, s is any fixed reflection, and each of the elements listed
above is distinct. It follows from geometric arguments that r~! = 7"~! and s7! = 5. Later, we will prove
that

D, =(r,s| 1" =s*=¢,sr =r"!s)

is a group presentation for D,. It is easy to very that r and s satisfy the relations described in the
presentations, but it is not obvious that these relations are enough to determine the group. In this
section, we will take for granted that this is a presentation for D,,.

We can also define groups using presentations. If we define a group G via a presentation, say G = (S |
wy =ewy =¢,..., Wy, = e), we mean that G is the group generated by S that satisfies all of the relations
we can derive from wy =e,w, =e¢,...,w,, = e. For example, we can define

D, :=(r,s|r*=s*>=e,sr=rs),
which fills in the case when n = 2 for the dihedral groups.

Problem 1.64. There’s no such thing as a 2-gon, but can you describe an object that D, is the symmetry
group for? There is more to proving your claim than you might expect. Don’t worry about proving this
carefully, but do consider what needs to be verified.

Problem 1.65. Consider D, for n > 3.

(a) Prove that if x € D, such that x is not a power of r, then rx = xr~!.
(b) Assume x € D,, such that x is not a power of r. Geometrically, this implies that x> = e. Verify this
fact using the relations provided in the presentation for D,,.

(c) Assume n = 2k is even such that n > 4. By the description above for D,, in terms of rotations and
reflection, we know r* # e. Prove that (r¥)? = e. Moreover, prove that r* is the only nonidentity
element that commutes with every element of D,,.

(d) Assume n is odd such that n > 3. Prove that the identity is the only element of D, that commutes
with every element of D,,.

(e) Prove that {a,b | a> = b? = (ab)" = ¢) is a presentation for D, in terms of the generators a = s and
b=sr.

It follows from parts (c) and (d) of the previous problem that D, is not abelian for all n > 3. This
comes as no surprise since it is easy to see geometrically that sr = rs.

Utilizing presentations is tricky business. First, if you have a particular group in mind, it can often
be difficult to find a presentation. Second, if you define a group using a presentation, it may be difficult
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(or even impossible!) to determine when two elements of the group (expressed as words in the gener-
ators) are equal. As a result, we may have some difficulty determining the order of a group given by a
presentation. In particular, it may not be easy to determine whether the corresponding group is even
finite or infinite!

Similar to the last part of Problem 1.65, one can show that {a,b | a*> = b?> = (ab)? = ¢) is a presentation
for D, (where a = r and b = s). It turns out that |D,| = 4. In particular, any group with a similar
presentation is finite (specifically order 4). However, if you consider the similar-looking presentation
(a,b | a®> = b3 = (ab)® = e), it turns out that the corresponding group is infinite! This is not obvious
at all. Loosely speaking, it must be the case that in the presentation (a,b | a> = b = (ab)? = e) there
are sufficiently many relations that can be deduced from the given relations that a massive amount of
“collapsing” occurs to make the group finite. In contrast, not enough collapsing occurs in {a,b | a> =
b3 = (ab)® = ) to make the group finite.

This collapsing makes it difficult to even determine lower bounds on the order for the group being
presented. Sometimes even innocent-looking presentations can collapse considerably.

Problem 1.66. Define G = (x,v | x* = 13 = ¢, xy = p?x?).
(a) Show that 2 =y~

(b) Show that y commutes with x>. Hint: Show that y2x3y = x* by writing the left hand side as
(v?x?)(xy) and using the relations to reduce this to the right hand side. Then use part (a).

(c) Show that y commutes with x. Hint: Show that x° = x and then use part (b).
(d) Show that xy = e Hint: Use part (c) and the last relation.
(e) Show that x = ¢, and then deduce that y = e. Hint: Use part (d) and the relation x*y3 = e.

(f) Conclude that |G| =1.

1.5 Subgroups

According to Problem 1.45, if S is any subset of a group G under #, then (S) is also a group under =.
However, notice that (S) may not be equal to G. That is, (S) may be a proper subset of G that is a group
in its own right (using the same binary operation as G). We can give a name to this phenomenon.

Definition 1.67. Let G be a group and let H be a subset of G. Then H is a subgroup of G, written
H < G, provided that H is a group in its own right under the binary operation inherited from G.

The phrase “under the binary operation inherited from G” means that to combine two elements in
H, we should treat the elements as if they were in G and perform the binary operation of G.

As an example, the group of rotations of a square is a subgroup of the full group of symmetries of a
square. That is, Ry < Dy.

Problem 1.68. Let G be a group and let H C G. If we wanted to determine whether H is a subgroup of
G, can we skip checking any of the axioms? Which axioms must we verify?

Let’s make the observations of the previous problem a bit more formal.

Problem 1.69 (Two Step Subgroup Test). Suppose G is a group and H is a nonempty subset of G. Prove
that H < Gif and only if (i) forall he H, h~! € H, as well, and (ii) H is closed under the binary operation
of G.

Notice that one of the hypotheses of Problem 1.69 is that H be nonempty. This means that if we want
to prove that a certain subset H is a subgroup of a group G, then one of the things we must do is verify
that H is in fact nonempty. In light of this, the “Two Step Subgroup Test” should probably be called the
“Three Step Subgroup Test”.

Problem 1.70. Suppose G is a group and H is a nonempty subset of G. Conjecture and prove a “One
Step Subgroup Test” that streamlines Problem 1.69.

As Problems 1.71 and 1.72 will illustrate, there are a couple of subgroups that every group contains.

Problem 1.71. Prove that if G is a group, then {¢} < G.
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The subgroup {e} is referred to as the trivial subgroup. All other subgroups are called nontrivial.
Subgroups are not required to be proper subsets of the “parent” group.

Problem 1.72. Prove that if G is a group, then G < G.

We refer to subgroups that are not equal to the whole group as proper subgroups. If H is a proper
subgroup, then we may write H < G.
Let’s take Problem 1.45 a step further.

Problem 1.73. Prove that if G is a group and S C G, then (S) is the smallest subgroup of G containing
S.

The subgroup (S) is called the subgroup generated by S. In the special case when S equals a single
element, say S = {g}, then

(g)=1g"lkez),

which is called the (cyclic) subgroup generated by g. Every subgroup can be written in the “generated
by” form. That is, if H is a subgroup of a group G, then there always exists a subset S of G such that
(S§) =H. In particular, (H) = H for H < G, and as a special case, we have (G) = G.

Problem 1.74. Consider Dy. Let h be the reflection of the square over the horizontal midline and let v
be the reflection over the vertical midline. Which of the following are subgroups of D,? In each case,
justify your answer. If a subset is a subgroup, try to find a minimal generating set.

(a) {e,r
(b) {e h}
(c) {e h,v}

(d) {e,h,v,r%)

%)

Problem 1.75. Consider (R3,+), where R3 is the set of all 3-entry row vectors with real number entries
(e.g., (a,b,c) where a,b,c € R) and + is ordinary vector addition. It turns out that (R, +) is an abelian
group with identity (0,0, 0).

(a) Let H be the subset of R3 consisting of vectors with first coordinate 0. Is H a subgroup of R3?
Prove your answer.

(b) Let K be the subset of R® consisting of vectors whose entries sum to 0. Is K a subgroup of R3?
Prove your answer.

(c) Construct a subset of R? (different from H and K) that is not a subgroup of R3.
Problem 1.76. Consider the group (Z,+) (under ordinary addition).

(a) Show that the odd integers are not a subgroup of Z.

(b) Show that all subsets of the form nZ := {nk | k € Z} for n € Z are subgroups of Z.

(c) For n € Z, write the subgroup nZ in the “generated by” notation. That is, find a set S such that
(S) =nZ. Can you find more than one way to do it?

(d) Find n such that (6,9) = nZ. Justify your assertion.

(e) Are there any other subgroups besides the ones listed in part (b)? State a conjecture and perhaps
prove it.

Problem 1.77. Consider the groups (R,+) and (R \ {0},-). Explain why R\ {0} is not a subgroup of R
despite the fact that R\ {0} C R and both are groups (under the respective binary operations).

Problem 1.78. Prove that if G is an abelian group and H < G, then H is an abelian subgroup.

Problem 1.79. Is the converse of the previous theorem true? If so, prove it. Otherwise, provide a
counterexample.

Recall that the order of a group G, denoted |G|, is the number of elements in G.
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Definition 1.80. We define the order of an element g, written |g|, to be the order of (g). That is,
lgl = Kg)I-

It is clear that a group G is cyclic with generator g if and only if |G| = |g|.
Problem 1.81. What is the order of the identity in any group?

Problem 1.82. Find the orders of each of the elements in each of the following groups.

Problem 1.83. Consider the group (Z,+). What is the order of 1? Are there any elements in Z with
finite order?

Problem 1.84. Prove that if G is a group and g € G, then (g) = (g™ 1).
The next result follows immediately from Problem 1.84.

Problem 1.85. Prove that if G is a group and g € G, then |g| = [¢7}|.

1.6 Centers, Centralizers, and Normalizers

In this section, we introduce three special subgroups. As we’ve seen, some groups are abelian and some
are not.

Definition 1.86. If G is a group, then we define the center of G to be
Z(G):={ze€ G|zg=gzforall geG}.

Notice that if G is abelian, then Z(G) = G. However, if G is not abelian, then Z(G) will be a proper
subset of G. In some sense, the center of a group is a measure of how close G is to being abelian.

Problem 1.87. Prove that if G is a group, then Z(G) is an abelian subgroup of G.

Problem 1.88. Find the center of each of the following groups.
(a) S,
(b) V4
(c) S5
(d) Z/nZ
(e) Ry
(f) Dy
)

(8) (Z,+)
(h) (R\{0},)

Definition 1.89. Let G be a group and let A be a nonempty subset of G. Define the centralizer of A in
G via
Cg(A):={geG]| gag_1 =aforallae A}

If A = {a}, we will write C;(a) instead of Cs({a}).
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Since gag~! = a if and only if ga = ag, C;(A) is the set of elements of G that commute with every
element of A. The product gag~! is called the conjugate of a by g. Notice that C5(G) = Z(G).

Problem 1.90. Prove that if G is a group and A be a nonempty subset of G, then Cg(A) is a subgroup
of G.

Definition 1.91. Let G be a group and let A be a nonempty subset of G. Define the normalizer of A in
G via
No(A):={geGlgag™ = A},

where gAg~! :={gag™! |a € A)}.

Notice that C;(A) is the set of elements of G that fix the set A pointwise using conjugation while Ng(A)
is the set of elements of G that fix the set A setwise using conjugation. It’s clear that C5(A) C Ng(A).

Problem 1.92. Prove that if G is a group and A be a nonempty subset of G, then Ng(A) is a subgroup
of G. Is it true that C5(A) is a subgroup of Ng(A)?

Problem 1.93. Let G be a group and let A be a nonempty subset of G. Determine whether the following
statement is true or false: Z(G) < Cg(A) < Ng(A). If it is true, prove it. Otherwise, find a counterexam-
ple.

Problem 1.94. Suppose G is an abelian group and A is a nonempty subset of G. What can you say about
Cg(A) and Ng(A)?

Problem 1.95. For each group G and subset A, determine C;(A) and Ng(A).
(@) G=Dy, A=(r)
(b) G=Dy, A=(s)
(c) G=Dy, A=(s,1%)
(d) G=3855,A=(s1)

Problem 1.96. Let G be a group and let A and B be subsets of G such that A C B. What is the relationship
between Cg(A) and Cg(B)? Justify your assertion.

Problem 1.97. Let H be a subgroup of a group G.
(a) Prove that H < Ng(H).
(b) Prove that H < Cg(H) if and only if H is abelian.

1.7 Subgroup Lattices

Suppose we wanted to find all of the subgroups of a finite group G. Problems 1.71 and 1.72 tell us
that {e} and G itself are subgroups of G, but there may be others. Problem 1.69 tells us that if we want
to find other subgroups of G, we need to find nonempty subsets of G that are closed and contain all
the necessary inverses. So, one method for finding subgroups would be to find all possible nonempty
subsets of G and then go about determining which subsets are subgroups by verifying whether a given
subset is closed under inverses and closed under the operation of G. This is very time consuming!

Another approach would be to utilize the fact that every subgroup H of G has a generating set. That
is, if H is a subgroup of a group G, then there always exists a subset S of G such that (S) = H. Given a
subset S of G, (S) is guaranteed to be closed under inverses and the operation of the group G. So, we
could determine all of the subgroups of G by generating groups with various subsets S of G. Of course,
one drawback is that it might take a bit of effort to determine what (S) actually is. Another drawback
is that two different subsets S and T may generate the same subgroup.

Let’s make this a bit more concrete by exploring an example.

Example 1.98. Consider the group Ry. What are the subgroups of R4? Since the order of Ry is 4, we
know that there are 2* — 1 = 15 nonempty subsets of R;. Some of these are subgroups, but most of
them are not. We know that {e} and Ry itself are subgroups of Ry. That’s 2 out of 15 so far. Are there
any others? Let’s do an exhaustive search by playing with generating sets. We can certainly be more
efficient, but below we list all of the possible subgroups we can generate using subsets of R4. As you
scan the list, you should take a moment to convince yourself that the list is accurate.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 14


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

(e) = {e} (r,r3) =le,r,1%, 13}
<T> = {6, r, 1,2, 1’3} <1’2,7‘3> — {6, 1’,7‘2, 1,.3}
(r?)y ={e,r?}
<r3> {e,r r2 ,7)

(e,r)y={e,r, 1?13}

(e,r, 1) = {e,r, 12,13}

(e,r,13) = {e,r, 1%, 13}

(e,r?,r3) ={e,r,r%,13)

(e,r?)y ={e,r%}
(e,r3) = {e,13, 12,7} (r,r2,r3) = le,r, 12,13}
(r,r?)y ={e,r,r%,1r3) (e,r, 2,13 ={e,r,1r?, 13}

Let’s make a few observations. Scanning the list, we see only three distinct subgroups:
{6}, {e, rZ}’ {e: r, 72: T3}-

Out of 15 nonempty subsets of Ry, only 3 subsets are subgroups. Our exhaustive search guarantees
that these are the only subgroups of Ry. It is also worth pointing out that if a subset contains either
r or r3, then that subset generates all of R4. The reason for this is that {r} and {r3} are each minimal
generating sets for Ry. More generally, observe that if we increase the size of the generating subset using
an element that was already contained in the subgroup generated by the set, then we don’t get anything
new. For example, consider (r?) = {e,r?}. Since e € (r?), we don’t get anything new by including e in our
generating set.

