Homework 6

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Let *F* be a finite field of characteristic *p*. Prove that $|F| = p^n$ for some positive integer *n*.

Problem 2. Find the minimal polynomial of 1 + i over \mathbb{Q} .

Problem 3. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find an irreducible polynomial having $\sqrt{2} + \sqrt{3}$ as a root.

Problem 4. Suppose the degree of the extension K/F is a prime p. Prove that any subfield E of K containing F is either K or F.

Problem 5. Suppose $F = \mathbb{Q}(\alpha_1, ..., \alpha_n)$ where $\alpha^2 \in \mathbb{Q}$ for i = 1, ..., n. Prove that $\sqrt[3]{2} \notin F$.

Problem 6. For **three** of the following polynomials, determine the splitting field and its degree over \mathbb{Q} .

- (a) $x^4 2$
- (b) $x^4 + 2$
- (c) $x^4 + x^2 + 1$
- (d) $x^6 4$
- (e) $x^4 5x^2 + 6$

Problem 7. Let *K* be a finite extension of *F*. Prove that *K* is a splitting field over *F* iff every irreducible polynomial in F[x] that has a root in *K* splits completely in K[x].

Problem 8. Suppose *F* is a field with the property that every polynomial $f(x) \in F[x]$ splits completely over *F*. Prove that *F* has no proper finite-degree extensions. *Note:* An extension *K* of *F* is proper if [K : F] > 1.