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1 Ring Theory

1.1 Definitions and Examples

This section of notes roughly follows Sections 7.1–7.3 in Dummit and Foote.

Recall that a group is a set together with a single binary operation, which together satisfy a
few modest properties. Loosely speaking, a ring is a set together with two binary operations
(called addition and multiplication) that are related via a distributive property.

Definition 1.1. A ring R is a set together with two binary operations + and × (called addition
and multiplication, respectively) satisfying the following:

(i) (R,+) is an abelian group.

(ii) × is associative: (a× b)× c = a× (b × c) for all a,b,c ∈ R.

(iii) The distributive property holds: a× (b+ c) = (a×b) + (a× c) and (a+b)× c = (a× c) + (b× c)
for all a,b,c ∈ R.
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Note 1.2. We make a couple comments about notation.

(1) We write ab in place a× b.

(2) The additive inverse of the ring element a ∈ R is denoted −a.

Theorem 1.3. Let R be a ring. Then for all a,b ∈ R:

(1) 0a = a0 = 0

(2) (−a)b = a(−b) = −(ab)

(3) (−a)(−b) = ab

Definition 1.4. A ring R is called commutative if multiplication is commutative.

Definition 1.5. A ring R is said to have an identity (or called a ring with 1) if there is an
element 1 ∈ R such that 1× a = a× 1 = a for all a ∈ R.

Theorem 1.6. If R is a ring with 1, then the multiplicative identity is unique and −a = (−1)a.

Question 1.7. Requiring (R,+) to be a group is fairly natural, but why require (R,+) to be
abelian? Here’s one reason. Suppose R has a 1. Compute (1 + 1)(a+ b) in two different ways.

Definition 1.8. A ring R with 1 (with 1 , 0) is called a division ring if every nonzero element
in R has a multiplicative inverse: if a ∈ R \ {0}, then there exists b ∈ R such that ab = ba = 1.



Definition 1.9. A commutative division ring is called a field.

Definition 1.10. A nonzero element a in a ring R is called a zero divisor if there is a nonzero
element b ∈ R such that either ab = 0 or ba = 0.

Theorem 1.11 (Cancellation Law). Assume a,b,c ∈ R such that a is not a zero divisor. If
ab = ac, then either a = 0 or b = c.

Definition 1.12. Assume R is a ring with 1 with 1 , 0. An element u ∈ R is called a unit in R
if u has a multiplicative inverse (i.e., there exists v ∈ R such that uv = vu = 1. The set of units
in R is denoted R×.

Theorem 1.13. If R× , ∅, then R× forms a group under multiplication.

Note 1.14. We make a few observations.

(1) A field is a commutative ring F with identity 1 , 0 in which every nonzero element is a
unit, i.e., F× = F \ {0}.

(2) Zero divisors can never be units.

(3) Fields never have zero divisors.

Definition 1.15. A commutative ring with identity 1 , 0 is called an integral domain if it has
no zero divisors.



Note 1.16. The Cancellation Law (Theorem 1.11) holds in integral domains for any three
elements.

Corollary 1.17. Any finite integral domain is a field.

Proof. For any nonzero a ∈ R, define fa : R→ R via fa(x) = ax. If R is an integral domain, the
Cancellation Law forces fa to be injective. If R is finite, then fa is also surjective. In this case,
there exists b ∈ R such that ab = 1.

Example 1.18. Here are some examples of rings. Details left as an exercise.

(1) Zero Ring: If R = {0}, we can turn R into a ring in the obvious way. The zero ring is a
finite commutative ring with 1. It is the only ring where the additive and multiplicative
identities are equal. The zero ring is not a division ring, not a field, and not an integral
domain.

(2) Trivial Ring: Given any abelian group R, we can turn R into a ring by defining multi-
plication via ab = 0 for all a,b ∈ R. Trivial rings are commutative rings in which every
nonzero element is a zero divisor. Hence a trivial ring is not a division ring, not a field,
and not a integral domain.

(3) The integers Z form a ring under the usual operations of addition and multiplication.
The integers form an integral domain, but Z is not a division ring, and hence not a field.

(4) The rational numbers Q, the real numbers R, and the complex numbers C are fields
under the usual operations of addition and multiplication.



(5) For n ≥ 1, the set Zn is a commutative ring with 1 under the operations of addition
and multiplication mod n. The group of units Z×n is the set of elements in Zn that are
relatively prime to n. All other nonzero elements are zero divisors. It turns out that Zn
forms a finite field iff n is prime.

(6) The set of even integers 2Z forms a commutative ring under the usual operations of
addition and multiplication. However, 2Z does not have a 1, and hence cannot be a
division ring nor a field nor an integral domain.

(7) Polynomial Ring: Fix a commutative ring R. Let R[x] denote the set of polynomials in
the variable x with coefficients in R. Then R[x] is a commutative ring with 1. The units
of R[x] are exactly the units of R (if there are any). So, R[x] is never a division ring nor a
field. However, if R is an integral domain, then so is R[x].

(8) Matrix Ring: Fix a ring R and let n be a positive integer. Let Mn(R) be the set of n × n
matrices with entries from R. Then Mn(R) forms a ring under ordinary matrix addition
and multiplication. If R is nontrivial and n ≥ 2, then Mn(R) always has zero divisors
and Mn(R) is not commutative even if R is. If R has a 1, then the matrix with 1’s down
the diagonal and 0’s elsewhere is the multiplicative identity in Mn(R). In this case, the
group of units is the set of invertible n × n matrices, denoted GLn(R) and called the
general linear group of degree n over R.

(9) Quadratic Field: Define Q(
√

2) = {a+ b
√

2 | a,b ∈Q}. It turns out that Q(
√

2) is a field. In
fact, we can replace 2 with any rational number that is not a perfect square in Q.



(10) Hamilton Quaternions: Define H = {a + bi + cj + dk | a,b,c,d ∈ R, i, j,k ∈ Q8} Then H
forms a ring, where addition is definite componentwise in i, j, and k and multiplication
is defined by expanding products and the simplifying using the relations of Q8. It turns
out that H is a non-commutative ring with 1.

Definition 1.19. A subring of a ring R is a subgroup of R that is closed under multiplication.

Note 1.20. The property “is a subring” is clearly transitive. To show that a subset S of a ring
R is a subring, it suffices to show that S , ∅, S is closed under subtraction, and S is closed
under multiplication.