Problem 1.99. Let G be a group and let S C G. Prove that if x € (S), then (S) = (S U {x}).

In the previous theorem, we are not claiming that S is a generating set for G—although this may be
the case. Instead, are simply making a statement about the subgroup (S), whatever it may be.

We can capture the overall relationship between the subgroups of a group G using a subgroup lattice.
Given a group G, the lattice of subgroups of G is the partially ordered set whose elements are the
subgroups of G with the partial order relation being set inclusion. It is common to depict the subgroup
lattice for a group using a Hasse diagram. The Hasse diagram of subgroup lattice is drawn as follows:

(1) Each subgroup H of G is a vertex.

(2) Vertices corresponding to subgroups with smaller order are placed lower in the diagram than
vertices corresponding to subgroups with larger order. In particular, the vertex for {e} is placed at
the bottom of the diagram and the vertex for G is placed at the top.

(3) There is an edge going up from H to K if H < K and there is no subgroup L such that H <L <K
with L # H, K.

Notice that there is an upward path of edges in the Hasse diagram from H to K if and only if H < K.
For convenience we will not make a distinction between the subgroup lattice for a group G and the
corresponding Hasse diagram.

Example 1.100. The Hasse diagram for the subgroup lattice for R4 is given in Figure 1.

Example 1.101. Let’s see what we can do with V, = {e,v, h, vh}. Using an exhaustive search, we find that
there are five subgroups:

(e) = {e}
(hy ={e,h}
(v)={ev)

(vh) = {e,vh}
(v, h) ={v,vh) = (h,vh) ={e,v,h,vh} = V4

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 15


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

(r)=R4

(r*)={e.r?)

(e)={e}

Figure 1: Subgroup lattice for Ry.

(v, )=V,
() ={e,v} (h) = {e, h} (vh) = {e,vh})
(e)={e}

Figure 2: Subgroup lattice for V.

For each subgroup above, we’ve used minimal generating sets to determine the subgroup. The subgroup
lattice for V4 is given in Figure 2. Notice that there are no edges among (v), (h), and (vh). The reason
for this is that none of these groups are subgroups of each other.

The next two problems provide some further insight into the overall structure of subgroups of a
group.

Problem 1.102. Prove that if G is a group such that H,K < G, then HN K < G. Moreover, H N K is the
largest subgroup contained in both H and K.

It turns out that we cannot simply replace “intersection” with “union” in the previous problem.

Problem 1.103. Provide an example of a group G and subgroups H and K such that H UK is not a
subgroup of G.

Problem 1.104. Prove that if G is a group such that H,K < G, then (HUK) < G. Moreover, (HUK) <G
is the smallest subgroup containing both H and K.

Problems 1.102 and 1.104 justify the use of the word “lattice” in “subgroup lattice”. In general, a
lattice is a partially ordered set in which every two elements have a unique meet (also called a greatest
lower bound or infimum) and a unique join (also called a least upper bound or supremum). In the
case of a subgroup lattice for a group G, the meet of subgroups H and K is HNK and the join is (HUK).
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Figure 3: Meet and join for subgroups H and K.

Figure 3 illustrates the meet (Problem 1.102) and join (Problem 1.104) in the case when H and K are
not comparable.

In the next problem, you are asked to create subgroup lattices. As you do this, try to minimize the
amount of work it takes to come up with all the subgroups.

Problem 1.105. Find all the subgroups for each of the following groups and then draw the subgroup
lattice.

1.8 Cayley Diagrams

In this section, we will introduce visual way of encoding the abstract structure of the group in terms of
a specified generating set.

Definition 1.106. Suppose G is a group and S is a generating set of G. The Cayley diagram? for G with
generating set S is a colored directed graph constructed as follows:

(a) The vertices correspond to elements of G.
(b) Each generator s € S is assigned a color, say c;.
(c) For g€ G and s €S, there is a directed edge from g to sg with color c;.

Note that following the arrow from g to sg with color ¢, corresponds to applying the action of s to g.
Moreover, following the arrow backwards from sg to g corresponds to applying s~! to sg. If a generator
is its own inverse, then the arrows corresponding to that generator are two-way arrows.

Example 1.107. Let R4 denote the group of rotational symmetries of a regular hexagon and let r be
rotation by 60° clockwise. It’s not too hard to see that R¢ = (r) and |R4| = 6. The Cayley diagram for Rg
with generating set {r} is given in Figure 4. In the diagram, following a purple (solid) arrow backwards

corresponds to the element r~!.

3Cayley diagrams are named after their inventor Arthur Cayley, a nineteenth century British mathematician.
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Figure 4: Cayley diagram for R4 with generating set {r}.

Example 1.108. The Cayley diagram for the group D; with generating set {r,s} is given in Figure 5.
Notice that we labeled the lower right corner of the Cayley diagram with the word r?s. This means that
we first followed a orange (dashed) arrow out of e and then two purple (solid) arrows. However, we
could also get to this vertex by first doing a purple (solid) arrow out of e followed by a orange (dashed)
arrow. So, we could also have labeled this vertex with the word sr. The upshot is that the diagram
exhibits the relation r%s = sr. Notice that this relation is true no matter where we start in the diagram!

Figure 5: Cayley diagram for D3 with generating set {r, s}.

Problem 1.109. Construct a Cayley diagram for each of the following groups using the specified gen-
erating set.

(a) S, with generating set {s}
(b) R4 with generating set {r}

(c) V4 with generating set {v, h}
(d) D3 with generating set {s, s’}
(e) Sz with generating set {sq,s,}
(f) D4 with generating set {r, s}
(g) Dy with generating set {s, sr}

Problem 1.110. Consider two light switches on a wall side by side. Let £; be the action that toggles
the position of left light switch and let £, be the action that toggles the position of right light switch.
Define Light, := ({1,{;). Draw the Cayley diagram for Light, using the generating set {¢1,£,}.
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Problem 1.111. Consider three light switches on a wall side by side. Let £; be the action that toggles
the position of left light switch, let £, be the action that toggles the position of middle light switch, and
let £5 be the action that toggles the position of middle light switch. Define Light; := (£,€,,£3). Draw
the Cayley diagram for Light; using the generating set {{;,£;,{3}.

Problem 1.112. Consider two coins sitting side by side. Let s be the action that swaps the positions of
the two coins and let ¢ be the action that flips over the left coin. Define Coin, := (s, t). Draw the Cayley
diagram for Coin, using the generating set {s, t}.

Not only are Cayley diagrams visually appealing, but they provide a map for the group in question.
That is, they provide a method for navigating the group. Following sequences of arrows tells us how to
achieve a net action. However, each Cayley diagram very much depends on the set of generators that
are chosen to generate the group. If we change the generating set, we may end up with a very different
looking Cayley diagram. For example, compare the Cayley diagram for D3 that you constructed in
Problem 1.109(d) with the one in Example 1.108. Similarly, compare the Cayley diagrams for D, that
you constructed in Parts (f) and (g) of Problem 1.109.

Problem 1.113. Consider the group (Z, +).
(a) Construct a portion of the Cayley diagram for (Z, +) with generating set {1}.

(b) Construct a portion of the Cayley diagram for (Z,+) with generating set {-1}. How does this
diagram compare to the one in part (a)?

(c) It turns out that Z = (2,3). Construct a portion of the Cayley diagram for (Z,+) with generating
set {2,3}.

Problem 1.114. Assume G is a group. Suppose that S and S’ are two different sets that generate G. If
you draw the Cayley diagram for G using S and then draw the Cayley diagram for G using S’, what
features of the two graphs are the same and which are potentially different?

Problem 1.115. Consider the diagram given in Figures 6. Explain why this diagram is not the Cayley
diagram for a group.

2

Figure 6: Example of a diagram that is not a Cayley diagram for a group.

[
T)

Problem 1.116. Suppose G is a group with generating set S and consider the corresponding Cayley
diagram. Prove each of the following.

(a) For every g € G and s € S, there is exactly one arrow with color ¢, pointing from s™!g to ¢ and
exactly one arrow with color ¢, pointing from g to sg.

(b) The Cayley diagram for G with generating set S is connected. That is, for every pair of vertices g
and h, there is a path of forward or backward arrows connecting g and h.

(c) Suppose G is a finite group and s € S. If we follow a sequence of (forward) arrows of color ¢ out
of e, we eventually end up back at e after a finite number of steps.

(d) Every relation involving the generators is realized as a sequence of arrows from a vertex in the
Cayley diagram back to the same vertex. Moreover, the sequence is independent of starting vertex.
Loosely speaking, this says that every local pattern holds globally in the Cayley diagram.
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Problem 1.117. Suppose S is a generating set for a group G. Can you determine whether S is a minimal
generating set using the Cayley diagram for G with generating set S?

Problem 1.118. Suppose {g1,...,g,} is a generating set for a group G.
(a) Explain why {g;,...,g;'} is also a generating set for G.

(b) How does the Cayley diagram for G with generating set {gy,...,£,} compare to the Cayley diagram
with generating set {g;',...,g;'}?

Problem 1.119. Suppose G is an abelian group with generating set S and consider the corresponding
Cayley diagram.

(a) If s,t € S, then what relationship must be true about the corresponding arrows?

(b) Is the converse of your claim in part (a) true? That is, if every pair of arrows in the Cayley diagram
for G has the property you stated above, will the group be abelian?

Let’s introduce a group we haven’t seen yet. Define the quaternion group to be the group Qg =
{1,-1,i,—1,j,—j, k,—k} having the Cayley diagram with generating set {i, j,—1} given in Figure 7. In this
case, 1 is the identity of the group.

-
~
N

Figure 7: Cayley diagram for Qg with generating set {-1,1, j}.

Notice that I didn’t mention what the actions actually do. For now, let’s not worry about that. The
relationship between the arrows and vertices tells us everything we need to know. Also, let’s take it for
granted that Qg actually is a group.

Problem 1.120. Consider the Cayley diagram for Qg given in Figure 7.
(a) Which arrows correspond to which generators in our Cayley diagram for Qg?

(b) What is i2 equal to? That is, what element of {1,-1,7,—i,j,—j, k,—k} is i2 equal to? How about i3,
-4 5
i*,and i°?

(c) What are j2, j3, j4, and j> equal to?

(d) What is (—1)? equal to?

(e) What is ij equal to? How about ji?

(f) Can you determine what k? and ik are equal to?

(g) Can you identify a generating set consisting of only two elements? Can you find more than one?
(h) What subgroups of Qg can you visually witness in the Cayley diagram in Figure 7?

(i) Find a subgroup of Qg that is not easily seen in the Cayley diagram in Figure 7.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 20


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

Problem 1.121. The Cayley diagrams of two groups of order 12 are shown below.

A ——

(a) Create a group table for each group. For consistency, please order the elements in the first group
by e, t,t%,5,ts,t%s,5%,5%t,5°t2,53,5t2, st and those in second by e,x,v,2,4,b,¢,d,a%,b%,¢c?,d?%.)

(b) Find the inverse of each element.

(c) Find the order of each element in each group.

(d) Find a presentation for each group.

(e) Squint your eyes. Do you see any patterns in these tables?

Problem 1.122. Consider the groups given by the following presentations:

Draw the Cayley diagram for each group with the specified generating set. If the group is finite, draw
the whole diagram. If the group is infinite, draw a portion of the diagram. At least one of these groups
provides a presentation for the infinite dihedral group, which we have not officially defined. Can you
take a guess which one(s)?

1.9 Lagrange’s Theorem

The goal of this section is to prove Lagrange’s Theorem, which states that for finite groups the order of
an element divides the order of the group. We begin with defining a relation on a group that depends
on a subgroup.

Let G be a group and let H < G. Define ~ on G via

a~ b if and only if b = ah for some h € H.
Problem 1.123. Prove that ~ is an equivalence relation on G.

Since ~ is an equivalence relation, the corresponding equivalence classes form a partition of G. If
a € G, then the equivalence class containing a is given by

[a]={be G|a~Db}.

The next problem provides a nice description for [a].
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Problem 1.124. Let G be a group and let H < G. Prove that [a] =aH :={ah | h € H}.

In the previous problem, the set aH is called a left coset. Note that if a ¢ H, then aH # H. In
particular, if a ¢ H, then aH is not a subgroup of G. We will explore cosets in more detail in a later
section.

Problem 1.125. Let G be a group, H < G, and a € G. Define ¢ : H — aH via ¢(h) = ah. Prove that ¢ is a
bijection.

It follows immediately from the previous problem that all of the left cosets of H are the same cardi-
nality as H. In other words #(aH) = |H| for all a € G, where #(aH) denotes the cardinality of aH. Note
that everything works out just fine even if H has infinite order.

We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born mathematician
Joseph Louis Lagrange. It turns out that Lagrange did not actually prove the theorem that is named
after him. The theorem was actually proved by Carl Friedrich Gauss in 1801.

Problem 1.126 (Lagrange’s Theorem). Prove that if G is a finite group and H < G, then |H| divides |G|.

This simple sounding theorem is extremely powerful. One consequence is that groups and subgroups
have a fairly rigid structure. Suppose G is a finite group and let H < G. Since G is finite, there must
be a finite number of distinct left cosets, say H,a,H,...,a,H. By earlier discussion, we know that each
of these cosets has the same cardinality. In particular, Lagrange’s Theorem implies that for each i €
{1,...,n}, |a;H| = |G|/n, or equivalently n = |G|/|a; H|. This is depicted in Figure 8, where each rectangle
represents a coset and we’ve labeled a single coset representative in each case.

[ ] [ ] [ ]
e a, a,

H ﬂzH LlnH

Figure 8: Left cosets as a partition of G into equal size blocks.
One important consequence of Lagrange’s Theorem is that it narrows down the possible sizes for
subgroups.
Problem 1.127. Suppose G is a group of order 48. What are the possible orders for subgroups of G?

Lagrange’s Theorem tells us what the possible orders of a subgroup are, but if k € N is a divisor of the
order of a group, it does not guarantee that there is a subgroup of order k. It’s not too hard to show that
the converse of Lagrange’s Theorem is true for cyclic groups. However, it’s not true, in general. We’ll
discover a counterexample in a later section.

The next problem is a corollary of Lagrange’s Theorem.

