Homework 3

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

For Problems 3–7, assume that *F* is a field.

Problem 1. Let *R* be a commutative ring with 1. Prove that a polynomial ring in more than one variable over *R* is not a PID.

Problem 2. Consider the polynomial ring $\mathbb{Q}[x, y]$.

- (a) Prove that the ideals (x) and (x, y) are prime in $\mathbb{Q}[x, y]$.
- (b) Prove that (x, y) is a maximal ideal but (x) is not maximal.
- (c) Prove that (x, y) is not a principal ideal.

Problem 3. Prove that the rings $F[x, y]/(y^2 - x)$ and $F[x, y]/(y^2 - x^2)$ are not isomorphic for any field *F*.

Problem 4. Let $f(x) \in F[x]$ such that $\deg(f(x)) = n \ge 1$. Prove that for each $\overline{g(x)} \in F[x]/(f(x))$ there is a unique $g_0(x) \in F[x]$ with $\deg(g_0(x)) \le n-1$ such that $\overline{g(x)} = \overline{g_0(x)}$. *Note:* $\overline{g(x)}$ denotes passage to the quotient F[x]/(f(x)).

Problem 5. Let $f(x) \in F[x]$. Prove that F[x]/(f(x)) is a field iff f(x) is irreducible.

Problem 6. Let *F* be a finite field. Prove that F[x] contains infinitely many primes. *Hint*: Mimic one of the well-known proofs that there are infinitely many primes in the natural numbers.

Problem 7. Prove that the set *R* of polynomials in F[x] whose coefficient of *x* is equal to 0 is a subring of F[x] and that *R* is not a UFD. *Hint:* One approach is to find two distinct factorizations of x^6 into irreducibles.