Example 1.21. Here are a few quick examples.

(1) Z is a subring of Q, which is a subring of R, which in turn is a subring of C.

(2) 2Z is a subring of Z.

(3) The set Z(
√

2) = {a+ b
√

2 | a,b ∈ Z} is a subring of Q(
√

2).

(4) The ring R is a subring of R[x] if we identify R with set of constant functions.

(5) The set of polynomials with zero constant term in R[x] is a subring of R[x].

(6) Z[x] is a subring of Q[x].

(7) Zn is not a subring of Z.



Definition 1.22. Let R and S be rings. A ring homomorphism is a map φ : R→ S satisfying

(i) φ(a+ b) = φ(a) +φ(b)

(ii) φ(ab) = φ(a)φ(b)

for all a,b ∈ R. The kernel of φ is defined via ker(φ) = {a ∈ R | φ(a) = 0}. If φ is a bijection,
then φ is called an isomorphism, in which case, we say that R and S are isomorphic rings
and write R � S.

Example 1.23.

(1) For n ∈ Z, define φn : Z→ Z via φn(x) = nx. We see that φn(x + y) = n(x + y) = nx + ny =
φn(x) +φn(y). However, φn(xy) = n(xy) while φn(x)φn(y) = (nx)(ny) = n2xy. It follows
that φn is a ring homomorphism exactly when n ∈ {0,1}.

(2) Define φ : Q[x]→ Q via φ(p(x)) = p(0) (called evaluation at 0). It turns out that φ is a
ring homomorphism, where ker(φ) is the set of polynomials with 0 constant term.

Theorem 1.24. Let φ : R→ S be a ring homomorphism.

(1) φ(R) is a subring of S.

(2) ker(φ) is a subring of R.

In fact, we can say something even stronger about the kernel of a ring homomorphism, which
will lead us to the notion of an ideal.



Theorem 1.25. Let φ : R→ S be a ring homomorphism. If α ∈ ker(φ) and r ∈ R, then αr,rα ∈
ker(φ). That is, ker(φ) is closed under multiplication by elements of R.



1.2 Ideals and Quotient Rings

This section of notes roughly follows Sections 7.3–7.4 in Dummit and Foote.

Recall that in the case of a homomorphism φ of groups, the fibers of φ have the structure of a
group (that happens to be isomorphic to the image of φ by the First Isomorphism Theorem).
In this case, the kernel of φ is the identity of the associated quotient group. This naturally
led to the notion of a normal subgroup (i.e., those groups that correspond to kernels of ho-
momorphisms). Can we do the same sort of thing for rings?

Let φ : R→ S be a ring homomorphism with ker(φ) = I . Note that φ is also a group homo-
morphism of abelian groups and the fibers of φ are the cosets r + I . That is, if φ(r) = a, then
the fiber of φ over a is the coset φ−1(a) = r + I .

These cosets naturally have the structure of a ring isomorphic to the image of φ:

(r + I) + (s+ I) = (r + s) + I (1.1)
(r + I)(s+ I) = (rs) + I (1.2)

The reason for this is that if the fiber of a ∈ S is φ−1(a) = X and the fiber of b ∈ S is φ−1(b) = Y ,
then the fibers of a+ b and ab are X +Y and XY , respectively.

The corresponding ring of cosets is called the quotient ring of R by I = ker(φ) and is de-
noted by R/I . The additive structure of the quotient ring R/I is exactly the additive quotient
group of the additive abelian group R by the normal subgroup R (all subgroups are normal



in abelian groups). When I is the kernel of some ring homomorphism φ, the additive abelian
quotient group R/I also has a multiplicative structure defined in (2) above, making R/I into
a ring.

Question 1.26. Can we make R/I into a ring for any subring I?

The answer is “no” in general, just like in the situation with groups. But perhaps this isn’t
obvious because if I is an arbitrary subring of R, then I is necessarily an additive subgroup of
the abelian group R, which implies that I is an additive normal subgroup of the group R. It
turns out that the multiplicative structure of R/I may not be well-defined if I is an arbitrary
subring.

Let I be an arbitrary subgroup of the additive subgroup R. Let r + I and s + I be two arbitrary
cosets. In order for multiplication of the cosets to be well-defined, the product of the two
cosets must be independent of choice of representatives. Let r + α and s + β be arbitrary
representatives of r+I and s+I , respectively (α,β ∈ I), so that r+I = (r+α)+I and s+I = (s+β)+I .
We must have

(r +α)(s+ β) + I = rs+ I. (1.3)

This needs to be true for all possible choices of r, s ∈ R and α,β ∈ I . In particular, it must be
true when r = s = 0. In this case, we must have

αβ + I = I. (1.4)



But this only happens when αβ ∈ I . That is, one requirement for multiplication of cosets to
be well-defined is that I must be closed under multiplication, making I a subring.

Next, if we let s = 0 and let r be arbitrary, we see that we must have rβ ∈ I for every r ∈ R and
every β ∈ I . That is, it must be the case that I is closed under multiplication on the left by
elements from R. Similarly, letting r = 0, we can conclude that we must have I closed under
multiplication on the right by elements from R.

On the other hand, if I is closed under multiplication on the left and on the right by elements
from R, then it is clear that relation (4) above is satisfied.

It is easy to verify that if the multiplication of cosets defined in (2) above is well-defined, then
this multiplication makes the additive quotient group R/I into a ring (just check the axioms
for being a ring).

We have shown that the quotient R/I of the ring R by a subgroup I has a natural ring structure
iff I is closed under multiplication on the left and right by elements of R (which also forces I
be a subring). Such subrings are called ideals.

Definition 1.27. Let R be a ring and let I be a subset of R.

(1) I is a left ideal (respectively, right ideal) of R iff I is a subring and rI ⊆ I (respectively,
Ir ⊆ I) for all r ∈ R.

(2) I is an ideal (or two-sided ideal) iff I is both a left and a right ideal.



Here’s a summary of everything that just happened.

Theorem 1.28. Let R be a ring and let I be an ideal of R. Then the additive quotient group
R/I is a ring under the binary operations:

(r + I) + (s+ I) = (r + s) + I (1.5)
(r + I)(s+ I) = (rs) + I (1.6)

for all r, s ∈ R. Conversely, if I is any subgroup such that the above operations are well-
defined, then I is an ideal of R.