Problem 1.128. Prove that if G is a finite group and a € G, then |a| divides |G]|.
The converse to the previous problem is not true either.

Problem 1.129. Provide an example of a finite group G and a divisor k € N of |G| such that G does not
have an element of order k.

Problem 1.130. Suppose G is a group such that |G| = p, where p is prime. Prove that G is cyclic.

1.10 More on Cyclic Groups
Recall that if G is a group and g € G, then the cyclic subgroup generated by ¢ is given by
() =1s" ke,

It is important to point out that (g) may be finite or infinite. In the finite case, the Cayley diagram with
generator g gives us a good indication of where the word “cyclic” comes from. If there exists g € G such
that G = (g), then we say that G is a cyclic group.
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Problem 1.131. Prove that if G is a group such that G has no proper nontrivial subgroups, then G is
cyclic.

The next result should look familiar and will come in handy a few times in this section. We’ll take
the result for granted and not worry about proving it.

Theorem 1.132 (Division Algorithm). If # is a positive integer and m is any integer, then there exist
unique integers g (called the quotient) and r (called the remainder) such that m = ng+r, where 0 < r < n.

Problem 1.133. Suppose G is a group and let g € G. Prove that the subgroup (g) is finite if and only if
there exists n € N such that g" = e. It immediately follows that if G is a finite group, then for all g € G,
there exists n € N such that ¢g" =e.

Problem 1.134. Suppose G is a group and let ¢ € G such that (g) is a finite group. Prove that if n is
the smallest positive integer such that g" = e, then (g) = {e,g,¢%,...,¢""!} and this set contains n distinct
elements. Note that the previous problem together with the Well-Ordering Principle guarantees the
existence of a smallest positive integer n such that g" =e.

The next result provides an extremely useful interpretation of the order of an element.

Problem 1.135. Prove that if G is a group and g € G such that (g) is a finite subgroup, then the order
of g is the smallest positive integer n such that g" =e.

Problem 1.136. Suppose G is a group and x,y € G such that |x| = m and |y| = n. Is it true that |xy| = mn?
If this is true, provide a proof. If this is not true, then provide a counterexample.

Problem 1.137. Suppose G is a group and let g € G. Prove that the subgroup (g) is infinite if and only
if each g is distinct for all k € Z.

Problem 1.138. Suppose G is a cyclic group with generator g € G.
(a) If G is finite, what conclusions can you make about Cayley diagram for G with generating set {g}?

(b) If G is infinite, what conclusions can you make about Cayley diagram for G with generating set

{)?
The Division Algorithm should come in handy when proving the next theorem.

Problem 1.139. Suppose G is a group and let g € G such that |g] = n. Prove that g' = ¢/ if and only if n
divides i — j. It immediately follows that ¢' = ¢/ if and only if i = j (mod n).

Problem 1.140. Suppose G is a group and let g € G such that |g| = n. Prove that if g = ¢, then n divides
k.

Problem 1.141. Suppose G is a cyclic group. Prove that if H < G, then H is also cyclic.
It turns out that for proper subgroups, the converse of Problem 1.141 is not true.

Problem 1.142. Provide an example of a group G such that G is not cyclic, but all proper subgroups of
G are cyclic.

One implication of the previous problem is that the subgroups of Z are precisely the groups nZ = (n)
for n e Z.

Problem 1.143. Prove that if G is a finite cyclic group with generator ¢ such that |G| = 1, then for all
n

€Z,|g" = ——.
meL, "= S dmm)
Problem 1.144. Prove that if G is a finite cyclic group with generator g such that |G| = n, then (g") =
(g*) if and only if gcd(m, n) = ged(k, ). Use Problem 1.143 for the forward implication. For the reverse
implication, first prove that for all m € Z, (g") = (g8°4™") by proving two set containments. To show
(g™ c <gng(m’”)>, use the fact that there exists an integer q such that m = g - gcd(m, n). For the reverse
containment, you may freely use a fact known as Bezout’s Lemma, which states that gcd(m, n) = nx+my
for some integers x and y.
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Suppose G is a finite cyclic group with generator g such that |G| = n. It follows from Problem 1.144
that (g) = (¢¥) if and only if n and k are relatively prime. That is, ¢* generates G if and only if 7 and k
are relatively prime.

Problem 1.145. Suppose G is a cyclic group of order 12 with generator g.
(a) Find the orders of each of the following elements: g2, g7, g®.
(b) Which elements of G individually generate G?

Problem 1.146. Consider Z/18Z.
(a) Find all of the elements of Z/18Z that individually generate all of Z;3g.

(b) Draw the subgroup lattice for Z/18Z. For each subgroup, list the elements of the corresponding
set. Moreover, circle the elements in each subgroup that individually generate that subgroup.

Problem 1.147. Suppose G is a finite cyclic group of order n and let k be a positive divisor of n. Prove
that there is exactly one subgroup of order k for every positive divisor k of n.

Problem 1.148. Let G be a cyclic group of order n and let k be an integer relatively prime to n. Prove
that the map x - x* is surjective. What if G is an abelian group, not necessarily cyclic, of order n?
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2 Group Homomorphisms

2.1 Isomorphisms

As we have been exploring various groups, I'm sure you’ve noticed that some groups seem to look and
behave the same.

Suppose G is a finite group and consider the group table for G. A coloring for the group table is an
assignment of a unique color to each element of the group. For example, Figure 9 depicts a coloring for
the group table of Vj.

Figure 9: A coloring for the group table of V.

We say that two finite groups have an identical table coloring, if we can arrange the rows and
columns of each table and choose colorings for each table so that the pattern of colors is the same
for both tables. Clearly, this is only possible if the two groups have the same order.

Problem 2.1. Determine whether V, and Light, (see Problem 1.110) have an identical table coloring.

Since a group table encodes all of the information about a group, if two groups have an identical
table coloring, then the two groups have the same exact structure while the elements may have different
names. In particular, if two finite groups G; and G, have an identical table coloring, then

the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.

Let’s try to make this a little more precise. Suppose (Gy,*) and (G,,®) are two finite groups that have
an identical table coloring and let x;,y; € G;. Then these two elements have corresponding elements
in the group table for G,, say x, and y,, respectively. In other words, x; and x, have the same color
while y; and y, have the same color. Since G; is closed under its binary operation *, there exists z; € G,
such that z; = x; *y;. But then there must exist a z, € G, such that z, has the same color as z;. What
must be true of x, ©,? Since the two tables exhibit the same color pattern, it must be the case that
2y = X, Oy,. This is what it means for the product of corresponding elements to yield the corresponding
result. Figure 10 illustrates this phenomenon for group tables.

+ | | 91 | o | | 92 |

Figure 10:

We can describe the identical table matching between G; and G, using a function. Let ¢ : G; — G,
be the one-to-one and onto function that maps elements of G; to their corresponding elements in G,.
Then ¢(x1) = x5, ¢(v1) = 5, and P(z;) = z,. Since z; = x, ®y,, we obtain

Plx1*91) = P(z1) =22 =% O Y2 = P(x1) O P(p1)-
In summary, it must be the case that

d(x1*y1) = P(x1) O P(1)-

We are now prepared to state a formal definition of what it means for two groups to be isomorphic.
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Definition 2.2. Let (Gy,%) and (G,,®) be two groups. Then G; is isomorphic to G,, written G = G,, if
and only if there exists a one-to-one and onto function ¢ : G; — G, such that

P(x+y) = p(x) 0 (). (1)

The function ¢ is referred to as an isomorphism. Equation 1 is often referred to as the homomorphic
property.

Problem 2.3. Consider the groups (R, +) and (R*,-), where R" is the set of positive real numbers. It turns
out that these two groups are isomorphic, but this would be difficult to discover using our previous
techniques because the groups are infinite. Define ¢ : R — R™ via ¢(r) = ¢ (where e is the natural base,
not the identity). Prove that ¢ is an isomorphism.

Problem 2.4. Show that the groups (Z, +) and (2Z, +) are isomorphic.

Perhaps one surprising consequence of the previous problem is that when dealing with infinite
groups, a group may have a proper subgroup that it is isomorphic to. Of course, this never happens
with finite groups.

Problem 2.5. Suppose ¢ : G; — G, is an isomorphism from the group (G, *) to the group (G,,®). Prove
each of the following:

(a) gl =1¢p(g)| for all g€ G.

(b) Gy and G, have the same number of elements of order n for each n € N.
(c) Gi is abelian if and only if G, is abelian.

Problem 2.6. For each pair of groups given below, explain why the groups are not isomorphic to each
other.

(a) Dyand Qg
(b) D4 and Light,

(c) Rand Q (both additive groups)
(d) Z and Q (both additive groups)
(e) R\ {0} and C\ {0} (both multiplicative groups)

Problem 2.7. Prove that any two cyclic groups of the same order are isomorphic. Be sure to handle
both the finite and infinite cases. In the finite case, do you need to worry about your proposed function
being well defined?

It turns out that “isomorphic” (=) determines an equivalence relation on the class of all possible
groups. The next three problems justify that = is reflexive, symmetric, and transitive.

Problem 2.8. Prove that if G is a group, then the identity map from G to G is an isomorphism.

Problem 2.9. Prove that if ¢ : G; — G, is an isomorphism from the group (Gy,*) to the group (G,,0),
then the function ¢! : G, — G, is an isomorphism.

Problem 2.10. Prove that if ¢ : Gy — G, and ¢ : G, — Gj3 are isomorphisms from the groups (Gy,*) to
(G2,0) and (G,,0) to (G3,*), respectively, then the composite function ¢ o ¢ is an isomorphism of G;
and Gj.

In light of the previous problem, we now know that if G is any nonempty collection of groups, then
the relation = is an equivalence relation on G.

Mathematicians love to classify things. In particular, mathematicians want to classify groups. One
can think of this pursuit as a taxonomy of groups. In order to simplify the task, one can classify isomor-
phism classes (i.e., the equivalence classes determined by =) instead of classifying groups individually.
If two groups are isomorphic, then we say that the groups are the same up to isomorphism. If there are
k isomorphism classes of order n, then we say that there are k groups of order n up to isomorphism. A
natural question to ask is: how many groups are there of order n?
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Certainly, there is only one group of order 1 up to isomorphism. It follows from Problems 1.130
and 2.7 that up to isomorphism, there is only one group of order p if p is prime.

It turns out that up to isomorphism, there are two groups of order 4. In particular, every group of
order 4 is isomorphic to Ry if cyclic or isomorphic to Vj if not cyclic. This isn’t too hard to prove by
examining all the possible ways one could fill out a group table for a group of order 4.

How about order 6? We’ve seen four groups of order 6, namely Z/6Z, Rg, D3, and S3. Since Z/6Z and
Rg are both cyclic groups of order 6, these two groups are isomorphic. We know that neither D3 nor S
are cyclic, so neither of these groups below to the same isomorphism class as Rg. Below, we will justify
that D3 = S3. This implies that there are at least two groups up to isomorphism of order 6. But are there
others? It turns out that the answer is no, but why?

We’ve encountered several groups of order 8, namely Dy, Coiny, Qg, Rg, and Light,. Of these, only Dy
and Coin, are isomorphic (see Problem 2.11). Thus, there are at least four groups up to isomorphism
of order 8. Are these the only isomorphism types? It turns out that there are five groups of order 8 up
to isomorphism. We will encounter the fifth isomorphism type later.

You can also utilize Cayley diagrams to determine whether two finite groups are isomorphic. If two
groups G; and G, have generating sets T} and T, such that we can color the edges of the corresponding
Cayley diagrams so that the diagrams are identical up to relabeling of the vertices, then we say that
there is a matching between G; and G, (or more formally, the Cayley diagrams are isomorphic as
directed and colored graphs).

For example, Figure 11 makes it easy to describe a matching between D3 and S3. It’s important to
emphasize that the existence of a matching between two groups depends on our choice of generating
set! If two Cayley diagrams do not look alike, it does not immediately imply that there is not a matching
between the groups since it might be the case that choosing different generating sets for the two groups
leads to a matching. It turns out that two groups G; and G, are isomorphic if and only if there exists
choices of generating sets T} and T, for G; and G,, respectively, such that there is a matching between
the corresponding Cayley diagrams. Do you see why this is true?
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Figure 11: Cayley diagrams for D3 and S3 with generating sets {s,sr} and {sy, s,}, respectively.
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Problem 2.11. Explain why D4 and Coin;, are isomorphic.

Problem 2.12. Determine which of the following groups are isomorphic to each other: S, (-1) in Qs,
R3, R4, V4, Lightz, <l> in Qg, (sr,sr3> in D4, R5, R6' D3, 53, R7, Rg, D4, COinz, Qg, nght3

Problem 2.13. What claims can be made about the subgroup lattices of two groups that are isomorphic?
What claims can be made about the subgroup lattices of two groups that are not isomorphic? What
claims can be made about two groups if their subgroup lattices look nothing alike?

2.2 Homomorphisms

Recall that a group isomorphism is a bijection between two groups that satisfies the homomorphic
property. What if we drop the one-to-one and onto requirements?
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Definition 2.14. Let (Gy,*) and (G,,®) be groups. A function ¢ : G; — G, is a homomorphism if and
only if ¢ satisfies the homomorphic property:

P(x*y) =Pp(x) 0 P(y)

for all x,y € G. At the risk of introducing ambiguity, we will usually omit making explicit reference to
the binary operations and write the homomorphic property as

P(xy) = P(x)P(p).

Group homomorphisms are analogous to linear transformations on vector spaces that one encounters
in linear algebra.

Problem 2.15. Define ¢ : Z/37 — Dj via ¢(k) = r*. Prove that ¢ is a well-defined homomorphism and
then determine whether ¢ is one-to-one or onto. Also, try to draw a picture of the homomorphism in
terms of Cayley diagrams.

There is always at least one homomorphism between two groups.

Problem 2.16. Let G; and G, be groups. Define ¢ : G; — G, via ¢(g) = e, (where e, is the identity of
G,). This function is often referred to as the trivial homomorphism or the 0-map. Prove that ¢ is a
homomorphism.

Problem 2.17. Let G; and G, be groups and suppose ¢ : G; — G, is a homomorphism. Prove each of
the following.

(a) If e; and e; are the identity elements of G; and G, respectively, then ¢(e;) = e;.
(b) Forall g € Gy, we have $(g™!) = [p(g)]".
(c) For all g € Gy and n € Z, we have ¢(g") = ¢(g)".
(d) If H < Gy, then ¢(H) < G,, where
¢(H) :={y € G, | there exists h € H such that ¢(h) = y}.

