Homework 2

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Let R be a Euclidean Domain with norm N satisfying $N(a) \leq N(a b)$ for all nonzero $a, b \in R^{1}$. Prove that $a \in R$ is a unit iff $N(a)=N(1)$. Note: Actually, I don't think we need this extra requirement on N, but since I already modified the problem, I'll just leave it.

Problem 2. Consider the Euclidean Domain $\mathbb{Z}[i]$ with norm given by $N(a+b i)=a^{2}+b^{2}$.
(a) Find the units in $\mathbb{Z}[i]$.
(b) For each of the following pairs, find q and r such that $a=b q+r$ with $r=0$ or $N(r)<N(b)$.
(i) $a=11+8 i, b=1+2 i$
(ii) $a=-17+15 i, b=3+i$

Problem 3. Consider the Euclidean Domain $\mathbb{Q}[x]$ with norm given by $N(p(x))=\operatorname{deg}(p(x))$.
(a) Prove that $\left(x^{2}+1, x^{3}+1\right)=\mathbb{Q}[x]$.
(b) Find polynomials $a(x)$ and $b(x)$ such that $\left(x^{2}+1\right) a(x)+\left(x^{3}+1\right) b(x)=1$.

Problem 4. Let R be an integral domain and let u be a unit of R.
(a) Prove that if $p \in R$ is prime, then $u p$ is prime.
(b) Prove that if $p \in R$ is irreducible, then $u p$ is irreducible.

Problem 5. Consider the ring $\mathbb{Z}[\sqrt{-5}]$ with norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
(a) Justify my claim in Example $1.85(3)$ that $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in $\mathbb{Z}[\sqrt{-5}]$. Hint: Start by showing that $N(x y)=$ $N(x) N(y)$ for all $x, y \in \mathbb{Z}[\sqrt{-5}]$.
(b) Prove that $1+\sqrt{-5}$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

Problem 6. Consider the ring $\mathbb{Z}[2 \sqrt{2}]$.
(a) Prove that $\mathbb{Z}[2 \sqrt{2}]$ is not a UFD. Hint: Fiddle around with 8 . You will need to justify that certain ring elements are irreducibles. One way to do this is to play with the map $N: \mathbb{Z}[2 \sqrt{2}] \rightarrow \mathbb{Z} \cup\{0\}$ given by $N(a+2 b \sqrt{2})=\left|a^{2}-8 b^{2}\right|$ (the vertical bars denote absolute value). It would be useful to know $N(r s)=N(r) N(s), N(r)=1$ iff r is a unit, and $N(r) \neq 2$ for all $r \in R$. If you want to use these facts, you should prove them.
(b) If possible, give an example of an ideal of $\mathbb{Z}[2 \sqrt{2}]$ that is not principal. If not possible, briefly explain why.

[^0]
[^0]: ${ }^{1}$ This extra requirement on N is sometimes part of the definition of Euclidean Domain.