As you might expect, we have some isomorphism theorems.

Theorem 1.29 (First Isomorphism Theorem for Rings). If φ : R→ S is a ring homomorphism,
then ker(φ) is an ideal of R and R/ ker(φ) � φ(R).

If I and J are ideals of R, then it is easy to verify that I ∩ J , I + J = {a + b | a ∈ I,b ∈ J}, and
IJ = {finite sums of elements of the form ab for a ∈ I,b ∈ J} are also ideals of R. We also have
the expected Second, Third, and Fourth Isomorphism Theorems for rings.

The next theorem tells us that a subring is an ideal iff it is a kernel of a ring homomorphism.

Theorem 1.30. If I is any ideal of R, then the natural projection π : R → R/I defined via
π(r) = r + I is a surjective ring homomorphism with ker(π) = I .

For the remainder of this section, assume that R is a ring with identity 1 , 0.



Definition 1.31. Let A be any subset of R.

(1) Let (A) denote the smallest idea of R containing A, called the ideal generated by A. If A
consists of a single element, say A = {a}, then (a) := ({a}) is called a principal ideal.

(2) RA := {r1a1 + · · ·+ rnan | ri ∈ R,ai ∈ A,n ∈ Z+}, AR := {a1r1 + · · ·+ anrn | ai ∈ A,ri ∈ R,n ∈ Z+},
and RAR := {r1a1r

′
1 + · · ·+ rnanr ′n | ri, r ′i ∈ R,ai ∈ A,n ∈ Z

+}.

Note 1.32. The following facts are easily verified.

(1) (A) is the intersection of all ideals containing A.

(2) RA, AR, and RAR are the left, right, and two-sided ideals generated by A.

(3) If R is commutative, then RA = AR = RAR = (A).

(4) If R is commutative, then (a) = Ra = aR.

Example 1.33. Here are a couple of examples. The details are left as exercises.

(1) In Z, nZ = (n) = (−n). In fact, these are the only ideals in Z (since these are the only
subgroups). So, all the ideals in Z are principal. If m and n are positive integers, then
nZ ⊆mZ iff m divides n. Moreover, we have (m,n) = (d), where d is the greatest common
divisor of m and n.



(2) Consider the ideal (2,x) in Z[x]. Note that (2,x) = {2p(x) + xq(x) | p(x),q(x) ∈ Z[x]}. Then
(2,x) is the collection of polynomials from Z[x] that have even constant term. In par-
ticular, 2,x ∈ (2,x). However, there is no single polynomial in Z[x] that we can use to
generate both 2 and x that only produces polynomials with even constant terms.

Theorem 1.34. Let I be an ideal of R.

(1) I = R iff I contains a unit.

(2) Assume R is commutative. Then R is a field iff its only ideals are 0 and R.

Loosely speaking, the previous result says that fields are “like simple groups.”

Corollary 1.35. If R is a field, then every nonzero ring homomorphism from R into another
ring is an injection.



1.3 Maximal and Prime Ideals

This section of notes roughly follows Section 7.4 in Dummit and Foote. Throughout this
entire section, we assume that all rings have a multiplicative identity 1 , 0.

In this section of notes, we will study two important classes of ideals, namely maximal and
prime ideals, and study the relationship between them.

Definition 1.36. An idealM in a ring R is called a maximal ideal ifM , R and the only ideals
containing M are M and R.

Example 1.37. Here are a few examples. Checking the details is left as an exercise.

(1) In Z, all the ideals are of the form nZ for n ∈ Z+. The maximal ideals correspond to the
ideals pZ, where p is prime.

(2) Consider the integral domain Z[x]. The ideals (x) (i.e., the subring containing polynomi-
als with 0 constant term) and (2) (i.e, the set of polynomials with even coefficients) are
not maximal since both are contained in the proper ideal (2,x). However, as we shall see
soon, (2,x) is maximal in Z[x].

(3) The zero ring has no maximal ideals.

(4) Consider the abelian group Q under addition. We can turn Q into a trivial ring by
defining ab = 0 for all a,b ∈Q. In this case, the ideals are exactly the additive subgroups
of Q. However, Q has no maximal subgroups, and so Q has no maximal ideals.



The next result states that rings with an identity 1 , 0 always have maximal ideals. It turns
out that we won’t need this result going forward, so we’ll skip its proof. However, it is worth
noting that all known proofs make use of Zorn’s Lemma (equivalent to the Axiom of Choice),
which is also true for the proofs that a finitely generated group has maximal subgroups or
that every vector spaces has a basis.

Theorem 1.38. In a ring with 1, every proper ideal is contained in a maximal ideal.

For commutative rings, there is a very nice characterization about maximal ideals in terms of
the structure of their quotient rings.

Theorem 1.39. Assume R is commutative. The ideal M is maximal iff R/M is a field.

Example 1.40. We can use the previous theorem to verify whether an ideal is maximal.

(1) Recall that Z/nZ � Zn and that Zn is a field iff n is prime. We can conclude that nZ is a
maximal ideal precisely when n is prime.

(2) Define φ : Z[x] → Z via φ(p(x)) = p(0). Then φ is surjective and ker(φ) = (x). By the
First Isomorphism Theorem for Rings, we see that Z[x]/(x) � Z. However, Z is not a
field. Hence (x) is not maximal in Z[x]. Now, define ψ : Z → Z2 via ψ(x) = x mod 2
and consider the composite homomorphism ψ ◦φ : Z→ Z2. It is clear that ψ ◦φ is onto
and the kernel of ψ ◦φ is given by {p(x) ∈ Z[x] | p(0) ∈ 2Z} = (2,x). Again by the First
Isomorphism Theorem for Rings, Z[x]/(2,x) � Z2. Since Z2 is a field, (2,x) is a maximal
ideal.



Definition 1.41. Assume R is commutative. An ideal P is called a prime ideal if P , R and
whenever the product ab ∈ P for a,b ∈ R, then at least one of a or b is in P .

Example 1.42. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring is not
an integral domain?