Note that ¢(H) is the image of H. A special case is when H = G;. Notice that ¢ is onto exactly
when ¢(G1) = Gz.

(e) If ¢ is injective, then Gy = ¢(Gy).
The following theorem is a consequence of Lagrange’s Theorem.

Problem 2.18. Let Gy and G, be groups such that G, is finite and let H < G;. Prove thatif ¢ : G; —» G,
is a homomorphism, then |p(H)| divides |G,|.

The next theorem tells us that under a homomorphism, the order of the image of an element must
divide the order of the pre-image of that element.

Problem 2.19. Let G; and G, be groups and suppose ¢ : G; — G, is a homomorphism. Prove that if
g € Gy such that |g] is finite, then |¢p(g)| divides |g].

Every homomorphism has an important subset of the domain associated with it.

Definition 2.20. Let G; and G, be groups and suppose ¢ : Gy — G, is a homomorphism. The kernel
of ¢ is defined via
ker(¢):={g € G1 | Pp(g) = e2} = ¢~ ({e2))-

The kernel of a homomorphism is analogous to the null space of a linear transformation of vector
spaces.

Problem 2.21. Identify the kernel and image for the homomorphism given in Problem 2.15.
Problem 2.22. What is the kernel of a trivial homomorphism.

Problem 2.23. Let G; and G, be groups and suppose ¢ : G; — G, is a homomorphism. Prove each of
the following.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 28


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

(a) ker(¢) < G;.

(b) Ng, (ker(¢)) = G-

Part (b) of the previous problem says that the kernel of every homomorphism is fixed setwise under
the action of conjugation by every element of G. The next theorem tells us that two elements in the
domain of a group homomorphism map to the same element in the codomain if and only if they are in
the same left (or right) coset of the kernel.

Problem 2.24. Let G; and G, be groups and suppose ¢ : G; — G, is a homomorphism. Prove that
¢(a) = ¢(b) if and only if a € bker(¢).

One consequence of Problem 2.24 is that if the kernel of a homomorphism has order k, then the ho-
momorphism is k-to-1 (since left cosets of ker(¢) always have the same cardinality; see Problem 1.125).
That is, every element in the range has exactly k elements from the domain that map to it. In particular,
each of these collections of k elements corresponds to a left coset of the kernel.

Problem 2.25. Suppose ¢ : Z/20Z — Z/20Z is a group homomorphism such that ker(¢) = {0,5,10,15}.
If $(13) = 8, determine all elements that ¢ maps to 8.

The next result is a special case of Problem 2.24.

Problem 2.26. Let G; and G, be groups and suppose ¢ : G; — G, is a homomorphism. Prove that ¢ is
one-to-one if and only if ker(¢p) = {e;}, where e; is the identity in G;.

Let G; and G, be groups and suppose ¢ : G| — G, is a homomorphism. Given a generating set for Gy,
the homomorphism ¢ is uniquely determined by its action on the generating set for G;. In particular,
if you have a word for a group element written in terms of the generators, just apply the homomorphic
property to the word to find the image of the corresponding group element. However, it is important to
point out that you can’t just map the generators about willy nilly and expect to get a homomorphism.

Problem 2.27. Let ¢ : Qg — Vj be the map satisfying ¢(i) = h and ¢(j) = v. It turns out that ¢ is a
group homomorphism.

(a) Find ¢(1), p(-1), ¢(k), p(~i), p(=j), and ¢p(=k).

(b) Find ker(¢).

(c) Draw a picture of this homomorphism in terms of Cayley diagrams?
)

(d) There is a natural bijection from the collection of left cosets of ker(¢) to the image of ¢. Describe
this map.

The next four problems will be a good test of our current understanding.

Problem 2.28. Let G be a group. Prove that the map ¢ : G — G defined via ¢(g) = g* is a group
homomorphism if and only if G is abelian.

Problem 2.29. Find a non-trivial homomorphism from Z/10Z to Z/6Z.
Problem 2.30. Find all non-trivial homomorphisms from Z/3Z to Z/6Z.

Problem 2.31. Prove that the only homomorphism from Dj; to Z/3Z is the trivial homomorphism.

3 Automorphisms

Recall that two groups G; and G, are isomorphic if there exists a bijection ¢ : G; — G, that satisfies the
homomorphic property. In Problem 2.8, we learned that a group G is isomorphic to itself by using the
identity map. However, it is possible that there are additional isomorphisms from a group to itself.

Definition 3.1. Let G be a group. If ¢ : G — G is an isomorphism, then we say that ¢ is an automor-
phism of G. The collection of all automorphisms of G is denoted by Aut(G).

By Problem 2.8, we know that Aut(G) is always nonempty.
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Problem 3.2. Prove that for each k € Q\ {0}, the map ¢} : Q — Q defined via ¢¢(q) = kq is an automor-
phism of Q.

Problem 3.3. Let G be an abelian group and let k € Z.
(a) Prove the map ¢y : G — G defined via ¢y (g) = gk is a homomorphism.
(b) Prove that if k = —1, the homomorphism ¢y is actually an automorphism of G.
(c) Are there other situations under which ¢, will be an automorphism?

Problem 3.4. Let G be a group. Prove that Aut(G) is a group under function composition. We call
Aut(G) the automorphism group of G.

Suppose G is a group and let g € G. Define ¢ : G — G via ¢g(x) = gxg~'. The map ¢g is called
conjugation by g.

Problem 3.5. Prove that if G is a group and g € G, then conjugation by g is an automorphism of G.
Problem 3.6. Prove that if H is any subgroup of G and g € G, then H = gHg™!.

Problem 3.5 tells us that conjugation by any element in G is always an element of Aut(G). Let Inn(G)
denote the subset of Aut(G) consisting of all automorphisms of G that are equal to conjugation by g for
some g € G. Each conjugation is sometimes called an inner automorphism of G, which is where the
notation Inn(G) comes from.

Problem 3.7. Prove that Inn(G) is a subgroup of Aut(G).
Problem 3.8. Explain why G is abelian if and only if Inn(G) is trivial.
Problem 3.9. Prove one of the following.

(a) Inn(Qs) =V,

(b) Inn(Dy) = V4

Problem 3.10. Let G be a finite group and let o € Aut(G) such that o(g) = g if and only if g =e (i.e., the
identity is the only element fixed by o). Prove that if o2 is the identity map from G to G, then G must
be abelian. Hint: Show that every element in G is of the form x~!o(x) and apply o.

In preparation for the next problem, define U,, := {(k € Z/nZ| gcd(n, k) = 1}. The set is also sometimes
denoted by (Z/nZ)*. For example, U;, = {1,5,7,11}. Tt turns out that the set U, is an abelian group
under multiplication mod n. We will take this fact for granted. Notice that the order of U, is the
number of elements from {1,2...,n—1} that are relatively prime to n. That is, |U,| is the value of Euler’s

¢-function at n.

Problem 3.11. Let G be a cyclic group of order n. For each k € Z, define oy : G — G via oy (x) = xk for
all x e G.

(a) Prove that oy is an automorphism of G if and only if n and k are relatively prime.
(b) Prove that oy = 0,, if and only if k = m (mod n).

(c) Prove that every automorphism of G is equal to oy for some k € Z.
(d) Prove that oy o 6, = oy,

(e) Deduce that Aut(G) is isomorphic to U,,.

Problem 3.12. Prove that Npy(c)(Inn(G)) = Aut(G).

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 30


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

4 Symmetric Groups

Recall the groups S, and S; are the groups that act on two and three coins, respectively, that are in a row
by rearranging their positions (but not flipping them over). These groups are examples of symmetric
groups.

Recall that a permutation of a set A is a bijective function 0 : A — A. In the special case that
A=1{1,2,...,n}, we let S,, denote the collection of all permutations on {1,2,...,n}. We can turn S, into a
group by using composition of permutations. In this case, we call S, the symmetric group on n objects.

Problem 4.1. Prove that (S, o) is a group such that |S,| = n!.

There are several compact and efficient notations for describing permutations in S,. For our pur-
poses, it will be handy for us to describe permutations using cycle notation. The cycle (aj,4,,...,4a,,) is
the permutation that sends a; to a;,1 for 1 <i < m -1 and sends a,, to a;. In general, for each 0 € §,,,
the numbers 1 through n will be rearranged and grouped into k cycles of the form

(a1,a2, s A )@y 15 Gy 12+ ny) (Ao 410 G425+ Ay)

from which the action of o on any number from 1 to # can easily be determined. In particular, for any
ie{l,2,...,n}, locate i in the expression above. Then o (i) is the next number in the corresponding cycle
that is cyclicly to the right (i.e., if i is not at the right end of a cycle, o(i) is the next number to the right,
while if i is at the right end of a cycle, o(7) is the number at the left end of the same cycle. The product
of all the cycles is called the cycle decomposition of ¢.

Notice that we can start writing a cycle with any of the numbers appearing in the cycle. What matters
is that each number in the cycle is followed by the appropriate number. For example, (1,3,2) =(3,2,1) =
(2,1,3). The length of a cycle is the number of entries appearing in it. If a cycle has length m, then it is
called an m-cycle. Two cycles are said to be disjoint if they have no entries in common.

Example 4.2. Consider o = (1,12,8,10,4)(2,13)(3)(5,11,7)(6,9) in S;3. This cycle decomposition for
o consists of five pairwise disjoint cycles: a 5-cycle, a 2-cycle, a 1-cycle, a 3-cycle, and another 2-
cycle. For convenience, it is common to omit any 1-cycles in the decomposition. So, we may also write
0 =1(1,12,8,10,4)(2,13)(5,11,7)(6,9), keeping in mind that the absence of a number means that the
permutation maps that number to itself.

Example 4.3. The cycle decomposition of the identity permutation in S, is (1)(2)---(n). It is common
to simply write this as (1), again keeping in mind that the the absence of a number means that the
permutation maps that number to itself. One disadvantage to this approach is that we lose information
about what # is.

Problem 4.4. Suppose o € Sg is defined by
0(1)=3,0(2)=4,0(3)=1,0(4)=9,0(5)=8,0(6)=2,0(7)=5,0(8)=7,0(9)=6.
Find the cycle decomposition of ¢. What are the lengths of the corresponding cycles?

Problem 4.5. Given in o € S,,, how do we obtain the cycle decomposition of 0~! from the cycle decom-
position for o?

Computing products in S, is straightforward as long as you keep in mind that when computing 0ot
in §,,, we applty the permutations from right to left while reading each cycle from left to right!

Example 4.6. Let 0 =(1,2)(3,4),7 =(1,2,3) € S4. To compute o o 7, a natural place to start is by asking
where 1 gets sent. Since 7(1) = 2 while 0(2) = 1, it must be the case that

cot(l)=o(r(1) = 0(2) = 1.

So, 0 o T maps 1 to itself, which implies that (1) is one cycle in the cycle decomposition of o o 7. At
this point, we need to start constructing a new cycle. We can consider any value that we have not yet
utilized to start a new cycle. Since 2 is the smallest number have not yet used, let’s start there. We see
that

cot(2)=0(7(2))=0(3) =4

Since we are attempting to construct a cycle, we should now consider where o o T maps 4. We see that

ogot(4)=0(t(4))=0(4) =3.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 31


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

And finally, we see that

cot(3)=0(7(3))=0(1)=2.

We can conclude that (2,4, 3) is another cycle in the cycle decomposition for o o 7. Since all numbers
have been accounted for, we obtain 0 ot = (1)(2,4,3) = (2,4,3). As expected, the order in which we
compose often matters. In this case, we get To o = (1, 3,4) # 0 o T, which shows that S, is not abelian.

From this moment forward, we will suppress o and simply write products of permutations using
juxtaposition. Just keep in mind that we are always composing from right to left!

Problem 4.7. Let @ =(1,2,3,4,5), p =(2,4,3), 0 = (1,3)(2,5,4), and y = (1,5) be permutations in Ss.
Compute the cycle decomposition for each of the following:

(a) ay (g) a”lo™!
(b) a? (h) B*

(0) a® (i) p°

(d) a* () Bra
(e) a® (k) o3

(f) oa 1) o3

Problem 4.8. Prove that for n > 3, S, is non-abelian.

Despite the fact that S, is non-abelian for n > 3, there are still situations in which permutations
commute.

Problem 4.9. Explain why the product of disjoint cycles commute. Is this the only time permutations
commute?

Problem 4.10.
Problem 4.11.
Problem 4.12.

Problem 4.13.
lo] = k.

Problem 4.14.

What orders occur for permutations in S4?
What is the order of (1,4,7)?
What is the order of (1,4,7)(2,5)(3,6,8,9)?

Prove that if 0 € S, such that o consists of a single k-cycle (ignoring any 1-cycles), then

Suppose o € S, such that o consists of m disjoint cycles of lengths ky,...,k,,. Prove that

lo| =lem(ky,..., k).

Problem 4.15. Is the previous theorem true if we do not require the cycles to be disjoint? Justify your
answer.

Problem 4.16. Consider the k-cycle 0 = (1,2,...
relatively prime to k.

,k). Prove that o' is also a k-cycle if and only if i is

Problem 4.17. Recall that there are 4! = 24 permutations in Sy.

(a) Pick any 12 permutations from S; and verify that you can write them as words in the 2-cycles
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). In most circumstances, your words will not consist of products
of disjoint 2-cycles. For example, the permutation (1,2,3) can be decomposed into (1,2)(2,3),
which is a word consisting of two 2-cycles that happen to not be disjoint.

(b) Using your same 12 permutations, verify that you can write them as words only in the 2-cycles
(1,2),(2,3),(3,4).

By the way, it might take some trial and error to come up with a way to do this. Moreover, there is more
than one way to do it.
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As the previous exercises hinted at, the 2-cycles play a special role in the symmetric groups. In
fact, they have a special name. A transposition is a single cycle of length 2. In the special case that
the transposition is of the form (i,i + 1), we call it an adjacent transposition. For example, (3,7) is a
(non-adjacent) transposition while (6,7) is an adjacent transposition.

It turns out that the set of transpositions in S,, is a generating set for S,,. In fact, the adjacent transpo-
sitions form an even smaller generating set for S,,. To get some intuition, let’s play with a few examples.

