
3 Galois Theory

3.1 Definitions and Examples

This section of notes roughly follows Section 14.1 in Dummit and Foote.

Let F be a field and let f (x) 2 F[x]. In the previous chapter, we proved that there always
exists a finite extension K of F that contains the roots of f (x). The big idea of Galois Theory
(named after Évariste Galois, 1811–1832) is to consider the relationship between the group of
permutations of the roots of f (x) and the algebraic structure of its splitting field. The explicit
connection is given by the Fundamental Theorem of Galois Theory, which we will prove in the
next section.

In this section, we introduce all of the necessary terminology.

Definition 3.1. Let K be a field. The collection of all automorphisms of K is denoted Aut(K).
An automorphism � 2 Aut(K) is said to fix ↵ 2 K if �(↵) = ↵. If S ✓ K , then � is said to fix S if
it fixes all the elements of S (i.e., �(↵) = ↵ for all ↵ 2 S).
Note that Aut(K) , ; since the identity map is an automorphism, called the trivial automor-
phism.

Recall that the prime subfield of K is generated by 1. Moreover, every � 2 Aut(K) satisfies
�(0) = 0 and �(1) = 1. It follows that � fixes the prime subfield of K . In particular, Aut(Q) and
Aut(Zp) only contain the trivial automorphism.

Definition 3.2. Let K/F be an extension of fields and let Aut(K/F) be the collection of auto-
morphisms of K that fix F.

Note that if F is the prime subfield of K , then Aut(K/F) = Aut(K) since every automorphism of
K fixes its prime subfield.

Theorem 3.3. For every field K , the set Aut(K) is a group under function composition. If K/F
is an extension of fields, then Aut(K/F) is a subgroup of Aut(K).

Theorem 3.4. Let K/F be an extension of fields and let ↵ 2 K be algebraic over F. Then for
any � 2 Aut(K/F), �(↵) is a root of the minimal polynomial for ↵ over F (i.e., Aut(K/F) per-
mutes the roots of irreducible polynomials). Equivalently, any polynomial with coe�cients in
F having ↵ as a root has �(↵) as a root.

Example 3.5. Here are two examples.

(1) Consider Q(
p
2). If � 2 Aut(Q(

p
2)) = Aut(Q(

p
2)/Q), then �(

p
2) is either

p
2 or �

p
2

since these are the only two roots of the minimal polynomial for
p
2. It follows that for

a,2Q,�(a+b
p
2) is equal to either a+b

p
2 or a�b

p
2 (since � fixesQ). Themap determined

by
p
2 7!

p
2 is the identity automorphism. Themap determined by

p
2 7! �

p
2 is the only

other map in Aut(Q(
p
2)) = Aut(Q(

p
2)/Q). This implies that Aut(Q(

p
2)) = Aut(Q(

p
2)/Q)

is a cyclic group of order. 2

(2) Now, consider K = Q( 3
p
2). Let ⌧ 2 Aut(K/Q). Then ⌧ is completely determined by its

action on 3
p
2:

⌧(a+ b
3
p
2+ c( 3

p
2)2) = a+ b⌧( 3

p
2) + c⌧( 3

p
2)2.
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Recall that the other two roots of x3 � 2 are not elements of K . However, ⌧( 3
p
2) 2 K and

must be a root of x3 � 2. It follows that ⌧( 3
p
2) = 3

p
2. Therefore, ⌧ must be the identity

map, and so Aut(K/Q) is the trivial group.

In general, if K is generated over F by some collection of elements, then any automorphism
� 2 Aut(K/F) is uniquely determined by what it does to the generators. If K/F is finite, then K
is finitely generated over F by algebraic elements, so by the previous theorem, the number of
automorphisms of K that fix F is finite. That is, Aut(K/F) is a finite group. In particular, the
automorphisms of a finite extension can be considered as permutations of the roots of a finite
number of equations, but not every permutation of the roots gives rise to an automorphism (as
in the previous example).

We can also associate to each group of automorphisms a field extension.

Theorem 3.6. Let H  Aut(K), where K is a field. Then the collection F of elements of K fixed
by all the elements of H is a subfield of K .

Remark 3.7. In the previous theorem, H need not be a subgroup.

Definition 3.8. If H  Aut(K), then the subfield fixed by H is called the fixed field of H .

