
2 Field Theory

This chapter loosely follows Chapter 13 of Dummit and Foote.

2.1 Field Extensions

We begin with a definition that you encountered on a previous homework problem.

Definition 2.1. Let R be a ring with 1 , 0. We define the characteristic of R, denoted Char(R),
to be the smallest positive integer n such that n·1

R

= 0 if such an n exists and to be 0 otherwise.

Note that n · 1
R

is an shorthand for
1
R

+ · · ·+1
R|        {z        }

n terms

.

The integer n may not even be in R.

Example 2.2. Here are a few quick examples.
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(1) The characteristic of the ring Z/nZ is n. In particular, if p is prime, then the field Z/pZ
has characteristic p. The polynomial ring Z/nZ[x] also has characteristic n.

(2) The ring Z has characteristic 0.

(3) The fields Q,R, and C all have characteristic 0.

(4) If F is a field with characteristic 0, then F[x] has characteristic 0.

The next theorem tells us what the possible characteristics are for integral domains.

Theorem 2.3. Let R be an integral domain. Then Char(R) is either 0 or a prime p.

Theorem 2.4. If R is an integral domain such that Char(R) = p (p prime), then

p ·↵ = ↵ + · · ·+↵|     {z     }
p terms

= 0.

Theorem 2.5. The characteristic of an integral domain is the same as its field of fractions.

It turns out that if F is a field, F either contains a subfield isomorphic toQ or Z/pZ depending
on whether Char(F) is 0 or p (for p prime). To see why this is true, define � : Z ! F via
�(n) = n · 1

F

, where we interpret (�n) · 1
F

= �(n · 1
F

) for positive n and 0 · 1
F

= 0. Then
ker(�) = Char(F)Z. The First Isomorphism Theorem for Rings tells us that there is an injection
of either Z or Z/pZ into F. This implies that F either contains a subfield isomorphic to Q or
Z/pZ, depending on the characteristic of F. In either case, this subfield is the smallest subfield
containing 1

F

, which we call the subfield generated by 1
F

.



The next definition makes sense in light of the discussion above.

Definition 2.6. The prime subfield of a field F is the subfield generated by 1
F

(i.e., the small-
est subfield of F containing 1

F

).

Note that the prime subfield of F is isomorphic to either Q or Z/pZ.
Example 2.7. Here are a couple quick examples.

(1) The prime subfield of both Q and R is Q.

(2) The prime subfield of the field of rational functions with coe�cients from the field Z/pZ
(denoted Z/pZ(x)) is isomorphic to Z/pZ.

Definition 2.8. If K is a field containing the subfield F, then K is said to be an extension field
(or simply an extension) of F, denoted K/F and read “K over F” (not be be confused with
quotients!). The field F is called the base field of the extension.

Note that every field is an extension of its prime subfield.

Note 2.9. If K/F is a field extension, then we can interpret K as a vector space over F. In this
case, K is the set of vectors and the scalars are coming from F.

Definition 2.10. The degree (or index) of a field extension K/F, denoted [K : F], is the dimen-
sion of K as a vector space over F (i.e., [K : F] = dim

F

(K)).

Example 2.11. For example, [C : R] = 2.

If we are given a polynomial p(x) in F[x], it is possible that p(x) does not have any roots in F.
It is natural to wonder if there is an extension K of F such that p(x) has roots in K .



For example, consider the polynomial x2 + 1 in R[x]. We know that this polynomial does not
have a root in R. However, this polynomial has roots in C.

Note that given any polynomial p(x) in F[x], any root of a factor of p(x) is also a root of p(x).
It is enough to consider the case where p(x) is irreducible.

Theorem 2.12. Let F be a field and let p(x) 2 F[x] be an irreducible polynomial. Then there
exists a field K containing an isomorphic copy of F in which p(x) has a root. Identifying F

with this isomorphic copy shows that there exists an extension of F in which p(x) has a root.

In the proof of the above theorem, we took K = F[x]/(p(x)) (where p(x) is irreducible). Since F
is a subfield of K , there is a basis of K as a vector space over F. The next theorem makes this
explicit.