Problem 4.18. Try to write each of the following permutations as a product of transpositions. You do
not necessarily need to use adjacent transpositions.

(a) (3,1,5)

(b) (2,4,6,8)

(c) (3,1,5)(2,4,6,8)
(d) (1,6)(2,5,3)

The products you found in the previous exercise are called transposition representations of the
given permutation.

Problem 4.19. Consider the arbitrary k-cycle (a,4ay,...,a;) from S, (with k < n). Find a way to write
this permutation as a product of 2-cycles.

Problem 4.20. Consider the arbitrary 2-cycle (i, j) from S,, with i < j. Find a way to write this permu-
tation as a product of adjacent 2-cycles.

The previous two problems imply the following result.
Problem 4.21. Consider S,,.
(a) Explain why every permutation in S, can be written as a product of transpositions.
(b) Explain why every permutation in S,, can be written as a product of adjacent transpositions.

Problem 4.22. Explain why the set of transpositions (respectively, the set of adjacent transpositions)
from S, forms a generating set for S,,.

It is important to point out that a transposition representation of a permutation is not unique. That
is, there are many words in the transpositions that will equal the same permutation. However, as we
shall see in the next section, given two transposition representations for the same permutation, the
number of transpositions will have the same parity (i.e., even versus odd).

Problem 4.23. Prove that the transpositions (1, 2),(1, 3),...,(1, n) generate S,,.
Problem 4.24. Prove that for n > 3, Z(S,,) is trivial.

Problem 4.25. Find a subgroup of S, that is isomorphic to Dy.

Problem 4.26. Explain why there is not a subgroup of S, that is isomorphic to Rg.
Problem 4.27. Explain why there is not a subgroup of S, that is isomorphic to Qg.
Problem 4.28. Find a subgroup of S¢ that is isomorphic to Rg.

Problem 4.29. It turns out that
S4=((1,2),(2,3),(3,4)) =((1,2),(1,3),(1,4)) =((1,2,3,4),(1,2)).

Determine which of the generating sets listed above yield each of the Cayley diagrams given below.
Label the vertices in each diagram with permutations (written in cycle notation as a product of disjoint
cycles) of Sy. Fun Facts: The top right graph is called the Nauru graph, the bottom graph is drawn on
the permutahedron (which is a truncated octahedron).
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Determine what generating sets will yield these Cayley diagrams. Then label the nodes with permuta-
tions in cycle notation, written as a product of disjoint cycles.
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5 Alternating Groups

In this section, we describe a special subgroup of S,,. To get started, let’s play with a few examples.

Problem 5.1. Write down every permutation in Sz as a product of 2-cycles in the most efficient way you
can find (i.e., use the fewest possible transpositions). Now, write every permutation in S; as a product of
adjacent 2-cycles, but don’t worry about whether your decompositions are efficient. Any observations
about the number of transpositions you used in each case? Think about even versus odd.

We include the proof of the following lemma.

Lemma 5.2. If ay,a,,...,a; is a collection of 2-cycles in S,, such that aja;---a; = (1), then k must be
even.

Proof. Suppose a1, a,,...,a is a collection of 2-cycles in S, such that aja;---ax = (1). We need to show
that k is even. We proceed by strong induction. First, it is clear that the statement is not true when
k =1, but is true when k = 2.

Now, assume that k > 2 and if j < k — 1 and we have a product of j 2-cycles that equals the identity,
then j is even. Consider a;a;. The only possibilities are:

If case (i) happens, then
(1) =aray--ay=azayay.

Since the expression on the right consists of k—2 factors, k—2 must be even by induction, which implies
that k is even. Now, suppose we are in one of cases (ii), (iii), or (iv). Observe that:

(ii) (a,b)(a,c) = (b,c)(a,b),
(iii) (a,b)(c,d) = (c,d)(a,b),
(iv) (a,b)(b,c) = (b,c)(a,c).

In each case, we were able to move a from the original left 2-cycle to a new right 2-cycle. That is, we
were able to rewrite a; a, so that a does not appear in the left 2-cycle. Systematically repeat this process
for the pairs aya3, aszay,..., ag_jag. If we ever encounter case (i) along the way, then we are done by
induction. Otherwise, we are able to rewrite aqa;--- aj so that a only appears in the rightmost 2-cycle.
But this implies that aja;---a; does not fix a, which contradicts aya,---a; = (1). This implies that at
some point we must encounter case (i), and hence k is even by induction. O

Use the previous lemma to prove the following result.
Problem 5.3. Prove that if o € S, then every transposition representation of ¢ has the same parity.
The previous theorem tells us that the following definition is well-defined.

Definition 5.4. A permutation is even (respectively, odd) if one of its transposition representations
consists of an even (respectively, odd) number of transpositions.

Problem 5.5. Classify all of the permutations in S4 as even or odd.
Problem 5.6. Determine whether (1,4, 2,3,5) is even or odd. How about (1,4,2,3,5)(7,9)?

Problem 5.7. Consider the arbitrary k-cycle (ay,45,...,a;) from S,, (with k < n). When will this cycle be
an odd versus even permutation? Briefly justify your answer.

Problem 5.8. Conjecture a statement about when a permutation will be an even versus odd permuta-
tion. Briefly justify your answer.

And finally, we are ready to introduce the alternating groups.
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Definition 5.9. The set of all even permutations in S, is denoted by A, and is called the alternating
group.

Since we referred to A,, as a group, it darn well better be a group!

Problem 5.10. Prove that A, is a subgroup of S, with order n!/2. Hint: To show that |A,| = n!/2, prove
that the number of even permutations in S, is the same as the number of odd permutations in S,,. Here
is one way to accomplish this. Define f : A, — S, \ A,, via f(0) = (1,2)o. Note that S, \ A, is the set of
odd permutations in S,,. Show that f is a bijection.

Problem 5.11. Find A3. What group is A3 isomorphic to?

Problem 5.12. Prove that the subgroup of A, generated by any element of order 2 and any element of
order 3 is all of Ay.

Problem 5.13. Find the subgroup lattice for A. Is A4 abelian?

Problem 5.14. Prove that A,, is non-abelian for n > 3.

Problem 5.15. What is the order of A5? Is A5 abelian?

Problem 5.16. What orders of elements occur in Sq and Ag? What about S; and A;?

Problem 5.17. Does Ag contain an element of order 15? If so, find one. If not, explain why no such
element exists.

Problem 5.18. Identify the even permutations in the Cayley diagrams for S, given in Problems 4.29
and 4.30. Notice any nice patterns?

Problem 5.19. Two Cayley diagrams for A, are shown below.

Determine what generating sets will yield these Cayley diagrams. Then label the nodes with permuta-
tions in cycle notation, written as a product of disjoint cycles.
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6 Products of Groups
Suppose (G,*) and (H, o) are groups. Recall that the Cartesian product of G and H is defined to be
GxH={(g,h)|ge€ G heH}

Define « on G x H via (g1, hy)* (g2, h2) = (g1 * g2, h1 o hp). This looks fancier than it is. We’re just doing
the operation of each group in the appropriate component.

Problem 6.1. Prove that if G and H are groups, then G x H is a group under the operation described
above, where:

(i) If eg and ey are the identity elements of G and H, respectively, then (eg, ey) is the identity element
in Gx H.

(ii) If (¢,h) € G x H, then (g,h)™' = (g~',h~1).

We refer to G x H as the direct product of the groups G and H. In this case, each of G and H is called
a factor of the direct product. We often abbreviate (g1, 1) % (g2, h2) = (81 * g2, h1 ©hy) by (g1, h1)(g2, 1) =
(2182, 11 h). One exception to this is if we are using the operation of addition in each component.
For example, consider Z/4Z x Z/27Z under the operation of addition mod 4 in the first component and
addition mod 2 in the second component. Then

7/47.x 7/27 = {(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(3,1)}.
In this case, we will use additive notation in Z/47Z x Z/27Z. For example, in Z/47Z x Z/27Z we have
(2,1)+(3,1)=(1,0).

l\i[o_reove_r, _the identity of the group is (6,6). As an example, the inverse of (I,I) is_ (_§,T) sincg (T,T) +
(3,1) =(0,0). There is a very natural generating set for Z/4Z xZ/27, namely, {(1,0),(0,1)} since 1 € Z/4Z
and 1 € Z/27Z generate Z/4Z and 7Z/2Z, respectively. The corresponding Cayley diagram is given in
Figure 12.

Figure 12: Cayley diagram for Z/47 x 7,/27 with generating set {(1,0),(0, 1)}

Problem 6.2. Consider the group Z/47Z x Z/2Z. s this group abelian? Is the group cyclic? Determine
whether Z/47 x Z/27Z is isomorphic to any of Dy, Qg, Rg, or Light,.

The upshot of the previous problem is that there are at least five groups of order 8 up to isomorphism.
It turns out that there are exactly five groups of order 8 up to isomorphism. In particular, every group
of order 8 is isomorphic to one of the following groups:

(b) Z/AZ x7/27,
(c) Light,,
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(d) D4 =Coin,, and
(e) Qs.

Three of the isomorphism classes correspond to abelian groups while the other two correspond to non-
abelian groups. Unfortunately, we will not develop the tools necessary to prove that this classification
is complete.

Problem 6.3. For each of the following groups, find a generating set and then construct a Cayley dia-
gram using your generating set.

(a) Z/2Zx7./27Z
(b) Z/2Zx Z/2Z x 7/ 27
(c) Z/37Z.x7/27
Problem 6.4. Prove that Z/27 x Z/27 = Light, = V,.
Problem 6.5. Prove that Z/27 x Z/27 x 7./ 27 = Light.
Problem 6.6. Prove that Z/37Z x Z/27Z = Rg.
The next two theorems should not be terribly surprising.
Problem 6.7. Prove that if G; and G, are groups, then G X G, = G, x G.

Problem 6.8. Suppose G; and G, are groups with identities e; and e;, respectively. Prove that {e; }xG, =
G2 and Gl X {62} = Gl'

There’s no reason we can’t take the direct product of more than two groups. Recall thatif A}, A,,..., A,
is a collection of sets, we define

n
I_IAZ- = A; xAsx - XA,
i=1

Each element of [/ A; is of the form (ay,ay,...,a,), where a; € A;.

Problem 6.9. Let G, G,,..., G, be groups. For (ay,ay,...,a,),(by, by,...,b,) €[], G;, define
(ﬂl,az,...,ﬂn)(bl,bz,...,bn) = (dl bl,ﬂzbz,...,anbn).

Prove that ]_[;-1:1 G;, the direct product of Gy,..., G,, is a group under this binary operation.

One way to think about direct products is that we can navigate the product by navigating each factor
simultaneously but independently. Computing the order of a group that is a direct product is straight-
forward.

Problem 6.10. Let Gy, G,,..., G, be groups. Prove that |G x G, x---x G, is infinite if and only if at least
one |G;| is infinite. Moreover, if each G; is finite, then

1G1 X Gy x -+ x Gy| = |G|+ |G|+ |Gyl.
The following theorem should be clear.
Problem 6.11. Let Gy, G,,..., G, be groups. Prove that []"_; G; is abelian if and only if each G; is abelian.
The next theorem tells us how to compute the order of an element in a direct product of groups.

Problem 6.12. Suppose Gy,G,,...,G, are groups and let (g1,8,...,8,) € [ /-, G;. Prove that if each |g|
is finite, then |(g1, g2,-.., )| = lem(lg1 ], |22 - -, 1€a])-

Problem 6.13. Find the order of each of the following elements.
(a) (6,5) € Z/127Z x 7/ 7.
(b) (T’,i) [S D3 X Qg.

(c) ((1,2)(3,4),3) € Sy x Z/15Z.
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Problem 6.14. Find the largest possible order of elements in each of the following groups.
(a) Z/6ZxZ/8Z
(b) Z/9Z xZ/12Z
(c) Z/AZ < Z/18Z x Z/15Z
Problem 6.15. Prove that the group Z/mZ x Z/nZ is cyclic if and only if m and n are relatively prime.

Problem 6.16. Prove that the group Z/mZ x Z/nZ is isomorphic to Z/mnZ if and only if m and n are
relatively prime.

The previous results can be extended to more than two factors.

Problem 6.17. Prove that the group [}, Z/m;Z is cyclic and isomorphic to Z/mym,---m,Z if and only
if every pair from the collection {my,m,,...,m,} is relatively prime.

Problem 6.18. Determine whether each of the following groups is cyclic.
(a) Z7 xZg
(b) Z; x7Z5
(¢) Zp X7y xZg
(d) ZsxZy;xZg
Problem 6.19. Suppose n = p;” pgz ---py", where each p; is a distinct prime number. Prove that
ZInT =T /p ' TLx T/ps* L x -+ x T/p;" L.
The next theorem tells us that the direct product of subgroups is always a subgroup.

Problem 6.20. Suppose G; and G, are groups such that H; < G; and H, < G,. Prove that Hy x H, <
Gl X Gz.

However, not every subgroup of a direct product has the form above.

Problem 6.21. Find an example that illustrates that not every subgroup of a direct product is the direct
product of subgroups of the factors.

The next theorem describes precisely the structure of finite abelian groups. We will omit its proof,
but allow ourselves to utilize it as needed.

Theorem 6.22 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely generated
abelian group G is isomorphic to a direct product of cyclic groups of the form

k
Zp;q Xvazlz ><~~~><Zprnr x 7.,

where each p; is a prime number (not necessarily distinct). The product is unique up to rearrangement
of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group is finite if and
only if the Betti number is 0.

Problem 6.23. Use the previous theorem to find all abelian groups up to isomorphism of order 8.

Problem 6.24. Find all abelian groups up to isomorphism for each of the following orders.
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7 Introduction to Quotient Groups

Under some special circumstances, we can “fold up” a group “along a subgroup” to form a new group.
These groups are called quotient groups. It turns out that studying quotient groups is equivalent to
studying homomorphisms.

Suppose ¢ : G — H is a group homomorphism from a group G to a group H. By Problem 2.23, ker(¢)
is subgroup of G consisting of all elements in G that map to the identity in H. Moreover, we know that
the left cosets of ker(¢) partition G in such away that all of the left cosets have the same cardinality
according to Problem 1.125.

Problem 7.1. Suppose ¢ : G — H is a group homomorphism from a group G to a group H. Use Prob-
lem 2.24 to explain why for each g € G, there exists h € H such that gker(¢) = ¢~!({h}). In particular,
ker(¢) = ¢~ ({err}), where ey is the identity in H.