Note 1.43. The notion of a prime ideal is a generalization of “prime” in Z. Suppose n ∈ Z+\{1}
such that n divides ab. In this case, n is guaranteed to divide either a or b exactly when n is
prime. Now, let nZ be a proper ideal in Z with n > 1 and suppose ab ∈ Z for a,b ∈ Z. In order
for nZ to be a prime ideal, it must be true that n divides either a or b. However, this is only
guaranteed to be true for all a,b ∈ Z when p is prime. That is, the nonzero prime ideals of Z
are of the form pZ, where p is prime. Note that in the case of the integers, the maximal and
nonzero prime ideals are the same.

Theorem 1.44. Assume R is a commutative ring. Then the ideal P is a prime ideal in R iff the
quotient ring R/P is an integral domain.

Corollary 1.45. Assume R is a commutative ring. Every maximal ideal of R is a prime ideal.

Example 1.46. Recall that Z[x]/(x) � Z. Since Z is an integral domain, it must be the case that
(x) is a prime ideal in Z[x]. However, as we saw in an earlier example, (x) is not maximal in
Z[x] since Z is not a field. This shows that the converse of the previous corollary is not true.



1.4 Rings of Fractions

This section of notes roughly follows Section 7.5 in Dummit and Foote.

Throughout this whole section, we assume that R is a commutative ring.

Note 1.47. We recall a few relevant facts.

(1) Theorem 1.11 (Cancellation Law) tells us that if ab = ac and a is neither 0 nor a zero
divisor, then b = c.

(2) Zero divisors are never units.

One upshot of the above is that ring elements that are not zero divisors possess some of the
behavior of units. The goal of this section is to prove that every commutative ring R is aways
a subring of a larger ring Q in which every nonzero element of R that is not a zero divisor is a
unit inQ. In particular, we can apply this to integral domains, in which caseQ will be a field.
This generalizes the construction of Q from Z.

Note 1.48. Recall that in Q, the fraction
a
b

is the equivalence class of order pairs (a,b) of
integers with b , 0 under the equivalence relation:

(a,b) ∼ (c,d) iff
a
b

=
c
d

iff ad = bc.



Also, every nonzero rational number
a
b

has multiplicative inverse
b
a

. That is, every nonzero
rational number is a unit, making Q a field. The integers Z are a subring of Q. But Z is an
integral domain, not a field.

Theorem 1.49. Let R be a commutative ring. Let D be any nonempty subset of R that does not
contain 0, does not contain any zero divisors, and is closed under multiplication. Then there
exists a commutative ring Q with 1 such that Q contains R as a subring and every element of
D is a unit in Q.

Theorem 1.50. Let R, D, andQ be as in Theorem 1.49. Then every element ofQ is of the form
rd−1 for some r ∈ R and d ∈D. In particular, if D = R \ {0}, then Q is a field.

Theorem 1.51. Let R, D, and Q be as in Theorem 1.49. Then Q is the smallest ring containing
R in which all elements of D become units, in the following sense. Let S be any commutative
ring with 1 and let φ : R→ S be any injective ring homomorphism such that φ(d) is a unit in
S for every d ∈D. Then there is an injective homomorphism Φ :Q→ S such that Φ |R= φ.

Definition 1.52. Let R, D, and Q be as in Theorem 1.49.

(1) The ring Q is called the ring of fractions of D with respect to R and is denoted D−1R.

(2) If R is an integral domain and D = R \ {0}, then Q is called the field of fractions (or
quotient field) of R.



Corollary 1.53. Let R be an integral domain and let Q be the field of fractions of R. If a
field F contains a subring R′ isomorphic to R, then the subfield of F generated by R′ (i.e., the
intersection of all the subfields of F containing R′) is isomorphic to Q.

Example 1.54. Here are a few quick examples.

(1) If R is a field, then its field of fractions is R itself.

(2) The field of fractions of Z is Q. The field of fractions of 2Z is also Q.

(3) Consider the polynomial ring Z[x]. Since Z is an integral domain, so is Z[x]. Then
the field of fractions of Z[x] is the set of rational functions (i.e., functions of the form
p(x)/q(x), where p(x) and q(x) are polynomials with integer coefficients and q(x) is not
the zero polynomial). Notice that this field contains the field of fractions of Z, namely
Q. However, it is interesting to point out that the field of fractions of Q[x] is the same as
the field of fractions of Z[x].



1.5 Principal Ideal Domains

This section of notes roughly follows Sections 8.1-8.2 in Dummit and Foote. Throughout this
whole section, we assume that R is a commutative ring.

Definition 1.55. Let R b a commutative ring and let a,b ∈ R with b , 0.

(1) a is said to be multiple of b if there exists an element x ∈ R with a = bx. In this case, b is
said to divide a or be a divisor of a, written b | a.

(2) A greatest common divisor of a and b is a nonzero element d such that

(a) d | a and d | b, and

(b) if d′ | a and d′ | b, then d′ | d.

A greatest common divisor of a and b will be denoted gcd(a,b) (or possibly (a,b)).

Note 1.56. Note that b | a in a ring R iff a ∈ (b) iff (a) ⊆ (b). In particular, if d is any divisor of
both a and b, then (d) must contain both a and b, and hence must contain (a,b). Moreover, if
d is a greatest common divisor iff (a,b) ⊆ (d) and if (d′) is any principal ideal containing (a,b),
then (d) ⊆ (d′).

The note above immediately proves the following result.

Theorem 1.57. If a and b are nonzero elements in the commutative ring R such that (a,b) = (d),
then d is a gcd of a and b.



Note 1.58. It is important to point out that the theorem above is giving us a sufficient condi-
tion, but it is not necessary. For example, (2,x) is a maximal ideal in Z[x] that is not principal.
Then Z[x] = (1) is the unique principal ideal containing both 2 and x, and so 1 is a gcd of 2
and x.

Theorem 1.59. Let R be an integral domain. If (d) = (d′), then d′ = ud for some unit u ∈ R. In
particular, if d and d′ are both gcds of a and b, then d′ = ud for some unit u ∈ R.

Proof. Easy exercise.

Definition 1.60. A principal ideal domain (PID) is an integral domain in which every ideal
is principal.

Example 1.61. Here are some short examples.

(1) Z is a PID.

(2) Z[x] is not a PID since (2,x) is not principal.

Theorem 1.62. Let R be a PID, a,b ∈ R \ {0}, and (d) = (a,b). Then

(1) d = gcd(a,b)

(2) d = ax+ by for some x,y ∈ R

(3) d is unique up to multiplication by a unit of R.



Proof. The result follows from Theorems 1.57 and 1.59.