Theorem 2.13. Let F be a field and let p(x) 2 F[x] be an irreducible polynomial of degree n

over F and letK = F[x]/(p(x)). Define ✓ = x mod (p(x)) 2 K . Then the elements 1,✓,✓2
, . . . ,✓

n�1

are a basis for K as a vector space over F. In particular, [K : F] = n and

K = {a0 + a1✓ + · · ·+ a

n�1✓
n�1 | a0, a1, . . . , an�1 2 F},

which is the set of all polynomials of degree less than n in ✓.

The previous theorem provides a nice description of the elements in K = F[x]/(p(x)) (p(x)
irreducible). Adding these elements is as simple as adding like terms. However, in order to
be a ring, we also need to be able to multiply. The next corollary gives us some assistance in
doing this.



Corollary 2.14. Let K be as in the previous theorem and let a(✓), b(✓) 2 K be two polynomials
in ✓ of degree less than n. Then a(✓)b(✓) = r(✓), where r(x) is the remainder of degree less
than n obtained after dividing the polynomial a(x)b(x) by p(x) in F[x].

Example 2.15. Here are a few examples.

(1) Let p(x) = x

2 + 1. Since p(x) is irreducible over R and of degree 2, R[x]/(p(x)) is a field
extension of R of degree 2 by Theorem 2.13. In a recent homework assignment, you
proved that R[x]/(p(x)) is isomorphic to C (which has a basis of rank 2 over R). As
expected, p(x) has a root in C. The elements of R[x]/(p(x)) are of the form a + b✓ for
a,b 2 R. Addition is defined by

(a+ b✓) + (c + d✓) = (a+ c) + (b + d)✓.

To multiply, we use the fact that ✓2 + 1 = 0, or equivalently ✓

2 = �1. Note that �1 is the
remainder when x

2 is divided by x

2 + 1 in R[x]. Then

(a+ b✓)(c + d✓) = ac + (ad + bc)✓ + bd✓

2

= ac + (ad + bc)✓ � bd
= (ac � bd) + (ad + bc)✓

This shouldn’t come as a surprise as this is exactly how we add and multiply in C where
we swap out ✓ for i. In other words, the map from R[x]/(p(x)) to C defined by a+ b✓ 7!
a + bi is an isomorphism. In fact, we could have defined C exactly as R[x]/(p(x)) (which
shows that imaginary numbers aren’t so imaginary).



(2) In the example above, we could replace R with Q to obtain the field extension Q(i) of Q
of degree 2 containing a root i of x2 + 1.

(3) Let p(x) = x

2 � 2. Then p(x) is irreducible over Q by Eisenstein’s Criterion (with prime
2). We obtain a field extension of Q of degree 2 containing a square root ✓ of 2, denoted
Q(✓). If we denote ✓ by

p
2, the elements of this field are of the form a + b

p
2, where

a,b 2Q. In this case, addition and multiplication are defined as expected.

(4) Consider p(x) = x

3 � 2 2 Q[x]. Then p(x) is irreducible over Q by Eisenstein’s Criterion
(with prime 2). Let ✓ be a root of p(x). Then

Q[x]/(x3 � 2) � {a+ b✓ + c✓

2 | a,b,c 2Q},

where ✓3 = 2. This is an extension of degree 3. Let’s find the inverse of 1+✓ in this field.
Since p(x) is irreducible, it is relatively prime to every polynomial of smaller degree.
Thus, by the Euclidean Algorithm in Q[x], there are polynomials a(x) and b(x) in Q[x]
such that

a(x)(1 + x) + b(x)(x3 � 2) = 1.

In the quotient field, this equation tells us that a(✓) is the inverse of 1+✓ (since b(x)(x3�
2) 2 (p(x))). Actually carrying out the Euclidean Algorithm yields a(x) = 1

3(x
2�x+1) and

b(x) = �13. This implies that

(1 +✓)�1 =
✓

2 �✓ +1
3

.



(5) Let p(x) = p

n

x

n + p

n�1xn�1 + · · · + p1x + p0 be an irreducible polynomial over a field F.
Suppose ✓ 2 K is a root of p(x). Notice that

✓(p
n

✓

n�1 + p

n�1✓
n�2 + · · ·+ p1) = �p0.

Since p(x) is irreducible, p0 , 0. This implies that

✓

�1 = � 1
p0

(p
n

✓

n�1 + p

n�1✓
n�2 + · · ·+ p1) 2 K.