The preimage ¢~!({h}) is often referred to as the fiber of h under ¢. For simplicity, it is common to
abbreviate ¢~ ({h}) by ¢! (h), but some care is needed here since we are not assuming that the inverse
function of ¢ exists. Problem 7.1 says that each left coset of ker(¢) is a fiber of some element in G (and
vice versa). Figure 13 provides a visual representation of Problem 7.1 in the case when ¢ is surjective
and H is finite.

¢

T

G H

¢~ (en) = ker(¢h) O

(1) = g2 ker(9) O O -

&

¢ () = guker(e) |(O) @) O -

()

Figure 13: Left cosets of ker(¢) correspond to fibers of ¢.

Figure 13 suggests that the fibers of ¢ have a group structure inherited from the group structure of
the image of ¢:
¢~ (W) (h) = ¢ (hh).

Our current goal is to formalize this idea.

Problem 7.2. Draw a figure that captures the spirit of Problem 7.1 in terms of Cayley diagrams for the
homomorphism given in Problem 2.27.

Problem 7.3. Define ¢ : Z — Z/4AZ via ¢ (k) = k. Draw a figure that captures the spirit of Problem 7.1
in terms of Cayley diagrams for the homomorphism ¢.

Example 7.4. Since Qg is finite, we can also visually represent the phenomenon in Problem 7.2 by
cleverly rearranging the rows and columns of the group table for Qg. In particular, if we organize
the rows and columns of the group table for Qg according to the left cosets determined by the kernel
of the homomorphism (i.e., the fibers of ¢) in Problem 2.27, we obtain the nice visualization of the
homomorphism ¢ that is given in Figure 14. As expected, this table suggests that there is a group
structure on the fibers of ¢. If we consider the 2 x 2 blocks as elements, it appears that we have a group
table for a group with 4 elements.
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Figure 14: Visual representation of a homomorphism from Qg to V, in terms of group tables.

Closer inspection reveals that this looks just like the group table for V. Figure 14 suggests that we
have two ways of understanding the underlying binary operation on the collection of 2 x 2 blocks (i.e.,
fibers of ¢):

1. First map the fibers to their corresponding image in V,, multiply in V,, and then determine the
fiber of the corresponding product.

2. Multiply representatives of the corresponding left cosets and then determine which left coset the
resulting product is contained in.

For example, the table suggests that the fiber jker(¢) = {+j} times the fiber iker(¢) = {+i} is equal to
kker(¢) = {+k} despite the fact that ji = —k = k. Yet, it is true that the product ji = —k is an element in the
fiber kker(¢). If we pick any two fibers, the product of any element of the first fiber times any element
of the second fiber will always result in an element in the same fiber regardless of which representatives
we chose.

Definition 7.5. Suppose ¢ : G — H is a group homomorphism from a group G to a group H. Define
the quotient group (or factor group) G/ker(¢) (pronounced “G/ker(¢)” as “G mod the kernel of ¢”) to
be the group whose elements are the fibers of ¢ (i.e., left cosets of ker(¢)) with group operation defined
as follows: if X}, is the fiber of h € ¢(G) and X, is the fiber of i’ € H, then the product of X, and X, is
the fiber of hh’ € ¢p(G). That is,

XnXp = Xnw

or equivalently, we can write
¢~ (T (1) = 7 (hh').

Problem 7.6. Suppose ¢ : G — H is a group homomorphism from a group G to a group H. Prove
that G/ker(¢) is a group under the binary operation described in Definition 7.5, where the identity of
G/ker(¢) is ker(¢p).

The definition of G/ker(¢) explicitly requires the map ¢ since the multiplication of fibers is per-
formed by first mapping the fibers to H via ¢, multiplying in H, and then determining the fiber of the
corresponding product. However, since each fiber corresponds to a unique left coset, we hope that we
can multiply fibers by simply multiplying representatives of the corresponding left cosets. Let’s verify
that this process is well defined and behaves as expected.

Definition 7.7. Let G be a group and let K < G. Define G/K (read “G mod K”) to be the collection of
left cosets of K in G.

Notice that we did not say that G/K was a group! The following theorem provides sufficient condi-
tions under which G/K will be a group.

Problem 7.8. Let G be a group and let K be the kernel of some homomorphism from G to another
group. Prove that G/K is a group under the operation given by

g1Ko K = (g192)K.

In particular, this operation is well defined in the sense that if a € g1 K and b € g,K, then ab € (g19,)K,
so that multiplication does not depend on the choice of representatives for the cosets.
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The upshot of the previous problem is that if we are given a subgroup K of a group G that we
know is the kernel of some homomorphism, we may define the quotient group G/K without needing to
explicitly appeal to the corresponding homomorphism. Later in this chapter, we address the question
of whether G/K forms a group for any subgroup K. It turns out that the answer is no, in general. We
shall see that the cosets of K form a group if and only if K is the kernel of some homomorphism (and
there are subgroups for which this is not true).

Problem 7.9. Let G be a group and let K be the kernel of some homomorphism from G to another
group. Prove that for each ¢gK € G/K, (¢K)™! = ¢7'K.

Let’s tinker with a few examples of quotient groups that arise from homomorphisms.

Problem 7.10. Define ¢ : R\{0} — {+1} via ¢(x) = % Note that {+1} is a group of order 2 under ordinary
multiplication.

(a) Prove that ¢ is a surjective homomorphism.

(b) Determine ker(¢).

(c) Describe the fibers of ¢.

(d) What is the isomorphism type of (R \ {0})/ker(¢)?
Problem 7.11. For n > 2, define ¢ : S, — Z/2Z via

0, o even
Plo) = {T, o odd.

Prove that ¢ is a surjective homomorphism and then describe the isomorphism type of S, /ker(¢).
Problem 7.12. Define 7 : R? — R via 7t((x,v)) = x.
(a) Prove that 7 is a surjective homomorphism.
(b) Determine ker(rmt) and describe this set geometrically.
(c) Describe the fibers of 7 geometrically.
(d) Any guesses for the isomorphism type of R?/ker(r)?
Problem 7.13. Define ¢ : R? — R via ¢((x,7)) = x + .
(a) Prove that ¢ is a surjective homomorphism.
(b) Determine ker(¢) and describe this set geometrically.
(c) Describe the fibers of ¢ geometrically.
(d) Any guesses for the isomorphism type of R?/ker(¢)?
Problem 7.14. Define ¢ : Z/87Z — 7Z/4Z via ¢(a) = a.
(a) Prove that ¢ is a well-defined homomorphism.
(b) Prove that ¢ is surjective.
(c) Determine ker(¢).
(d) Describe the fibers of ¢.
(e) Determine whether (Z/87Z)/ker(¢p) is cyclic. Is (Z/87Z)/ker(¢) isomorphic to Ry or V,?

Problem 7.15. Suppose G and H are groups and define ¢ : G — H via ¢(g) = ey, where ey is the
identity in H. Prove that G/ker(¢) is a trivial group.

Problem 7.16. Suppose ¢ : G — H is an injective homomorphism. Prove that G/ker(¢) = G.
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At this point, you might be thinking there is something special about “left” versus “right” cosets of
the kernel. Let’s take a moment to convince ourselves that this is not true.

Problem 7.17. Suppose ¢ : G — H is a group homomorphism from a group G to a group H. Prove that
for all g € G, we have gker(¢) = ker(¢)g. That is, the left and right cosets of the kernel are identical.

The previous problem tells us that it does not matter whether we consider left or right cosets of the
kernel as they are always the same.

We now turn our attention to the question of whether we can define the quotient group G/H for any
subgroup H of G. Recall that in our approach to Problem 7.8, we utilized the fact that gker(¢)g™! =
ker(¢) (which is a consequence of Problem 2.23). This should help you make connections when tackling
the next result.

Problem 7.18. Let G be a group and let H < G. Prove that the binary operation on the set of left cosets
of H in G given by
SiHogH = (218:)H

is well defined if and only if ghg™! € H for all g € G and all h € H.

If the operation given in the previous problem is well defined, it is easy to verify that G/H is a group
under this binary operation. In particular, associativity in G/H follows from associativity in G, the
identity in G/H is the left coset eH = H, and the inverse of gH is g1 H.

The subgroups that satisfy the criterion in Problem 7.18 are given a special name.

Definition 7.19. A subgroup N of G is called normal if every element of G normalizes N, i.e., gNg~! =
N for all g€ G. If N is a normal subgroup of G, then we write N < G.

Problem 7.20. Let N be a subgroup of the group G. Prove that the following are equivalent.
(a) N<G.
(b) Ng(N)=0G.
(c) gN=Ngforall geG.

(d) The operation on left cosets of N in G described in Problem 7.18 makes the set of left cosets into
a group.

(e) gNg" ! C N forall geG.
Problem 7.21. Suppose N < G. Prove that (gN)" = ¢"N for all g€ G and n € Z.

Problem 7.22. If G is a group, prove that {e} <G and G < G. Explain why G/{e} = G and G/G is the
trivial group.

Problem 7.23. Consider the group Qs.

(a) Prove that every subgroup of Qg is normal.

(b) For each subgroup, identify the isomorphism type of the corresponding quotient.
Problem 7.24. Consider the group Dj.

(a) Prove that (r) < Dj.

(b) What is the isomorphism type of D3/(r)?

(c) Prove that (s) is not a normal subgroup of Ds.

(d) Let H =(s). Find specific examples of a,b,¢,d € D3 such that

(aH)(bH) # (cH)(dH)

even though aH = cH and bH = dH. This is an example of left coset multiplication not being well
defined!

Problem 7.25. Consider the group Dy.
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(a) Find all normal subgroups of Djy.
(b) For each normal subgroup, identify the isomorphism type of the corresponding quotient.
(c) Identify a subgroup of Dy that is not normal in Dj.
Problem 7.26. Let G be an abelian group.
(a) Explain why every subgroup of G is normal in G.
(b) Prove that G/H is abelian for every H < G.
Problem 7.27. Let G be a cyclic group.
(a) Explain why every subgroup of G is normal in G.
(b) Prove that G/H is cyclic for every H < G.

Problem 7.28. Provide an example of a nonabelian group G and a normal subgroup N of G such that
G/N is abelian.

Problem 7.29. Provide an example of a noncyclic group G and a normal subgroup N of G such that
G/N is cyclic.

Problem 7.30. Let N < G. Define t: G — G/N via w(g) = gN. Prove that 7 is a surjective homomor-
phism with ker(rr) = N.

The homomorphism in the previous problem is called the natural projection of G onto G/N.
We now prove that normal subgroups are precisely the kernels of homomorphisms.

Problem 7.31. Prove that a subgroup N of G is normal if and only if N is the kernel of some homomor-
phism.

Here’s the big picture of what we have discovered so far. Given a homomorphism ¢ : G — H, multi-
plication of fibers turns G/ker(¢) into a group. The binary operation on left cosets via representatives
is a well-defined binary operation and agrees with the binary operation on fibers. Moreover, ker(¢) is
normal in G since Ng(ker(¢)) = G. On the other hand, if N is a subgroup of G, then the binary operation
on left cosets of N is well defined if and only if N is a normal subgroup of G. That is, G/N is a group
(under standard left coset multiplication) if and only if N is a normal subgroup of G. However, N is a
normal subgroup of G if and only if N is the kernel of some homomorphism.

We will close out this chapter by exploring the order of elements in quotient groups.

Problem 7.32. Suppose N <G and let ¢N € G/N have finite order k. Prove that k is the smallest positive
integer such that ¢k e N.

Problem 7.33. Give an example to show that the order of gN in G/N might be strictly smaller than the
order of gin G.

Problem 7.34. Find the order of the given element in the quotient group. You may assume that we are
taking the quotient by a normal subgroup.

(a) s(r) € Da/{r)

(b) j{-1) € Qs/(-1)

(c) 5+(4) € Z12/(4)

(d) (21)+{(1,1)) € (Z3 x Zg)/(1, 1))
(e) (1,3)+((0,2)) € (Z4 x Zg)/((0,2))

Problem 7.35. For each quotient group below, describe the group. If possible, state what group each is
isomorphic to. You may assume that we are taking the quotient by a normal subgroup.

(@) Va/(h)
(b) A4/((1,2)(3,4),(1,3)(2,4))
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() (ZyxZ)/(1,1))
(d) (Zg x Zo)/({0} x Zy)
Problem 7.36. Consider the quotient group (Z4 x Z)/{(0,1)).
(a) What is the order of (Z4 x Zg)/{(0,1))?
(b) Is the group abelian? Why?
(c) Write down all the elements of (Z4 x Zg)/{(0,1)).
(d) Does one of the elements generate the group?
(e) What well-known group is (Z4 x Z)/{(0,1)) isomorphic to?
Here are few additional exercises. These ones are a bit tougher.

Problem 7.37. For each quotient group below, describe the group. If possible, state what group each is
isomorphic to. You may assume that we are taking the quotient by a normal subgroup.

(a) (Z4xZ6)/{(0,2))
(b) (ZxZ)/((1,1))
(c) Q/(1) (the operation on Q is addition)
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8 More on Normal Subgroups

In this chapter, we collect several additional results concerning normal subgroups. Our first result
generalizes the fact that the kernel of a homomorphism is always a normal subgroup of the domain.

Problem 8.1. Let ¢ : G — H be a group homomorphism. Prove that if K < H, then (f)’1 (K)<G.

The next result below provides a method for simplifying computations when verifying that a sub-
group is normal.

Problem 8.2. Let G be a group and let N = (S) for some subset S of G. Prove that if for all g € G, we
have gSg~! C N, then N <G.

Problem 8.3. Let G be a group and let N = (x) for some x € G. Prove that if for all g € G, we have
gxg~! = x* for some k € Z, then N <9G.

Definition 8.4. Let G be a group and let H < G. The index of H in G is the number of cosets (left or
right) of H in G. Equivalently, if G is finite, then the index of H in G is equal to |G|/|[H|. We denote the
index via [G : H].

Problem 8.5. Let H =((1,2)(3,4),(1,3)(2,4)).
(a) Find [A4: H].
(b) Find [S4: H].
Problem 8.6. Find [Z: 47Z].
Problem 8.7. Prove that if G is a group and H < G such that [G: H] =2, then H <G.

It is important to emphasize that being index 2 is a sufficient condition for a subgroup to be normal,
but it is not a necessary condition. There are many examples of normal subgroups that are not index 2.