Theorem 1.63. Every nonzero prime ideal in a PID is a maximal ideal.

Corollary 1.64. If R is a commutative ring such that the polynomial ring R[x] is a PID, then
R is necessarily a field.

Example 1.65. Here are a few quick examples.

(1) We already know that Z[x] is not a PID, but the above corollary tells us again that it isn’t
since Z is not a field.

(2) The polynomial ring Q[x] is an eligible PID and it turns out that it is. In fact, F[x] ends
up being a PID for every field F.

(3) The polynomial ring Q[x,y] turns out not to be a PID. The reason for this is that Q[x,y] =
(Q[x])[y] and Q[x] is not a field.



1.6 Euclidean Domains

This section roughly follows Sections 8.1 and 8.2 in Dummit and Foote. Throughout this
whole section, we assume that all rings are commutative.

The goal of this section is to study rings with a division algorithm. First, let’s recall the
division algorithm that you are familiar with in the integers.

Theorem 1.66 (Division Algorithm). If a,b ∈ Z and b , 0, then there exists unique q,r ∈ Z such
that

a = qb+ r,

where 0 ≤ r < |b|. In this case, we call q the quotient and r the remainder.

In order to generalize the Division Algorithm, we need the notion of a norm, which is essen-
tially a measure of “size” in a ring R.

Definition 1.67. Let R be an integral domain. Any function N : R→ Z+∪ {0} with N (0) = 0 is
called a norm on R. If N (a) > 0 for all a , 0, then N is called a positive norm.

Observe that it is possible for an integral domain to possess many different norms.

Definition 1.68. An integral domain R is called a Euclidean Domain (or is said to possess a
Division Algorithm) if there is a norm N on R such that for any two a,b ∈ R with b , 0, there
exists q,r ∈ R such that

a = qb+ r,

where either r = 0 or N (r) < N (b). In this case, we call q the quotient and r the remainder.



Example 1.69. If we use absolute value as our norm, the integers form a Euclidean Domain.
In this case, the corresponding division algorithm is the standard division algorithm.

As with the standard Division Algorithm, a Division Algorithm on a Euclidean Domain
yields a Euclidean Algorithm. For two elements a and b of a Euclidean Domain R, we can
obtain the following by successive “divisions” (where we really are doing division in the field
of fractions of R):

a = q0b+ r0
b = q1r0 + r1
r0 = q2r1 + r2
...

rn−2 = qnrn−1 + rn
rn−1 = qn+1rn

where rn is the last nonzero remainder. Such an rn exists since N (b) > N (r0) > N (r1) > · · · >
N (rn) is a decreasing sequence of nonnegative integers if the remainders are nonzero (and
such a sequence cannot be infinite).

Example 1.70. Here are two quick examples. Details left as an exercise.

(1) Every field is a Euclidean Domain, where we can take the norm to be whatever we like.
The reason for this is that for every a and b in the field with b , 0, we have a = qb + 0,
where q = ab−1.



(2) If F is a field, then the polynomial ring F[x] is a Euclidean Domain with norm given by
N (p(x)) = degree of p(x). The Division Algorithm for polynomials is just long division
of polynomials that you learn in precalculus. We will prove later that if R is not a field,
then R[x] cannot be a Euclidean Domain.

Theorem 1.71. Every ideal in a Euclidean Domain is principal. In particular, if I is any
nonzero ideal in the Euclidean Domain R, then I = (d), where d is any nonzero element of
I of minimum norm.

The above theorem immediately implies the following.

Corollary 1.72. Every Euclidean Domain is a PID.

The previous corollary yields the following, which we already knew was true.

Corollary 1.73. Every ideal in Z is principal.

Of course, we should immediately wonder if every PID is a Euclidean Domain. It turns out
that the answer is “no.”

Example 1.74. It turns out that the quadratic integer ring Z[(1 +
√
−19)/2] is a PID but not a

Euclidean Domain. For details, see the last example in Section 8.3 of Dummit and Foote.

We can use Theorem 1.71 to verify that some integral domains are not Euclidean Domains
(with respect to any norm).



Example 1.75. Details left as an exercise.

(1) Since the ideal (2,x) in Z[x] is not principal (see Example 1.33(2)), the polynomial ring
Z[x] cannot be a Euclidean Domain under any norm by Theorem 1.71.

(2) Consider the quadratic integer ring Z[
√
−5]. It turns out that the ideal I = (3,2 +

√
−5) is

not principal, which implies that Z[
√
−5] is not a Euclidean Domain under any norm by

Theorem 1.71.

Recall that the standard Euclidean Algorithm on Z produces the gcd of two nonzero inte-
gers. The next theorem tells us that gcds always exist in Euclidean Domains and that we can
compute them algorithmically. Before digesting the next theorem, it might be a good idea to
review Theorems 1.57, 1.59, and 1.62.

Theorem 1.76. Let R be a Euclidean Domain and let a,b ∈ R with a,b , 0. Let d = rn be the
last nonzero remainder obtained from the Euclidean Algorithm on R. Then

(1) d is a gcd of a and b;

(2) (d) = (a,b);

(3) There exists x,y ∈ R such that d = ax+ by.



Notice that we didn’t make any claims about the uniqueness of x and y in the previous theo-
rem. For the Euclidean Domain Z, it turns out that if x0 and y0 are solutions to the Diophan-
tine equation ax+ by =N , then every solution is of the form

x = x0 +m
b

gcd(a,b)

y = y0 −m
a

gcd(a,b)

where m ∈ Z. For more details, see a standard number theory book.

Notice that the equation ax + by = N is another way of saying that N is an element of the
ideal generated by a and b. However, this ideal is simply the principal ideal (d) (where d =
gcd(a,b)). That is, N ∈ (d), which implies that N is divisible by d. It follows that the equation
ax+ by =N is solvable in integers x and y iff N is divisible by the gcd of a and b.

It is important to point out that gcds exist in both PIDs and Euclidean Domains. However, an
advantage of Euclidean Domains is that we are guaranteed an algorithm for finding gcds.

It might be a good idea to run through an example of using the Euclidean Algorithm in case
you’ve never see it or forgotten how to do it.

Example 1.77. Compute the gcd of the integers a = 11391 and b = 5673 and then translate
the answer into the language of ideals.