(6) Consider p(x) = x

2 + x + 1 2 Z/2Z[x]. In Example 1.108(4), we verified that p(x) is irre-
ducible over Z/2Z. Then

Z/2Z[x]/(p(x)) � {a+ b✓ | a,b 2 Z/2Z} = Z/2Z(x),

where ✓

2 = �✓ � 1 = ✓ + 1. This is extension of Z/2Z of degree 2. The extension field
contains 4 elements. Multiplication is defined by

(a+ b✓)(c + d✓) = ac + (ad + bc)✓ + bd✓

2

= ac + (ad + bc)✓ + bd(✓ +1)
= (ac + bd) + (ad + bc + bad)✓.

Definition 2.16. Let K be an extension of the field F and let ↵,�, . . . 2 K . Then the smallest
subfield of K containing both F and the elements ↵,�, . . ., denoted F(↵,�, . . .) is called the field
generated by ↵,�, . . . over F.



Definition 2.17. If the field K is the generated by a single element ↵ over F, K = F(↵), then K

is said to be a simple extension of F and the element ↵ is called a primitive element for the
extension.

Theorem 2.18. Let F be a field and let p(x) 2 F[x] be an irreducible polynomial. Suppose K is
an extension field of F containing a root ↵ of p(x). Let F(↵) denote the subfield of K generated
over F by ↵. Then

F(↵) = F[x]/(p(x)).

Note 2.19. The previous theorem tells us that any field over F in which p(x) contains a root
contains a subfield isomorphic to the extension of F constructed in Theorem 2.12. In addition,
this field is (up to isomorphism) the smallest extension of F containing such a root.

Corollary 2.20. Let F and p(x) be as in the previous theorem and suppose deg(p(x)) = n. Then

F(↵) = {a0 + a1↵ + a2↵
2 + · · ·+ a

n�1↵
n�1 | a0, a1, . . . , an�1 2 F} ✓ K.

Example 2.21. Here are two more examples.

(1) Since
p
2,�
p
2 are roots of x2 � 2, Q(

p
2) � Q[x]/(x2 � 2) � Q(�

p
2). Note that Q(

p
2) =

{a+ b

p
2+ | a,b 2Q} as we saw in an earlier example.

(2) Similarly, since 3p2 is a root of x3�2, Q( 3p2) �Q[x]/(x3�2). Note that Q( 3p2) = {a+b

3p2+
c( 3p2)3 | a,b,c 2 Q}. The only real root of x3 � 2 is 3p2, but there are two other roots of



x

3 � 2, namely
3p2

 �1± i
p
3

2

!
.

The fields generated by these two roots are subfields of C but not R. In both cases, the
fields are isomorphic to Q[x]/(x3 � 2).

Theorem 2.22. Let � : F ! F

0 be an isomorphism of fields. Then we can extend � to an
isomorphism from F[x] to F

0[x]. Let p(x) be an irreducible polynomial in F[x] and let p0(x) be
the corresponding irreducible polynomial in F

0[x]. Let ↵ be a root of p(x) (in some extension
of F) and let � be any root of p0(x) (in some extension of F 0). Then there exists an isomorphism
of fields � : F(↵)! F

0(�) such that �(↵) = �.



2.2 Algebraic Extensions

Throughout this section, assume F is a field and let K be an extension of F.

Definition 2.23. The element ↵ 2 K is said to be algebraic over F if ↵ is a root of some nonzero
polynomial f (x) 2 F[x]. If ↵ is not algebraic over F, then ↵ is called transcendental over F.
The extension K/F is called algebraic if every element of K is algebraic over F.

Example 2.24. Here are a few short examples.

(1) Every field F is algebraic over itself. For ↵ 2 F, ↵ is a root of the polynomial x �↵ 2 F[x].

(2) The real number
p
2 is algebraic over Q since it is a root of the polynomial x2 � 2 2Q[x].

(3) The complex number i is algebraic overQ since it is a root of the polynomial x2+1 2Q[x].

(4) It turns out that the real number ⇡ is transcendental overQ since there is no polynomial
inQ[x] having ⇡ as a root. However, ⇡ is algebraic over R since it is a root of x�⇡ 2 R[x].