Problem 8.8. Provide an example of a group G and a subgroup H such that H <G yet [G: H] = 2.
It turns out that normality is not transitive.
Problem 8.9. Consider (s) = {e,s} and (r?,sr?) = {e,7%,sr?,s). It is clear that
(s) < (r%,sr?y < D,.
Show that (s) < (r2,sr?) and (r?,sr?) < Dy, but (s) 4 Dy.
The previous problem illustrates that H <K < G does not imply H < G.
Problem 8.10. Prove that if H and K are normal subgroups of G, then HNK <JG.

In fact, a much stronger statement than the previous result is true. The intersection of arbitrarily
nonempty collection of normal subgroups of a fixed group is a normal subgroup. The proof of this only
requires a slight modification of the proof of the previous problem.

Problem 8.11. Suppose G is a group and H < G such that H is the unique subgroup of a particular
order in G. Prove that H < G.

Problem 8.12. Let G be a group. Explain why we always have Z(G) < G.
Problem 8.13. Let G be a group. Prove that if G/Z(G) is cyclic, then G is abelian.
Problem 8.14. Is the converse of the previous result true? Justify your assertion.

Problem 8.15. Let G a finite group such that |G| = pq, where p and g are primes (not necessarily dis-
tinct). Prove that either G is abelian or Z(G) is trivial.

Definition 8.16. Let G be a group and let H,K < G. Define
HK :={hk|heH,keK}.

In general, HK may not be a subgroup.
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Problem 8.17. Let G =S3, H =((1,2)), and K ={(2,3)). Compute HK. Is HK a subgroup of S3?

Problem 8.18. Let G be a group and let H,K < G. Prove that HK is a union of left cosets of K. That is,
prove that
HK = U hK.
heH

Problem 8.19. Let G be a group and let H,K < G. Prove that if H and K have finite order, then

_ HIIK]
|HNK]|

|HK]

Problem 8.20. Let G be a group and let H,K < G. Prove that HK < G if and only if HK = KH.
Problem 8.21. Let G be a group and let H,K < G. Prove that if K <G, then HK <G.
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9 The Isomorphism Theorems

In this chapter, we state some consequences of the relations between quotient groups and homomor-
phisms. The first result is essentially a restatement of our observations from Chapter 7 (see Figure 13).
This theorem is sometimes called the Fundamental Theorem of Homomorphisms.

Problem 9.1 (The First Isomorphism Theorem). Suppose ¢ : G — H is a group homomorphism from
a group G to a group H. Prove that G/ker(¢) = ¢(G). To do this, establish an explicit function 1 :
G/ker(¢p) — ¢(G) and then show that i) satisfies the homomorphic property and is a bijection.

An immediate consequence of the First Isomorphism Theorem is that [G : ker(¢)] = |p(G)|.
Problem 9.2. Use the First Isomorphism Theorem to prove that (Z4 x Z,)/({0} X Z,) = Z4.

Problem 9.3. Consider the map ¢ given in Problem 7.10. Use the First Isomorphism Theorem to
conclude that (R\ {0})/ker(¢) = R*.

Problem 9.4. Consider the map 7t given in Problem 7.12. Use the First Isomorphism Theorem to
conclude that R?/ker(rm) = R.

Problem 9.5. Suppose G and H are groups. Use the First Isomorphism Theorem to prove that (G x
H)/({eg} x H) = G (and {eg} x H < G x H). Certainly, we also have (G x H)/(G x {eg}) = H.

Problem 9.6. Consider the map ¢ given in Problem 7.13. Use the First Isomorphism Theorem to
conclude that R?/ker(¢) = R.

Problem 9.7. Consider the map ¢ given in Problem 7.14. Use the First Isomorphism Theorem to
conclude that (Z/8Z)/ ker(¢) = Z/47Z.

The next theorem is a generalization of Problem 2.19 and follows from the First Isomorphism Theo-
rem together with Lagrange’s Theorem.

Problem 9.8. Suppose ¢ : G — H is a group homomorphism. Prove that if G is finite, then |¢p(G)]
divides |G]|.

Problem 9.9 (The Second Isomorphism Theorem). Let G be a group with H < G and N <G. Prove each
of the following.

(a) HN <G;

(b) N<HN;

(c) HANN < H;

(d) HN/N 2H/(HNN).

The Second Isomorphism Theorem is sometimes called the Diamond Isomorphism Theorem in light
of Figure 15. The double edges in the lattice indicate which quotients are isomorphic.

G

|
ol

I
(@)

Figure 15: Visual representation of the Second Isomorphism Theorem.

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 License. 48


https://creativecommons.org/licenses/by-sa/4.0/

MAT 511: Abstract Algebra I Fall 2021

Problem 9.10 (The Third Isomorphism Theorem). Let G be a group with H,K <G and K < H. Prove
that H/K < G/K and
G/H = (G/K)/(H/K).

The upshot of the Third Isomorphism Theorem is that we gain no new structural information by
taking quotients of quotients.

The final isomorphism theorem, sometimes called the Lattice Isomorphism Theorem, describes the
relationship between the lattice of subgroups of the quotient group G/N and the lattice of subgroups
of G. In particular, the lattice for G/N can be read off from the lattice for G by collapsing the group
N to the identity. There is a one-to-one correspondence between subgroups of G containing N and the
subgroups of G/N.

Problem 9.11 (The Fourth Isomorphism Theorem). Let G be a group with N < G. Prove that there is a
bijection from the collection of subgroups of G that contain N onto the collection of subgroups of G/N.
In particular, every subgroup of G is of the form H/N for some subgroup H of G containing N (namely,
its preimage in G under the canonical projection homomorphism from G to G/N). This bijection has
the following properties: for all H,K < G with N < H and N <K, we have

(a) H <K if and only if H/N < K/N

(b) If H <K, then [K: H] = [K/N : H/N]
(c) (H,K)/N = (H/N,K/N)

(d) (HNK)/N =H/NNK/N

(e) H<Gif and only if H/N < G/N.

Problem 9.12. Consider the group Qg and the normal subgroup (—1). Draw the subgroup lattice for
Qg and indicate which edges in the lattice correspond to edges in the lattice for Qg/(—1). We previously
proved that Qg/(—1) = V,. You ought to be able to witness the subgroup lattice for V, in your drawing.

Problem 9.13. Consider the group D4 and the normal subgroup (r?). Draw the subgroup lattice for D,
and indicate which edges in the lattice correspond to edges in the lattice for Dy/(r?). Notice that there
are subgroups of Dy that do not directly correspond to subgroups of Dy/{r?), namely the subgroups of
D, that do not contain (r?).
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10 Introduction to Group Actions

We begin with a definition.

Definition 10.1. A group action of a group G on a set A is a map from G x A — A, written as g-a for
all g € G and a € A, satisfying:

(i) g1-(g2-a)=(g192)-aforall g,gp e Gandae A, and
(ii) eg-a=aforall a€ A.
A few comments are in order:
* Informally, we say that “G acts on A”.
* Axiom (i) is like associativity, but formally it is not!
* Axiom (ii) says that the identity does not do anything to the set A.
* The function - is not a binary operation.

* The expression g -a will often be written as ga when there is no danger of confusing the group
action with the operation in the group or otherwise.

* Technically, we defined “left” group actions. There is an equivalent notion of “right” group ac-
tions.

Definition 10.2. Suppose G acts on A. For each g € G, define 04 : A — A via

og(a)=g-a.
Problem 10.3. Prove that each o, is a permutation of A.

Let S,4 be the collection of permutations of A. It is clear that S4 is a group under function composi-
tion.

Problem 10.4. Suppose G acts on A. Define ¢ : G — S, via ¢(g) = 0g. Prove that ¢ is a group homo-
morphism.

The map from the previous problem is called the permutation representation of G on A.

Problem 10.5. Suppose 0 : G — Sy4 is a group homomorphism for some set A. Define g-a = 6(g)(a)
(where 6(g)(a) is the image of a using the permutation 6(g)). Prove that this determines a group action
of G on A.

The upshot of the previous theorem is that the actions of a group G on a set A and the homomor-
phisms from G into S, are in bijection.

Problem 10.6. Explain why each of the following is indeed a group action. In each case, describe the
corresponding permutation representation. In particular, determine whether the permutation repre-
sentation is injective.

(a) Let G be a group and let A be a set. Then G acts on A via g-a =a for all g € G and a € A. This is
called the trivial action of G on A.

(b) Assume A = (. Then Sy acts on A via 0-a=o0(a) forall 0 € S4 and a € A.

(c) Let A ={1,2,...,n}. Label the vertices of a regular n-gon with 1,2,...,7n in a clockwise manner.
Then D,, acts on A as follows. For g € D,, and a € A, define g -a to be the label we obtain using the
natural action of g on the n-gon.

(d) Suppose n is even. Then D,, acts on the set consisting of pairs of opposite vertices of a regular
n-gon as follows. For ¢ € D, and {a, b} a pair of opposite vertices, define g - {a, b} to be the pair of
opposite vertices that we obtain using the natural action of g on the n-gon.
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(e) Suppose G = (S) and consider the Cayley diagram for G determined by S. Then G acts on the
vertices of the Cayley diagram as follows. For g € G and a € G, define g - a to be the vertex of the
Cayley diagram we obtain by starting at the vertex a and then following any sequence of arrows
that corresponds to a word in S that equals g.

(f) Let G be any group and let A = G. Then G acts on itself via left multiplication: g-a = ga. This
action is called the left regular action of G on itself.

(g) Let G be any group and let A = G. Then G acts on itself via conjugation: g-a = gag™'.

(h) Let G be a group, H < G, and let A be the collection of left cosets of H in G. Then G acts on A via
g-xH =(gx)H.

It might be useful to see an example of something that is not quite a group action.

Problem 10.7. Label the vertices of a square 1,2,3,4 clockwise. Let A = {{1,2},{3,4}}. For g € Dy and
{x,v} € A define g-{x,p} to be {gx, gy}, where gx and gy are the labels we obtain using the natural action
of g on the square. Explain why this is not a group action.

Definition 10.8. Suppose G acts on A. Define the kernel of the actiontobe {g€ G| g-a=aforall a € A}.

The kernel of an action is the set of elements in G that fix all the elements in A. That is, these are the
elements in G that behave like the identity on A.

Problem 10.9. Find the kernel of each action described in Problem 10.6.

Problem 10.10. Suppose G acts on A. Prove that the kernel of the action is the same as the kernel of
the associated permutation representation.

One consequence of the previous problem is that the kernel of an action is always a normal subgroup
of G.

Definition 10.11. Suppose G acts on A. If the associated permutation representation is injective, we
say that the action is faithful.

A faithful action is one in which distinct elements in G induce distinct permutations of A.
Problem 10.12. Determine which actions in Problem 10.6 are faithful.

Problem 10.13. Prove that a group G acts faithfully on a set A if and only if the kernel of the action is
the trivial group.

Observe that two group elements induce the same permutation on A if and only if they are in the
same coset of the kernel. Thus, an action of G on A can be viewed as a faithful action of the quotient
group G/ker(¢) on A.

Problem 10.14. Prove that the group of rigid motions of a tetrahedron is isomorphic to a subgroup of
Sy.

Problem 10.15. Prove that the group of rigid motions of a cube is isomorphic to S4. Hint: S, naturally
acts on the collection of four pairs of opposite vertices.

Problem 10.16. Explain why the natural action of the group of rigid motions of a cube on the set of
three pairs of opposite faces is not faithful and find the kernel of this action.
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11 Stabilizers and Orbits of Group Actions

Definition 11.1. Suppose G acts on A and let a € A. We define the stabilizer of 2 in G to be the set
Stabg(a) ={ge€ G|g-a=a)}.

In some books, the stabilizer of 4 in G is denoted G,.

Note that if a is a fixed element of A, then the kernel of the action is contained in Stabg(a). In
particular, the kernel of an action is the intersection of all of the stabilizers for individual elements in
A. That is, the kernel of the action is equal to (,c4 Stabg(a).

Problem 11.2. For n € N, the group S, acts on {1,2,...,n} via 0 -i = o(i) for all i € {1,2,...,n}. De-
termine Stabsn(i) for each i € {1,2,...,n}. Is this action faithful? What is the associated permutation
representation?

Problem 11.3. Label the vertices of a square 1,2,3,4 clockwise so that 1 is the label of the upper left
corner of the square. Consider the natural action of Dy on {1,2,3,4} using this labeling. Assume r is
clockwise rotation by a quarter turn of the square and assume s is reflection across the line through the
vertices labeled by 1 and 3.

(a) Find o,, o5, and o,.
(b) Find Stabp, (1).
(c) What is the kernel of this action? Is this action faithful?

Problem 11.4. Label the vertices of a square as in the previous problem. Let A = {{1, 3},{2,4}}. Consider
the natural action of Dy on this set.

(a) Find o,, 0;, and oy;.
(b) Find Stabp, ({1, 3}).
(c) What is the kernel of this action? Is this action faithful?
Problem 11.5. Suppose G acts on A. Prove that for a € A, Stab(a) is a subgroup of G.

Definition 11.6. Suppose G acts on a nonempty set A. Define ~; on A via
a~gbifand onlyif a =g-b for some g € G.

Problem 11.7. Suppose G acts on a nonempty set A. Prove that the relation defined above is an equiv-
alence relation.

Note that the corresponding equivalence classes are given by {g-a| g € G} and these sets partition A.

Definition 11.8. Suppose G acts on a nonempty set A. The equivalence class of a € A induced by ~¢ is
called the orbit of G containing a and we write

Orbg(a) :={g-a| g€ G}

The length (or size) of an orbit, denoted |Orbg(a)l, is the cardinality of the orbit. The collection of
orbits is sometimes denoted by A/G or Ag.

Definition 11.9. Suppose G acts on a nonempty set A. We say that the action of G on A is transitive
(or that G acts transitively on A) if there is only one orbit for the action.

Problem 11.10. Let A ={(i,j) |1 <1i,j < 3}. Let S acton A via ¢ - (i,j) = (6(i),o(j)). Find the orbits of
this action.

Problem 11.11. Suppose G acts trivially on a nonempty set A.
(a) Determine Stabg(a) for a € A.

(b) Determine Orbg(a) for a € A.
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(c) Is this action ever transitive?
Problem 11.12. Determine whether the actions described in Problems 11.2-11.4 are transitive.
If G acts on A, then any subgroup of H of G also acts on A.