1.7 Unique Factorization Domains

This section roughly follows Section 8.3 in Dummit and Foote. Throughout this whole sec-
tion, we assume that all rings are integral domains (unless we specify differently).

Recall that the Euclidean Algorithm is a method for determining the gcd of two nonzero el-
ements in the integers (or any Euclidean Domain). Another way to obtain the gcd of two
nonzero integers is to obtain the prime factorization of both and look for common factors.
Note that the Euclidean Algorithm is a fairly efficient method for obtaining a gcd, whereas
obtaining the prime factorization of a single integer is a hard problem in general. Nonethe-
less, we want to generalize the notion of “prime factorization” to other rings.

In this section, we will introduce a class of rings, called Unique Factorization Domains
(UFD), that allow factorization into primes as we would in the integers. The main result
of this section is that all PIDs are UFDs.

Definition 1.78. Let R be an integral domain.

(1) Suppose r ∈ R is nonzero and not a unit. Then r is called irreducible in R if whenever
r = ab with a,b ∈ R, at least one of a or b must be a unit. Otherwise, r is called reducible.

(2) The nonzero element p ∈ R is called prime in R if the ideal (p) is a prime ideal. That is,
p is prime iff whenever p | ab for any a,b ∈ R, p | a or p | b.



(3) Two elements a and b of R differing by a unit are said to be associate in R (i.e., a = ub for
some unit R.

An intermediate goal is to understand the relationship between irreducible and prime.

Example 1.79. In the integers, 6 and −6 are associates since −6 = −1 · 6 and −1 is a unit. In
general, two integers a and b are associates of one another iff a = ±b. In the integers, the
primes are the positive and negative primes from the natural numbers that you are familiar
with. Notice that in the integers, the primes and irreducibles are identical. However, this is
not always the case as we shall see.

Theorem 1.80. In an integral domain, a prime element is always irreducible.

It turns out that the converse is false.

Example 1.81. Consider the element 3 in the ring Z[
√
−5]. Suppose 3 = (a+ b

√
−5)(c + d

√
−5).

Then we must have ac−5bd = 3 and ad+bc = 0. One can check that the only integer solutions
to this system are a = 3,−3,1,−1 and c = 1,−1,3,−3, respectively and b = d = 0. This shows
that 3 is irreducible in Z[

√
−5]. However, notice that (2+

√
−5)(2−

√
−5) = 9, which is divisible

by 3. But neither 2 +
√
−5 nor 2−

√
−5 is divisible by 3 in Z[

√
−5]. Therefore, 3 is not prime in

Z[
√
−5].

Recall that in a commutative ring, every maximal ideal is also prime while the converse is
false (e.g., (x) is prime in Z[x] but not maximal). However, in a PID, nonzero ideals are prime
iff they are maximal (see Theorem 1.63). We have a similar relationship with prime and
irreducible elements.



Theorem 1.82. In a PID, a nonzero element is prime iff it is irreducible.

Example 1.83. Back in Part (2) of Example 1.75, we argued that Z[
√
−5] was not a Euclidean

Domain by claiming that Z[
√
−5] was not a PID, but we omitted the details. Since 3 is irre-

ducible but not prime in Z[
√
−5], the ring Z[

√
−5] cannot be a PID, which implies that Z[

√
−5]

is not a Euclidean Domain (by Theorem 1.71).

In Z, every integer n can be written as a product of primes. This decomposition is unique in
the sense that any two prime factorizations for n differ only in the order in which the positive
prime factors are written. The restriction to positive integers is so that we don’t have to think
of the factorizations (2)(3) and (−2)(−3) of 6 as different. Rings with an analogous property
are given a name.

Definition 1.84. A Unique Factorization Domain (UFD) is an integral domain R in which
every nonzero element r ∈ R that is not a unit has the following properties:

(1) The ring element r can be written as a product of irreducibles pi of R (not necessarily
distinct): r = p1p2 · · ·pn;

(2) The decomposition in (1) is unique up to associates: if r = q1q2 · · ·qm is another factoriza-
tion of r into irreducibles, then m = n and there is some renumbering of the factors so
that qi and pi are associates for all i.

Example 1.85. Details left as an exercise.



(1) In a field, every nonzero element is a unit. Hence there are no elements for which Con-
ditions (1) and (2) for a UFD must be verified.

(2) The ring Z[2i] = {a + 2bi | a,b ∈ Z}, where i2 = −1, is an integral domain. Note that the
elements 2 and 2i are irreducibles that are not associates in Z[2i] since i < Z[2i]. We see
that 4 = 2 ·2 = (2i) · (−2i) has two distinct factorizations in Z[2i]. This shows that Z[2i] is
not a UFD.

Since Z[2i]/(2i) � Z/4Z is not an integral domain, the ideal (2i) is not prime, which
implies that 2i is irreducible but not prime.

Notice that in the larger ring of Gaussian integers Z[i], 2 and 2i are associates since i is
a unit in this larger ring (with inverse −i).

(3) Consider the ring Z[
√
−5]. Notice that 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5) is two distinct

factorizations of 6 into irreducibles in Z[
√
−5]. Thus, Z[

√
−5] is not a UFD.

The next theorem is analogous to Theorem 1.82.

Theorem 1.86. In a UFD, a nonzero element is prime iff it is irreducible.

In a generic UFD, we can now use the terms “prime” and “irreducible” interchangeably. Typ-
ically, we will refer to “primes” in Z and “ irreducibles” in F[x].

Theorem 1.87. Let a and b be two nonzero elements of the UFD R and suppose

a = upe11 · · ·p
en
n and b = vpf11 · · ·p

fn
n



are prime factorizations for a and b, where u and v are units, the primes p1, . . . ,pn are distinct
and the exponents ei and fi are nonnegative. Then

d = pmin(e1,f1)
1 · · ·pmin(en,fn)

n ,

where d = 1 if all exponents are 0, is a gcd of a and b.

The next theorem is the punchline of this section. It’s proof takes a little bit work.

Theorem 1.88. Every PID is a UFD. In particular, every Euclidean Domain is a UFD.

Corollary 1.89 (Fundamental Theorem of Arithmetic). The integers are a UFD.

Example 1.90. Details left as an exercise.

(1) In the next section, we will prove that if F is a field, then F[x] is a Euclidean Domain.
Theorem 1.88 implies that F[x] is a UFD. As an example, Q[x] is a UFD.