Theorem 2.25. Let ↵ be algebraic over F. Then there exists a unique monic irreducible poly-
nomial m

↵,F

(x) 2 F[x] that has ↵ as a root. Moreover, a polynomial f (x) 2 F[x] has ↵ as a root
i↵ m

↵,F

(x) divides f (x) in F[x].

Definition 2.26. The polynomial m
↵,F

(x) is called theminimal polynomial for ↵ over F. The
degree of m

↵,F

(x) is called the degree of ↵.



The next theorem follows immediately from 2.18.

Theorem 2.27. Let ↵ be algebraic over F. Then

F(↵) � F[x]/(m
↵,F

(x))

and [F(↵) : F] = deg(m
↵,F

(x)) = deg(↵).

Theorem 2.28. This got combined with Theorem 2.25.

Corollary 2.29. If L/F is an extension of fields and ↵ is algebraic over both F and L, then
m

↵,L

(x) divides m
↵,F

(x) in L[x].

Corollary 2.30. A monic polynomial f (x) 2 F[x] with ↵ as a root is equal to m

↵,F

(x) i↵ f (x) is
irreducible over F.

Example 2.31. Here are a couple of examples.

(1) Consider the polynomial xn � 2 2 Q[x] with n > 1. This polynomial is irreducible over
Q by Eisenstein’s Criteria (with prime 2). Then the positive nth root of 2, denoted by
n

p
2 in R, is a root. By Corollary 2.30, xn � 2 is the minimal polynomial of n

p
2 and by

Theorem 2.27, [Q( n

p
2) :Q] = n. In particular, the minimal polynomial of

p
2 is x2�2 andp

2 is of degree 2.



(2) Consider the polynomial x3 � 3x � 1 2 Q[x]. By the Rational Root Test, the only possible
roots of this polynomial are ±1. However, neither of these numbers are roots. Since the
polynomial is of degree 3, it must be irreducible over Q. This implies that if ↵ is a root
of x3 � 3x � 1, then x

3 � 3x � 1 is the minimal polynomial of ↵ and [Q(↵) :Q] = 3.

Theorem 2.32. The element ↵ is algebraic over F i↵ the simple field extension F(↵)/F is finite.
More specifically, if ↵ is an element of an extension of degree n over F, then ↵ satisfies a
polynomial of degree at most n over F and if ↵ satisfies a polynomial of degree n over F, then
the degree of F(↵) over F is at most n.

Corollary 2.33. If the extension K/F is finite, then it is algebraic.

Theorem 2.34. Let K/F and L/K be field extensions. Then [L : K][K : F] = [L : F].

Corollary 2.35. Suppose L/F is a finite field extension and letK be any subfield of L containing
F (F ✓ K ✓ L). Then [K : F] divides [L : F].

Example 2.36. Here are two examples.

(1) By the Intermediate Value Theorem, the polynomial p(x) = x

3 � 3x � 1 has a real root
between 0 and 2. Actually, it has one such root. Let’s call it ↵.

In Example 2.31(b), we argued that p(x) is the minimal polynomial of ↵ over Q and that
[Q(↵) :Q] = 3. Is it possible that

p
2 is an element of Q(↵)? The answer is no.



Arguing that
p
2 is not equal to a linear combination of 1,↵,↵2 would be annoying.

Thankfully, there is an easier way.

We already know that [Q(
p
2) : Q] = 2 (since

p
2 has minimal polynomial x2 � 2 over Q).

If
p
2 is an element ofQ(↵), thenQ ✓Q(

p
2) ✓Q(↵). However, 2 does not divide 3, which

implies that Q(
p
2)*Q(↵).

(2) Let 6p2 be the positive real 6th root of 2. It is quickly seen that x6 � 2 is the minimal
polynomial of 6p2 over Q. This implies that [Q( 6p2) :Q] = 6.

Notice that ( 6p2)3 =
p
2. Then Q(

p
2) ⇢ Q( 6p2). By the multiplicity of the degrees of the

extensions, it must be the case that [Q( 6p2) : Q(
p
2)] = 3. This implies that the minimal

polynomial of 6p2 over Q(
p
2) is of degree 3. We see that the polynomial x3 �

p
2 is a

monic polynomial of degree 3 over Q(
p
2) that has 6p2 as a root. It follows that x3�

p
2 is

the minimal polynomial of 6p2 over Q(
p
2) (and hence irreducible).