Problem 11.13. Consider the natural action on {1, 2, 3,4} by the subgroup ((1, 2),(2,4)) of S4. Determine
the orbits of this action.

The previous problem illustrates that if a group acts transitively on a set, a subgroup may not act
transitively.

Problem 11.14. Consider the natural action on {1,2, 3,4, 5} by the subgroup ((1,2)(3,4,5)) of S5. Deter-
mine the orbits of this action.

The next theorem is often called the Orbit Stabilizer Theorem. This might be my favorite theorem
in mathematics!

Problem 11.15 (The Orbit Stabilizer Theorem). Prove that if G acts on a nonempty set A, then for each
a € A, we have
|Orbg(a)| =[G : Stabg(a)].

Try to draw a picture that captures the essence of this theorem.

Problem 11.16. Let G be a group, H < G, and let G act on the collection A of left cosets of H in G. Let
¢ be the associated permutation representation. Prove each of the following.

(a) G acts transitively on A.
(b) Stabg(H)=H.

(c) ker(¢p) = ﬁ gHg ™! and ker(¢) is the largest normal subgroup of G contained in H.
geG

We can use the previous theorem to prove the next result, which is often referred to as Cayley’s
Theorem.

Problem 11.17 (Cayley’s Theorem). Prove that if G is a group of order n, then G is isomorphic to a
subgroup of S,,. Hint: Let H be the trivial subgroup of G and apply the previous problem.

Problem 11.18. Prove that if G is a group of order n and p is the smallest prime dividing the order of
G, then any subgroup of index p is normal in G.
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12 Conjugation and the Class Equation

Recall that if G is a group, then one way in which G may act on itself is via conjugation. We say that
a,b € G are conjugate if there exists g € G such that b = gag™!. That is, two elements are conjugate if
and only if they are in the same orbit of G under the action of conjugation. The orbits of G under the
action of conjugation are called the conjugacy classes of G.

Problem 12.1. Suppose G is an abelian group. Explain why the action of G on itself by conjugation is
the trivial action. What is the conjugacy class for each a € G?

Problem 12.2. Determine all of the conjugacy classes for Ss.

Unlike the action of G on itself by left multiplication, the action of G on itself by conjugation is never
transitive if the group is nontrivial.

Problem 12.3. Suppose |G| > 1.
(a) What is the conjugacy class of the identity in G?
(b) Prove that the conjugacy class of a € G is {4} if and only if a € Z(G).

We can generalize the notion of a group acting on itself via conjugation by letting G act on the power
set P(G) via conjugation: g-S = gSg~! for g€ G and S C G. It’s easy to verify that this is indeed a group
action. We say that two subsets S and T of a group G are conjugates in G if there exists g € G such that
T =gSg™ L.

Problem 12.4. Consider the action of a group G on the subsets of G via conjugation.
(a) Prove that Stabg(S) = Ng(S) for each S C G.

(b) Use the Orbit Stabilizer Theorem to prove that the number of conjugates of a subset S of G equals
the index [G: Ng(S)].

(c) Prove that the number of conjugates of a € G is equal to the index [G : Cg(a)].

The upshot is that the action of a group G on itself via conjugation partitions G into conjugacy classes
of G, each of whose cardinalities may be computed using Problem 12.4. The next result, referred to as
the Class Equation, formalizes this for finite groups.

Problem 12.5 (The Class Equation). Let G be a finite group and let gj,..., g, be representatives of the
distinct conjugacy classes of G not contained in the center Z(G) of G. Prove that

=~

Gl =12(G)l+ ) [G: Colg)):

i=1

Problem 12.6. Using Problem 12.2, find the class equation by writing |S3| in terms of the corresponding
summation.

Problem 12.7. Determine the distinct conjugacy classes in Qg and then find the class equation by
writing |Qg| in terms of the corresponding summation.

Problem 12.8. Determine the distinct conjugacy classes in D4 and then find the class equation by
writing |Dy4| in terms of the corresponding summation.

Problem 12.9. Let g,..., gk be representatives of the conjugacy classes of a finite group G and suppose
these elements pairwise commute. Prove that G is abelian.

Problem 12.10. Prove that if p is a prime and P is a group of order p” for some m € N, then P has a
nontrivial center (i.e., |Z(P)| > 1).

Problem 12.11. Prove that if p is a prime and P is a group of order p?, then P is abelian. In particular,
P is isomorphic to either Z2 or Zy X Z,.

Problem 12.12. Prove that if p is a prime and P is a group of order p™ for some m € N, then P has a sub-
group of order p* for every 0 < k < m. Consider using a previous problem and induction. Problem 13.4
is useful here! You may use it even though it comes later. This isn’t circular.
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Problem 12.13. Let 0,7 € S,, and suppose o has cycle decomposition

(al,lr ai,2s---, 41,k )(‘12,1: a2,25+-+» a2,k2) e (am,l’ Am,2s -1 Am,k,, ).

Prove that Tot~! has cycle decomposition

(t(ai,1),t(ar2),-- T(ﬂl,k1 )(t(az1), t(a2),.--, T(az,kz ) (T(@m,1), T(@m2), - T(um,km ).

That is, tot~! is obtained from o by replacing each entry i in the cycle decomposition for o by the
entry 7(i).

Definition 12.14. If 0 € S, is the product of disjoint cycles of lengths kq, ky, ..., k,, with k; <k, <--- <k,
(including 1-cycles), then the integers kq, k,, ..., k,, are called the cycle type of o.

Problem 12.15. Let 0 =(3,5)(8,9)(2,4,7,6) and t =(1,3,4,2,5,7,6,9) in Sg. Compute tot L.
Problem 12.16. Prove that two elements of S, are conjugate if and only if they have same cycle type.
Problem 12.17. Prove that for n > 3, Z(S,,) is trivial.

Definition 12.18. A group G is called simple if its only normal subgroups are {e} and G.

Problem 12.19. Prove that A5 is simple.
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13 The Sylow Theorems

In this chapter, we prove a partial converse to Lagrange’s Theorem. We begin with a definition.
Definition 13.1. Let G be a group and let p be prime.

(a) A group of order p* for some k > 0 is called a p-group. Subgroups of G that are p-groups are
called p-subgroups.

(b) If G is a group of order pXm, where p does not divide m, then a subgroup of order p* is called a
Sylow p-subgroup of G.

(c) The set of Sylow p-subgroups of G is denoted by Syl (G) and the number of Sylow p-subgroups
of G is denoted by 1,(G) (or simply 1, when the context is clear).

Note that if G is a finite group and p is a prime such that p does not divide the order of G, then the
Sylow p-subgroup of G is the trivial group. If |G| = p¥, where p is prime, then G is the unique Sylow
p-subgroup of G.

Problem 13.2. Find all of the Sylow 2-subgroups and all of the Sylow 3-subgroups of S;.
Problem 13.3. Find all of the Sylow 2-subgroups and all of the Sylow 3-subgroups of A,.
The next problem is sometimes referred to as Cauchy’s Theorem for abelian groups.

Problem 13.4. Prove that if G is a finite abelian group and p is a prime dividing |G|, then G contains an
element of order p. Hint: Proceed by complete induction on |G]|.

Use the Fundamental Theorem of Finitely Generated Abelian Groups (Problem 6.22) to prove the
following result.

Problem 13.5. Assume G is a finite abelian group. Prove that G has a unique Sylow p-subgroup for
each prime p.

Problem 13.6. Let G be a group and let P € Syl (G). Prove that if Q is any p-subgroup of G, then QN
Ng(P) = QNP. Hint: The reverse containment should be straight forward. For the forward containment,
let H = Ng(P) N Q and then argue that PQ is a p-subgroup of G containing both P and Q. Next, argue
that PQ = P.

We are now prepared to prove Sylow’s Theorem! To prove Part (a) below, proceed by induction on |G|
and then utilize Problem 13.4 and the Class Equation. Here’s an outline to get you started on proving
Parts (b) and (c). By Part (a), there exists a Sylow p-subgroup P. Let S = {P,,..., P,} be the collection of
conjugates of P, and let Q be any p-subgroup of G. Notice that Q acts on S via conjugation. Then we
can partition S into disjoint orbits under this action by Q, say S = O; U---UO,, where r = |O|+--- +|0;|.
Renumber the elements of S so that the first s elements of S are representatives of the Q-orbits: P; € O;
for 1 <i <s. What does Orbit Stabilizer Theorem tell us about |0;[? Explain why Ng(P;) = Ng(P,) N Q
and then apply the previous problem. Since Q was arbitrary, one possibility is that Q = P;. Compute
|O1] and |O;| for all 2 <i < s.

Problem 13.7 (Sylow’s Theorem). Let G be a group of order p*m, where p is a prime that does not
divide m. Prove each of the following.

(a) Syl,(G)=0.

(b) If P € Syl,(G) and Q is any p-subgroup of G, then there exists g € G such that Q < gPg7l. In
particular, any two Sylow p-subgroups of G are conjugate in G.

(c) The number of Sylow p-subgroups of G is of the form 1+ ¢p (i.e., n, =1 (mod p)). Moreover, n,
is the index in G of the normalizer Ng(P) for any Sylow p-subgroup P, and hence n, divides m.

Problem 13.8. Explain why any two Sylow p-subgroups of a group G are isomorphic.
Problem 13.9. Compute n, for S;. What well-known group is every Sylow 2-subgroup of S, equal to?

Problem 13.10. Let P be a Sylow p-subgroup of G. Prove that the following are equivalent.
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(a) P is the unique Sylow p-subgroup of G (i.e., n, = 1).

(b) PCG.

(c) ¢(P) =P for all ¢ € Aut(G). Note: The fancy lingo here is that P is characteristic in G.
)

(d) All subgroups generated by elements of p-power order are p-groups (i.e., if S is any subset of G
such that |x| is a power of p for all x € S, then (S) is a p-group).

Problem 13.11. Suppose |G| = pq for primes p and g with p <g. Let P € Syl (G) and Q € Syl (G).
(a) Prove that Q JG.
(b) Prove that if P is also normal in G, then G is cyclic.

Problem 13.12. Prove that if G is a group of order 30, then G has a normal subgroup of order 15 that
is isomorphic to Zs.

Problem 13.13. Prove that if G is a group of order 12, then either G has a normal Sylow 3-subgroup or
G = A4. Note that in the latter case, G has a normal Sylow 2-subgroup.

Problem 13.14. Let G be a group of order p?q where p and g are distinct primes. Prove that G has
either a normal Sylow p-subgroup or a normal Sylow g-subgroup.

Problem 13.15. Let G be a group of order pqr where p, g, and r are primes with p < g <r. Prove that G
has a normal Sylow subgroup for either p, g, or r.

The next problem is known as Cauchy’s Theorem.

Problem 13.16 (Cauchy’s Theorem). Prove that if G is a finite group and p is a prime dividing the order
of G, then G has an element of order p.

Problem 13.17. Prove that if G is a group of order 60 such that G has more than one Sylow 5-subgroup,
then G is simple (i.e., the only normal subgroups of G are {¢} and G).

Problem 13.18. Use the previous problem to argue that As is simple.
Problem 13.19. Prove that if G is a group of order 280, then G is not simple.

Problem 13.20. Prove that if G is a group of order 396, then G is not simple.
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14 Semidirect Products

In this chapter, we briefly introduce the notion of the semidirect product of two groups H and K, which
is a generalization of the direct product of H and K.

Problem 14.1. Let H and K be groups and let ¢p : K — Aut(H) be a homomorphism. Let - denote the
left action of K on H determined by ¢ (i.e., k- h = ¢(k)(h)). Let G be the set of ordered pairs (h, k) with
h e H and k € K and define the following multiplication on G:

(ki) (ha k2) = (hy(ky - ho), ko ks).
Prove each of the following.

a) The binary operation defined above makes G into a group, where the identity is (ey, ex), (h,k)™ =
y op group y
(k~'-h71, k1), and |G| = [H|IK].

(b) The sets {(h,ex)|he H} and {(ey, k) | k € K} are subgroups of G and the maps h + (h,ex) for he H
and k > (ey, k) for k € K are isomorphisms of these groups with the groups H and K, respectively.
For simplicity, we identify H and K with their isomorphic copies in G.

(¢) [HNK|=1.
(d) Forall he H and k € K, khk™' =k -h = ¢(k)(h).
(e) HCG.

Definition 14.2. Let H and K be groups and let ¢p : K — Aut(H) be a homomorphism. The group
described in Problem 14.1 is called the semidirect product of H and K with respect to ¢ and is denoted
by H x4 K. When the context is clear, we will simply write H x K.

The notation is meant to help us remember that the left factor is normal in the semidirect product.

Problem 14.3. Recall S, = (s). For n > 3, define ¢ : S; — Aut(R,) where ¢(e) is the identity automor-
phism and ¢(s) is the automorphism of inversion on H (i.e., h — h~!). One can quickly show that ¢ is

a group homomorphism. Let G = R, x S, as in Problem 14.1 (so that the associated action is s-h = h~!
for all h € R,).

(a) Prove that shs™! =h~! forall he R,,.
(b) Prove that D,, = R,, X S5.
It is useful to have a way for recognizing when semidirect products are actually direct products.

Problem 14.4. Let H and K be group and let ¢ : K — Aut(H) be a homomorphism. Prove that the
following are equivalent.

(a) The identity set map between H x K and H x K is a group homomorphism (and hence isomor-
phism).

(b) ¢ is the trivial homomorphism from K into Aut(H).
(c) KJIH %K.

It is also useful to have a method for determining whether a given group is isomorphic to a semidirect
product.

Problem 14.5. Suppose G is a group with subgroups H and K such that H <G and HNK = {e}. Let ¢ :
K — Aut(H) be the homomorphism defined by mapping k € K to the automorphism that is conjugation
by k on H. Prove that HK = H x K. Notice that if G = HK, then it follows that G is a semidirect product.

Problem 14.6. Let G be a group of order 12. Let V € Syl,(G) and T € Syl;(G). By Problem 13.13,
we know that either V or T is normal in G. By Lagrange’s Theorem, |V N T| = 1. It follows from
Problem 14.5 that G is isomorphic to a semidirect product of V and T. Note that V is isomorphic to
either R4 or V; while T is isomorphic to R3. Classify all of the groups of order 12 up to isomorphism.
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