(2) It turns out that R[x] is a UFD exactly when R is a UFD (we will prove this later). In
particular, Z[x] is a UFD. Notice that the properties of being a PID or Euclidean Domain
do not necessarily carry over from R to R[x].

Note 1.91. The upshot of what we have done to this point is the following chain of contain-
ments:

fields ⊂ Euclidean Domains ⊂ PIDs ⊂UFDs ⊂ integral domains,

where are all containments are strict.



1.8 More on Polynomial Rings

This section roughly follows Sections 9.1–9.5 in Dummit and Foote. Throughout this whole
section, we assume that all rings are commutative with identity 1 , 0.

First, let’s recall several facts about polynomial rings. Assume that R is at least an integral
domain.

(1) deg(p(x)q(x)) = deg(p(x)) + deg(q(x))

(2) The units of R[x] are exactly the units of R.

(3) R[x] is an integral domain.

(4) The quotient field of R[x] consists of all rational functions of the form p(x)/q(x), where
p(x),q(x) ∈ R[x] and q(x) , 0.

(5) If R[x] is a PID or Euclidean Domain, then R must be a field. (Corollary 1.64)

The next theorem describes a relationship between the ideals in R[x] and the ideals in R.

Theorem 1.92. Let I be an ideal in R and let (I) = I[x] denote the ideal of R[x] generated by I
(i.e., the set of polynomials with coefficients from I). Then

R[x]/(I) � (R/I)[x].

In particular, if I is a prime ideal of R, then (I) is a prime ideal of R[x].



Note 1.93. We cannot replace “prime” with “maximal” in the theorem above. That is, if I is a
maximal ideal of R, then (I) may not be maximal in R[x]. However, if I is maximal in R, then
the ideal of R[x] generated by I and x is maximal in R[x].

Example 1.94. Consider the ideal nZ of Z. The Theorem 1.92 tells us that

Z[x]/nZ[x] � Z/nZ[x]

and the natural projection map from Z[x] to Z/nZ[x] by reducing coefficients mod n is a ring
homomorphism. If n is composite, then the quotient ring is not an integral domain (since the
ring of coefficients is not an integral domain). However, if n is a prime p, then Z/pZ is a field,
and so Z/pZ[x] is an integral domain (in fact, a Euclidean Domain). Notice that the set of
polynomials whose coefficients are divisible by p is a prime ideal in Z[x].

Next, we look more closely at the case when the coefficient ring is a field. Let F be a field. We
can define a norm on F[x] by defining N (p(x)) = deg(p(x)) and N (0) = 0. The next theorem
makes the Division Algorithm in F[x] explicit.

Theorem 1.95. Let F be a field. The polynomial ring F[x] is a Euclidean Domain. More
specifically, if a(x),b(x) ∈ F[x] with b(x) , 0, then there exists unique q(x) and r(x) in F[x] such
that

a(x) = q(x)b(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(b(x)).



At the beginning of this section, we mentioned that if R[x] is a PID or Euclidean Domain,
then R is necessarily a field. The next corollary tells us that the converse is true.

Corollary 1.96. If F is a field, then F[x] is a PID and a UFD.

Example 1.97. Details left as an exercise.

(1) Recall that the ideal (2,x) is not principal in the ring Z[x]. However, Corollary 1.96
guarantees that the ring Q[x] is a PID since Q is a field. This implies that the ideal (2,x)
is principal in Q[x]. In fact, since 2 is a unit in Q[x], (2,x) = (1) = Q[x].

(2) If p is prime, the ring Z/pZ[x] obtained by reducing Z[x] mod the prime ideal (p) is a
PID since Z/pZ is a field. This example shows that the quotient of a ring that is not a
PID may be a PID. Notice that if p = 2, then the ideal (2,x) reduces to the ideal (x) in
Z/2Z[x], which is a proper maximal ideal. If p , 2, then 2 is a unit in the quotient, and
hence the ideal (2,x) reduces to the entire ring Z/pZ.

(3) The ring Q[x,y] is not a PID since Q[x,y] = Q[x][y] and Q[x] is not a field.

Let R be an integral domain and let F be its field of fractions. Then R[x] is an integral domain
that is a subring F[x], where F[x] is a Euclidean Domain (and hence PID and UFD). Sometimes
it is handy to perform computations in F[x] (e.g., factorizations of polynomials) and then cross
your fingers and hope that you can pass back to R[x].



For example, suppose p(x) ∈ R[x]. Since F[x] is a UFD, we can factor p(x) into a product of
irreducibles in F[x]. Can we factor p(x) into irreducibles in R[x]? In general, the answer is
“no”. Shit. However, as we shall see, if R happens to be a UFD, then we’re in luck.

Theorem 1.98 (Gauss’ Lemma). Let R be a UFD with field of fractions F and let p(x) ∈ R[x].
If p(x) = A(x)B(x) for nonconstant polynomials A(x),B(x) ∈ F[x], then there exist nonzero
elements r, s ∈ F such that rA(x) = a(x) and sB(x) = b(x) both lie in R[x] and p(x) = a(x)b(x) is a
factorization in R[x]. That is, if we can factor p(x) in F[x], then we can factor p(x) in R[x].

Note 1.99. A couple comments are in order.

(1) Note that we cannot prove that a(x) and b(x) are necessarily R-multiples of A(x) and
B(x), respectively. For example, consider x2 ∈ Q[x] with A(x) = 2x and B(x) = 1

2x. Then
x2 = A(x)B(x), but no integer multiples of A(x) and B(x) give a factorization of x2 in Z[x].

(2) The nonzero elements of R become units in the UFD F[x] and the units in F[x] are the
nonzero elements of F. For example, 7x factors in Z[x] into two irreducibles: 7 and x.
So, 7x is not irreducible in Z[x]. However, in Q[x], 7x is the unit 7 times the irreducible
x. Thus, 7x is irreducible in Q[x].

Corollary 1.100. Let R be a UFD with field of fractions F and let p(x) ∈ R[x]. Suppose the gcd
of the coefficients of p(x) is 1. Then p(x) is irreducible in R[x] iff it is irreducible in F[x]. In
particular, if p(x) is a monic polynomial that is irreducible in R[x], then p(x) is irreducible in
F[x].



And now for the moment you’ve all been waiting for.

Theorem 1.101. The ring R is a UFD iff R[x] is a UFD.