Observe that showing x

3 �
p
2 is irreducible directly would not be an easy task.

Definition 2.37. Afield extensionK/F isfinitely generated if there are elements ↵1, . . . ,↵k

2 K
such that K = F(↵1, . . . ,↵k

).

Theorem 2.38. Let F be a field. Then F(↵,�) = (F(↵))(�).



Example 2.39. Consider the field Q(
p
2,
p
3). Since

p
3 is of degree 2 over Q, [Q(

p
2,
p
3) :

Q(
p
2)] is at most 2. In fact, [Q(

p
2,
p
3) : Q(

p
2)] = 2 i↵ x

2 � 3 is irreducible over Q(
p
2). But

x

2�3 is irreducible i↵ it does not have a root inQ(
p
2). That is, x2�3 is reducible i↵

p
3 2Q(

p
2).

Suppose
p
3 = a+b

p
2 for some a,b 2Q. Squaring both sides, we obtain 3 = (a2 +2b2)+2ab

p
2.

We consider 3 cases. First, suppose ab , 0. In this case, we can write
p
2 as a rational number,

which is impossible. Now, assume b = 0. Then we have
p
3 = a 2 Q, which is absurd. Lastly,

assume a = 0. Then
p
3 = b

p
2. This implies that

p
6 = 2b 2 Q, which is a contradiction sincep

6 is not rational.

We have shown that
p
3 < Q(

p
2). Thus, x2 � 3 is irreducible over Q(

p
2), and so [Q(

p
2,
p
3) :

Q(
p
2)] = 2. It follows that [Q(

p
2,
p
3) : Q] = 2 · 2 = 4. We have also shown that {1,

p
2,
p
3,
p
6}

is a basis for Q(
p
2,
p
3) over Q.

Theorem 2.40. The field extension K/F is finite i↵ K is generated by a finite number of alge-
braic elements over F. More precisely, a field generated over F by a finite number of algebraic
elements of degrees n1, . . . ,nk is algebraic of degree less than or equal to n1 · · ·nk.
Corollary 2.41. Suppose ↵ and � are algebraic over F. Then ↵ ±�,↵�,↵/� (for � , 0), and ↵

�1

(for ↵ , 0) are all algebraic.
Corollary 2.42. Let L/F be an arbitrary field extension. Then the collection of elements of L
that are algebraic over F form a subfield K of L.

Example 2.43. Consider the field extension C/Q. Recall that the degree of this extension is
the dimension of C as a vector space over Q. We will argue that this degree is infinite. Let Q



be the subfield of all elements of C that are algebraic over Q. Notice that for each n > 1, the
positive nth root of 2, namely n

p
2, is an element of Q. Recall that the minimal polynomial

of n

p
2 over Q is xn � 2, and hence [Q( n

p
2) : Q = n. This implies that [Q : Q] � n for all n > 1.

But then Q is an infinite algebraic extension of Q, called the field of algebraic numbers. It
follows that [C :Q] is infinite.

Consider the subfield Q \R, which is the set of all real numbers that are algebraic over Q.
Since Q is countable, the number of polynomials of degree n is countable. This implies that
the number of algebraic elements of R of degree n is countable, and hence the number of
real numbers that are algebraic over Q is countable. Since R is uncountable, there must be
uncountably many real numbers that are transcendental over Q.

In general, it is di�cult to determine whether a given real number is algebraic (over Q). It is
know that ⇡ and e are transcendental (over Q).

Theorem 2.44. If K is algebraic over F and L is algebraic over K , then L is algebraic over F.

Definition 2.45. Let K1 and K2 be two subfields of a field K . Then the composite field of K1
and K2, denoted K1K2 is the smallest subfield of K containing both K1 and K2. Similarly, we
can define the composite of any collection of subfields of K .

Theorem 2.46. Let K1 and K2 be two finite extensions of a field F contained in field K . Then

[K1K2 : F]  [K1 : F][K2 : F]



with equality i↵ an F-basis for one of the fields remains linearly independent over the other
field. If ↵1, . . . ,↵n

and �1, . . . ,�m are bases of K1 and K2 over F, respectively, then the elements
↵

i

�

j

span K1K2 over F.