Theorem3.9. The association of groups to fields and fields to groups defined above is inclusion
reversing, namely

(1) If F1 ✓ F2 ✓ K are two subfields of K , then Aut(K/F2)  Aut(K/F1), and

(2) If H1 H2  Aut(K) are two subgroups of automorphisms with associated fixed fields F1
and F2, respectively, then F2 ✓ F1.

Example 3.10. Let’s return to the previous examples.

(1) The fixed field of Aut(Q(
p
2)/Q) is just Q.

(2) Since Aut(Q( 3
p
2)/Q) is the trivial group, every element ofQ( 3

p
2) is fixed by Aut(Q( 3

p
2)/Q),

and so the fixed field of Aut(Q( 3
p
2)/Q) is Q( 3

p
2).

Here’s the current summary of the big picture. Given a subfield F of K , the associated group
is the collection of automorphisms of K that fix F. On the other hand, given a group of au-
tomorphisms of K , the associated extension is defined by taking F to be the fixed field of the
automorphisms.

In Example 3.5(1), starting with the subfield Q of Q(
p
2) one obtains the group {1,�} (where

� :
p
2 7! �

p
2) and starting with the group {1,�} one obtains the subfield Q. In this case, we

get a “duality” between the two concepts.

In Example 3.5(2), starting with the subfieldQ ofQ( 3
p
2), we only get the trivial group. Starting

with the trivial group, we can’t “drop down” from Q( 3
p
2) to obtain Q. The shortcoming in this

example is that there are not enough automorphisms to force the fixed field to be Q.

The next theorem provides us with a bound on the size of the automorphism groups associated
to a splitting field of a single polynomial.

Theorem 3.11. Let E be the splitting field of the polynomial f (x) 2 F[x]. Then

|Aut(K/F)|  [E : F]

with equality if f (x) is separable over F.

More generally, it is true that |Aut(K/F)|  [E : F] for any finite extension. We will prove this
later.
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Definition 3.12. Let K/F be a finite extension. Then K is said to be Galois over F and K/F is
called aGalois extension if |Aut(K/F)| = [K : F]. If K/F is Galois, Aut(K/F) is called theGalois
group of K/F, denoted Gal(K/F).

The next result follows immediately from Theorem 3.11 and the definition of Galois extension.
In the next section, we will see that the converse is also true.

Corollary 3.13. If K is the splitting field over F of a separable polynomial f (x), then K/F is
Galois.

Note that the splitting field of any polynomial f (x) is the same as the splitting field of the
product of irreducible factors of f (x) (i.e., remove any repeated factors of f (x)). The latter
polynomial is separable by Corollary 2.70. Corollary 3.13 implies that the splitting field of
any polynomial over Q is Galois.

Definition 3.14. If f (x) is a separable polynomial over F, then the Galois group of f (x) over
F is the Galois group of the splitting field of f (x) over F.

Example 3.15. Let’s play with a few examples.

(1) Previous calculations showed us that |Aut(Q(
p
2)/Q)| = 2 = [Q(

p
2) : Q]. Thus, Q(

p
2)/Q

is a Galois extension. In this case, the Galois group Gal(Q(
p
2)/Q) is isomorphic to Z2.

Moreover, the Galois group of the separable polynomial f (x) = x2 � 2 is Gal(Q(
p
2)/Q).

(2) Any quadratic extension K of any field F of characteristic di↵erent from 2 is Galois.

(3) The extension Q( 3
p
2)/Q is not Galois since its group of automorphisms does not have

order equal to [Q( 3
p
2) :Q] = 3.

(4) Let’s tinker with Q(
p
2,
p
3)/Q, where Q(

p
2,
p
3) is the splitting field of (x2 � 2)(x2 � 3).

(5) Let’s play the same game with the splitting field of x3 � 2 over Q.

(6) As in (3), the field Q( 4
p
2) is not Galois over Q since any automorphism is determined

by where it sends 4
p
2 and of the four possibilities {± 4

p
2,±i 4
p
2}, only two are in the field

Q( 4
p
2) (the two real roots). Note that the degree 2 extensions Q(

p
2)/Q and Q( 4

p
2)/Q(

p
2)

are both Galois extensions (since both are quadratic extensions; see (2)). This shows that
a Galois extension of a Galois extension need not be Galois.
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3.2 The Fundamental Theorem of Galois Theory

This section of notes roughly follows Section 14.2 in Dummit and Foote.