Corollary 1.102. If R is a UFD, then a polynomial ring in an arbitrary number of variables is
also a UFD.

Example 1.103. The polynomial rings Z[x],Q[x],Z[x,y], and Q[x,y] are all UFDs. Note that
Z[x] is an example of UFD that is not a PID. Since Z[

√
−5] is not a UFD (and hence not a PID

and not a Euclidean Domain), the polynomial ring (Z[
√
−5])[x] is not a UFD.

In light of Theorem 1.101, it is natural to wonder what the irreducible elements in R[x] look
like when R is a UFD. Note that a nonconstant monic polynomial is irreducible if it cannot be
factored as the product of two other polynomials of smaller degrees. In general, determining
whether a polynomial factors is a difficult problem. If R is a UFD, Gauss’ Lemma guarantees
that it is enough to consider factorizations in F[x], where F is the field of fractions of R.

The next theorem tackles the case when there is a linear factor. It tells us that polynomials
over a field behave in a way that we are familiar with.

Theorem 1.104. Let F be a field and let p(x) ∈ F[x]. Then p(x) has a factor of degree 1 iff p(x)
has a root in F.

Corollary 1.105. A polynomial of degree 2 or 3 over a field F is reducible iff it has a root in F.



The next result should look familiar from precalculus. Note that the theorem is stated in
terms of Z, but generalizes to R[x], where R is any UFD.

Theorem 1.106 (Rational Root Test). Let p(x) = anxn+ · · ·+a1x+a0 ∈ Z[x] with an , 0. If r/s ∈Q
is in lowest terms and r/s is a root of p(x), then r divides a0 and s divides an.

Corollary 1.107. Let p(x) = xn + · · · + a1x + a0 ∈ Z[x] with an , 0. If p(d) , 0 for all integers d
dividing a0, then p(x) has no roots in Q.

Example 1.108. Let’s tinker with a few examples.

(1) Consider the polynomial p(x) = x3 − 3x − 1 in Z[x]. We will argue that p(x) is irreducible
in Z[x]. By the Rational Root Test, the only eligible rational roots are integers that divide
the constant term 1, namely ±1. But p(±1) , 0. So, p(x) does not have any roots in Q,
which implies that p(x) is irreducible over Q by Corollary 1.105. Thus, p(x) is irreducible
over Z.

(2) Consider the polynomials x2 − p and x3 − p in Z[x], where p is prime. We claim that
both polynomials are irreducible. By the Rational Root Test, the only candidates for
(rational) roots are ±1 and ±p. But none of these are roots for either polynomial. By
Corollary 1.105, both polynomials are irreducible over Q.

(3) The polynomial x2 + 1 is reducible in Z/2Z[x] since 1 is a root. We see that x2 + 1 =
(x+ 1)(x+ 1) in Z/2Z[x].



(4) Consider the polynomial x2 + x+ 1 in Z/2Z[x]. In Z/2Z, 02 + 0 + 1 = 1 , 0 and 12 + 1 + 1 =
1 , 0. So, the polynomial does not have a root in Z/2Z. Once again, Corollary 1.105 tells
us that the polynomial is irreducible in Z/2Z[x]. The same approach works for x3 +x+ 1
in Z/2Z[x].

Notice that the approach in the examples above does not generalize to polynomials of larger
degree since it relies on having a linear factor. It is possible for a polynomial of degree 4 to
factor into two irreducible polynomials of degree 2, and hence have no linear factors. Occa-
sionally, the next result can be used to circumnavigate this difficulty.

Theorem 1.109. Let I be a proper ideal in the integral domain R and let p(x) be a nonconstant
monic polynomial in R[x]. If the image of p(x) in (R/I)[x] cannot be factored in (R/I)[x] into
two polynomials of smaller degree, then p(x) is irreducible in R[x].

Unfortunately, there are examples of polynomials in Z[x] that are irreducible but whose re-
ductions modulo every ideal are reducible, and so their irreducibility is not evident by the
previous theorem.

Example 1.110. Some details omitted.

(1) Consider the polynomial x2 + x + 1 in Z[x]. Reducing modulo 2, we see that x2 + x + 1
is irreducible in in Z/2Z[x] by Example 1.108(4). Then the previous theorem tells us
that the original polynomial is irreducible in Z[x]. The same approach works for the
polynomial x3 + x+ 1 in Z[x].



(2) The polynomial x2 + 1 is irreducible in Z[x] since it is irreducible in Z/3Z[x] (since it has
no root in Z/3Z). However, it is reducible mod 2 by Example 1.108(3). This shows that
the converse of the previous theorem is false.

Theorem 1.111 (Eisenstein’s Criterion). Let P be a prime ideal of the integral domain R and
let f (x) = xn + an−1x

n−1 + · · · + a1x + a0 with n ≥ 1. Suppose an−1, . . . , a1, a0 ∈ P while a0 < P
2.

Then f (x) is irreducible in R[x].

Eisenstein’s Criterion is most frequently applied to Z[x].

Corollary 1.112. Let p be a prime in Z and let f (x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x]

with n ≥ 1. Suppose p divides an−1, . . . , a1, a0 ∈ P while p2 does not divide a0. Then f (x) is
irreducible in Z[x] and Q[x].

Example 1.113. Some details omitted.

(1) The polynomial x4 + 10x + 5 in Z[x] is irreducible by Eisenstein’s Criterion (applied for
the prime 5).

(2) If a is any integer divisible by a prime p but not divisible by p2, then xn−a is irreducible
in Z[x] by Eisenstein’s Criterion. In particular, xn−p is irreducible for all positive integers
n. This implies that for n ≥ 2, the nth roots of p are not rational numbers.

The next result follows immediately from Theorems 1.63 and 1.82 (where F[x] is the corre-
sponding PID).



Theorem 1.114. Let F be a field. Then the maximal ideas in F[x] are the ideals (f (x)) generated
by irreducible polynomials f (x). In particular, F[x]/(f (x)) is a field iff f (x) irreducible.

Here’s one last for this section.

Theorem 1.115. Let F be a field. If the polynomial f (x) ∈ F[x] has roots α1, . . . ,αk in F (not
necessarily distinct), then f (x) has (x−α1) · · · (x−αk) as a factor. In particular, if deg(f (x)) = n,
then f (x) has at most n roots (even when counting multiplicity).
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