Corollary 2.47. Suppose [K1 : F] = n, [K2 : F] =m in the previous theorem, where m and n are
relatively prime. Then [K1K2 : F] = [K1 : F][K2 : F] = nm.



2.3 Splitting Fields

Throughout this section, assume F is a field.
In Section 2.2, we saw that given any polynomial f (x) 2 F[x], there exists a field K containing
an isomorphic copy of F in which f (x) has a root, say ↵. The upshot is that f (x) has a linear
factor x �↵ in K[x]. This idea motivates the following definition.

Definition 2.48. The extension field K of F is called splitting field for the polynomial f (x) 2
F[x] if f (x) factors completely into linear factors (i.e., splits completely) in K[x] and f (x) does
not factor completely into linear factor over any proper subfield of K containing F.

By Theorem 1.115, if f (x) is of degree n, then f (x) has at most n roots in K . This polynomial
will have exactly n roots (counting multiplicities) in K i↵ f (x) splits completely in K[x].

Theorem 2.49. If f (x) 2 F[x], then there exists an extension K of F that is a splitting field for
f (x).

The previous theorem guarantees that splitting fields exist for all polynomials (over fields).
Later in this section, we will see that any two splitting fields for the same polynomial are
isomorphic, which allows us to refer to the splitting field of a polynomial.

Definition 2.50. If K is an algebraic extension of F that is the splitting field over F for a
collection of polynomials f (x) 2 F[x], then K is called a normal extension of F.

Example 2.51. Here are a few short examples.



(1) The splitting field of x2 � 4 over Q is Q itself.

(2) The field Q(
p
2) is the splitting for x2�2 over Q since the two roots ±

p
2 are in Q and no

proper Q(
p
2) contains these two roots.

(3) Consider the polynomial (x2�2)(x2�3) 2Q[x]. The roots of this polynomial are ±
p
2,±
p
3.

The corresponding splitting field is Q(
p
2,
p
3), which is an extension of degree 4 over Q.

Let’s draw the corresponding lattice of know subfields. Does it look like anything we’ve
seen before?

(4) Next, consider the polynomial x3 � 2 2Q[x]. You might think that Q( 3p2) is the splitting
field. However, as we saw in Example 2.21(2), x3�2 also has two non-real roots, namely

3p2
 �1+ i

p
3

2

!
and 3p2

 �1� i
p
3

2

!
.

But Q( 3p2) is a subfield of R, so it cannot be the splitting field of x3 � 2. In fact, the
splitting field of x3 � 2, call it K , is obtained by adjoining all three roots to Q.

Note that since K contains 3p2 and the first complex root above, K contains their quotient

�1+
p
�3

2
,



which implies that K contains the element
p
�3. On the other hand, if K contains 3p2 andp

�3, then certainly K contains the three roots of x3�2. We have argued that Q( 3p2,
p
�3)

is the splitting field of x3 � 2 over Q.

We claim that [Q( 3p2,
p
�3) : Q] = 6. To see why this is true, notice that

p
�3 is a root

of x2 + 3, which implies that [Q( 3p2,
p
�3) : Q( 3p2)] is at most 2. But since Q( 3p2) is not

the splitting field of x3 � 2 over Q, it must be the case that [Q( 3p2,
p
�3) : Q( 3p2)] = 2. By

Theorem 2.34, we have

[Q( 3p2,
p
�3) :Q] = [Q( 3p2,

p
�3) :Q( 3p2)][Q( 3p2) :Q] = 2 · 3 = 6.

Let’s draw the corresponding lattice of known subfields. Any observations?

(5) In the previous example, the degree of the splitting field might have been larger than
what you expected. Here’s an example that has degree smaller than what you might
expect. Consider the polynomial x4 + 4 over Q. It turns out that

x

4 + 4 = (x2 + 2x +2)(x2 � 2x +2),

which shows that x4 + 4 is not irreducible over Q. However, since the two quadratic
factors above are irreducible overQ (by Eisenstein’s Criterion), none of the roots of x4+4
lie inQ. Using the quadratic formula, we find that the roots are ±1± i. It follows that the
splitting field for x4 + 4 over Q is Q(i), which is an extension of degree 2.



Theorem 2.52. A splitting field of a polynomial of degree n over F is of degree at most n!
over F.

Example 2.53. Let’s explore the splitting field of xn � 1 over Q.

