Homework 2

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Let *R* be a Euclidean Domain with norm *N* satisfying $N(a) \le N(ab)$ for all nonzero $a, b \in R^1$. Prove that $a \in R$ is a unit iff N(a) = N(1). *Note:* Actually, I don't think we need this extra requirement on *N*, but since I already modified the problem, I'll just leave it.

Problem 2. Consider the Euclidean Domain $\mathbb{Z}[i]$ with norm given by $N(a + bi) = a^2 + b^2$.

- (a) Find the units in $\mathbb{Z}[i]$.
- (b) For each of the following pairs, find q and r such that a = bq + r with r = 0 or N(r) < N(b).
 - (i) a = 11 + 8i, b = 1 + 2i
 - (ii) a = -17 + 15i, b = 3 + i

Problem 3. Consider the Euclidean Domain $\mathbb{Q}[x]$ with norm given by $N(p(x)) = \deg(p(x))$.

- (a) Prove that $(x^2 + 1, x^3 + 1) = \mathbb{Q}[x]$.
- (b) Find polynomials a(x) and b(x) such that $(x^2 + 1)a(x) + (x^3 + 1)b(x) = 1$.

Problem 4. Let *R* be an integral domain and let *u* be a unit of *R*.

- (a) Prove that if $p \in R$ is prime, then up is prime.
- (b) Prove that if $p \in R$ is irreducible, then up is irreducible.

Problem 5. Consider the ring $\mathbb{Z}[\sqrt{-5}]$ with norm $N(a + b\sqrt{-5}) = a^2 + 5b^2$.

- (a) Justify my claim in Example 1.85(3) that 6 = 2 ⋅ 3 = (1 + √-5)(1 √-5) are two distinct factorizations of 6 into irreducibles in Z[√-5]. *Hint:* Start by showing that N(xy) = N(x)N(y) for all x, y ∈ Z[√-5].
- (b) Prove that $1 + \sqrt{-5}$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

Problem 6. Consider the ring $\mathbb{Z}[2\sqrt{2}]$.

- (a) Prove that Z[2√2] is not a UFD. *Hint:* Fiddle around with 8. You will need to justify that certain ring elements are irreducibles. One way to do this is to play with the map N: Z[2√2] → Z ∪ {0} given by N(a + 2b√2) = |a² 8b²| (the vertical bars denote absolute value). It would be useful to know N(rs) = N(r)N(s), N(r) = 1 iff r is a unit, and N(r) ≠ 2 for all r ∈ R. If you want to use these facts, you should prove them.
- (b) If possible, give an example of an ideal of $\mathbb{Z}[2\sqrt{2}]$ that is not principal. If not possible, briefly explain why.

¹This extra requirement on N is sometimes part of the definition of Euclidean Domain.