Homework 6

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Let F be a finite field of characteristic p. Prove that $|F|=p^{n}$ for some positive integer n.

Problem 2. Find the minimal polynomial of $1+i$ over \mathbb{Q}.
Problem 3. Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find an irreducible polynomial having $\sqrt{2}+\sqrt{3}$ as a root.

Problem 4. Suppose the degree of the extension K / F is a prime p. Prove that any subfield E of K containing F is either K or F.

Problem 5. Suppose $F=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha^{2} \in \mathbb{Q}$ for $i=1, \ldots, n$. Prove that $\sqrt[3]{2} \notin F$.
Problem 6. For three of the following polynomials, determine the splitting field and its degree over \mathbb{Q}.
(a) $x^{4}-2$
(b) $x^{4}+2$
(c) $x^{4}+x^{2}+1$
(d) $x^{6}-4$
(e) $x^{4}-5 x^{2}+6$

Problem 7. Let K be a finite extension of F. Prove that K is a splitting field over F iff every irreducible polynomial in $F[x]$ that has a root in K splits completely in $K[x]$.

Problem 8. Suppose F is a field with the property that every polynomial $f(x) \in F[x]$ splits completely over F. Prove that F has no proper finite-degree extensions. Note: An extension K of F is proper if $[K: F]>1$.