In the example above, we introduced the following definitions.

Definition 2.54. The roots of xn�1 are called the nth roots of unity. A generator of the cyclic
group of all nth roots of unity is called a primitive nth root of unity. We often use ⇣

n

to
represent a primitive nth root of unity. The field Q(⇣

n

) is called the cyclotomic field of nth
roots of unity.

Example 2.55. Let’s explore the splitting field of xp � 2 over Q, where p is a prime.

Theorem 2.56. Let � : F! F

0 be an isomorphism of fields. Let f (x) 2 F[x] and let f 0(x) 2 F 0[x]
be the polynomial obtained by applying � to the coe�cients of f (x). Let E be the splitting
field of f (x) over F and let E0 be the splitting field of f 0(x) over F 0. Then the isomorphism of
� extends to an isomorphism � : E! E

0 (i.e., � |
F

= �).

Corollary 2.57 (Uniqueness of Splitting Fields). Any two splitting fields for a polynomial
f (x) 2 F[x] over a field F are isomorphic.

The rest of this section is devoted to discussion of field extensions of a field F that contain all

the roots of all polynomials over F. We state a few results without proof (see Section 13.4 of
Dummit and Foote if you are interested in the details).



Definition 2.58. A field F is called an algebraic closure of F if F is algebraic over F and if
every polynomial f (x) 2 F[x] splits completely over F (i.e., F contains all the elements that
are algebraic over F).

Definition 2.59. A field K is said to be algebraically closed if every polynomial with coe�-
cients in K has a root in K .

It isn’t obvious that algebraically closed fields should even exist nor that there exists an alge-
braic closure of a given field.

Theorem 2.60. Let F be an algebraic closure of F. Then F is algebraically closed.

All known proofs of the following result use Zorn’s Lemma.

Theorem 2.61. For any field F, there exists an algebraically closed field K containing F.

Theorem 2.62. Let K be an algebraically closed field and let F be a subfield of K . Then the
collection of elements F ofK that are algebraic over F is an algebraic closure of F. An algebraic
closure of F is unique up to isomorphism.

The hope is that we will prove the following result later in the course. Purely analytic proofs
exist.

Theorem 2.63 (Fundamental Theorem of Algebra). The field C is algebraically closed.

Corollary 2.64. The fieldC contains an algebraic closure for any of its subfields. In particular,
Q is the collection of complex numbers algebraic over Q.



2.4 Separable and Inseparable Extensions

Throughout this section, assume F is a field.

Let f (x) 2 F[x] be a polynomial with leading coe�cient a
n

. Over a splitting field for f (x) we
have the factorization

f (x) = a

n

(x �↵1)n1(x �↵1)n2 · · · (x �↵k

)nk,

where ↵1, . . . ,↵k

are distinct elements of the splitting field and n

i

� 1 for all i. A root ↵
i

is
called a multiple root if n

i

> 1 and is called a simple root if n
i

= 1. The integer n
i

is called
multiplicity of the root ↵

i

.

Definition 2.65. A polynomial over F is called separable if it has no multiple roots (i.e., all
roots are distinct). A polynomial that is not separable is called inseparable.

Example 2.66. The polynomial x2 � 3 is separable over Q while the polynomial x2 + 2x + 1 is
inseparable over Q.

Definition 2.67. The derivative of the polynomial

f (x) = a

n

x

n + a

n�1x
n�1 + · · ·+ a1x + a0 2 F[x]

is defined to be the polynomial

D

x

[f (x)] = na

n

x

n�1 + (n� 1)a
n�1x

n�2 + · · ·+2a2x + a1 2 F[x].



This definition agrees with the ordinary notion of a derivative from calculus. However, it is
purely algebraic and be applied to a polynomial over an arbitrary field F. The usual derivative
formulas hold:

• D

x

[f (x) + g(x)] =D

x

[f (x)] +D

x

[g(x)]

• D

x

[c · f (x)] = c ·D
x

[f (x)]

• D

x

[f (x)g(x)] =D

x

[f (x)]g(x) + f (x)D
x

[g(x)]

Theorem 2.68. A polynomial f (x) has a multiple root ↵ i↵ ↵ is also a root of D
x

[f (x)], i.e.,
f (x) and D

x

[f (x)] are both divisible by the minimal polynomial for ↵. In particular, f (x) is
separable i↵ gcd(f (x),D

x

[f (x)]) = 1.

