Homework 5

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Prove that $\mathbb{Z}[2 i]$ is not a UFD.
Problem 2. Let $p \in \mathbb{Z}$ be prime and let $f(x) \in \mathbb{Z}[x]$. Determine general conditions under which $(p, f(x))_{\mathbb{Z}[x]} /(p)_{\mathbb{Z}[x]}$ is isomorphic to $(f(x))_{\mathbb{Z} / p \mathbb{Z}[x]}$ and prove that your answer is correct.

Problem 3. Identify the the following rings. That is, describe them in simpler terms.
(a) $\mathbb{Z}[x] /(2,2 x-1)$
(b) $\mathbb{Z}[x] /(4,2 x-1)$

Problem 4. Consider $p(x)=x^{3}+9 x+6 \in \mathbb{Q}[x]$.
(a) Show that $p(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) If θ is a root of $p(x)$, find the inverse of $1+\theta$ in $\mathbb{Q}(\theta)$.

Problem 5. Consider $p(x)=x^{3}+x+1 \in \mathbb{Z} / 2 \mathbb{Z}[x]$.
(a) Show that $p(x)$ is irreducible in $\mathbb{Z} / 2 \mathbb{Z}[x]$.
(b) If θ is a root of $p(x)$, computer the powers of θ in $\mathbb{Z} / 2 \mathbb{Z}(\theta)$.

Problem 6. Prove that $x^{5}-a x-1 \in \mathbb{Z}[x]$ is irreducible unless $a=0,2$, or -1 . The first two correspond to linear factors, the third corresponds to the factorization $\left(x^{2}-x+1\right)\left(x^{3}+x^{2}-1\right)$.