Example 2.69. Here are two quick examples.

(1) The polynomial xn �1 has derivative nxn�1. Over any field of characteristic not dividing
n, including characteristic 0, this polynomial has only the root 0 (of multiplicity n � 1),
which is not a root of xn �1. This implies that xn �1 is separable and there are n distinct
nth roots of unity, which we already saw in the case F =Q.

(2) If F is of characteristic p and p divides n, then there are fewer than n distinct roots of
unity over F. In this case, the derivative is identically 0 since n = 0 in F. In fact, every
root of xn � 1 is multiple in this case.



Corollary 2.70. Every irreducible polynomial over a field of characteristic 0 is separable. A
polynomial over such a field is separable i↵ it is the product of distinct irreducible polynomi-
als.

Theorem 2.71. Suppose f (x) 2 F[x] is irreducible over F. Then the polynomial f (x) is insepa-
rable i↵ D

x

[f (x)] = 0.

Theorem 2.72. Let F be a field of characteristic p. Then for any a,b 2 F, (a+ b)p = a

p + b

p and
(ab)p = a

p

b

p. Moreover, the map � : F ! F given by �(a) = a

p is an injective field homomor-
phism.

The map � defined in the previous theorem is called the Frobenius endomorphism (which
means that it better be onto).

Corollary 2.73. Suppose F is a finite field of characteristic p. Then every element of F is a pth
power in F.

Theorem 2.74. Every irreducible polynomial over a finite field F of characteristic p is separa-
ble. A polynomial in F[x] is separable i↵ it is the product of distinct irreducible polynomials
in F[x].

The proof of the previous theorem suggests the following definition.

Definition 2.75. A field K of characteristic p is called perfect if every element of K is a pth
power in K . Any field of characteristic 0 is also called perfect.



Theorem 2.76. Every irreducible polynomial over a perfect field is separable.

Remark 2.77. If the field K is not perfect, then there are inseparable irreducible polynomials.

Example 2.78. Let’s tinker with x

p

n � x over Z/pZ, where p is prime.

Theorem 2.79. Let p(x) be an irreducible polynomial over a field F of characteristic p. There
there exists a unique integer k � 0 and a unique irreducible separable polynomial p

sep

(x) 2
F[x] such that p(x) = p

sep

(xp
k

).

Definition 2.80. The degree of p
sep

(x) in the last theorem is called the separable degree of
p(x), denoted deg

s

(p(x)). The integer p

k is called the inseparable degree of p(x), denoted
deg

i

(p(x)).

Theorem 2.81. Let p(x) be an irreducible polynomial over a field F of characteristic p. Then
p(x) is separable i↵ deg

i

(p(x)) = 1 i↵ deg(p(x)) = deg
s

(p(x)). Also, we always have

deg(p(x)) = deg
s

(p(x))deg
i

(p(x)).

Example 2.82. Here are two short examples.

(1) Consider the polynomial f (x) = x

p � t over Z/pZ(t). This polynomial is irreducible by
Eisenstein’s Criterion (using the prime ideal (t) in Z/pZ(t)). Also, D

x

[f (x)] = 0 since
Z/pZ(t) has characteristic p. This implies that f (x) is inseparable by Theorem 2.71. It is
easy to see that f

sep

(x) = x � t, so that deg
s

(f (x)) = 1 and deg
i

(f (x)) = p. We see that there
is a single root of multiplicity p: xp � t = (x � p

p
t)p.



(2) For comparison, the polynomial g(x) = x

p

m � t over Z/pZ(t) is irreducible with the same
separable polynomial as f (x) above, but with inseparability degree of pm.

Definition 2.83. A field K is said to be separable (or separably algebraic) over F is every
element of K is the root of a separable polynomial (equivalently, the minimal polynomial
over F of every element of K is separable). A field that is not separable is called inseparable.

For finite extensions of perfect fields, the minimal polynomial of an algebraic element is
irreducible, and hence separable (by Theorem 2.76). This immediately yields the following
result.

Corollary 2.84. Every finite extension of a perfect field is separable. In particular, every finite
extension of either Q or a finite fields is separable.
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