In the examples we’ve looked at so far, every time we’ve had a Galois extension, there was a
nice 1-1 correspondence between the subgroups of the Galois group and the lattice of fixed
subfields of the extension. Moreover, the correspondence has been inclusion reversing. It
turns out that we always have this correspondence whenever we have a Galois extension. This
is exactly the content of the Fundamental Theorem of Galois Theory. In order to prove this
amazing theorem, we need to develop some more tools.

Definition 3.16. A (linear) character � of a group G with values in the field L is a homomor-
phism from G to the multiplicative group of L:

� : G! L⇥.

That is, �(g1g2) = �(g1)�(g2) for all g1, g2 2 G and �(g) , 0 for all g 2 G. A collection of charac-
ters �1, . . . ,�n of G are said to be linearly independent over L if they are linearly independent
as functions on G, i.e., if there is no nontrivial relation

a1�1 + · · ·+ an�n = 0

with a1, . . . , an 2 L not all 0 as a function on G.

Theorem 3.17. If �1, . . . ,�n are distinct characters of G with values in L, then they are linearly
independent over L.

Consider an injective homomorphism � of a field K into a field L, called an embedding of
K into L. Then � is an injective group homomorphism from G = K⇥ into L⇥, and so � is a
character of G = K⇥ with values in L⇥. Since we know that �(0) = 0, � viewed as a character
contains all of the information about � as an injective field homomorphism on K .

Corollary 3.18. If �1, . . . ,�n are distinct embeddings of a field K into a field L, then they are
linearly independent as functions on K . In particular, distinct automorphisms of K are linearly
independent as functions on K .

Theorem 3.19. Let K be a field, G = {�1 = 1,�2, . . . ,�n}  Aut(K), and F be the field fixed by G.
Then

[K : F] = n = |G|.
Recall that Theorem 3.11 tells us that if K is the splitting field over F of the polynomial f (x) 2
F[x], then |Aut(K/F)| is bounded by [K : F] (with equality if f (x) is separable). The next result
tells us that we have the same bound for any finite extension K/F.

Corollary 3.20. Let K/F be any finite extension. Then

|Aut(K/F)|  [K : F]

with equality i↵ F is the fixed field of Aut(K/F). That is, K/F is Galois i↵ F is the fixed field of
Aut(K/F).

Corollary 3.21. Let G be a finite subgroup of automorphisms of a field K and let F be the
corresponding fixed field. Then every automorphism of K fixing F is contained in G, i.e.,
Aut(K/F) = G, so that K/F is Galois with Galois group G.

Corollary 3.22. If G1 , G2 are distinct finite subgroups of automorphisms of a field K , then
their fixed fields are also distinct.

By the corollaries above, we see that taking the fixed fields for distinct finite subgroups of
Aut(K) gives distinct subfields of K over which K is Galois. Moreover, the degrees of the
extensions are given by the orders of the subgroups. A portion of the Fundamental Theorem
of Galois Theory states that these are all of the subfields of K .
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The next theorem provides the converse for Theorem 3.11.

Theorem 3.23. The extension K/F is Galois i↵ K is the splitting field of a separable polynomial
over F. Furthermore, if this is the case, then every irreducible polynomial in F[x] that has a root
in K is separable and has all of its roots in K (so in particular, K/F is a separable extension).

Definition 3.24. Let K/F be a Galois extension. If ↵ 2 K , the elements �(↵) for � 2 Gal(K/F)
are called the conjugates (or Galois conjugates of ↵ 2 K . If E is a subfield of K containing F,
the field �(E) is called the conjugate field of E over F.

The proof of Theorem 3.23 shows us that in a Galois extension K/F, the other roots of the
minimal polynomial over F of any element ↵ 2 K are precisely the conjugates of ↵ under the
Galois group of K/F.

The second statement in Theorem 3.23 tells us that K is not Galois over F if we can find an
irreducible polynomial in F[x] having a root in K but not all of its roots in K . Loosely speaking,
Galois extensions are extensions with just enough distinct roots of irreducible polynomials.

For convenience, let’s put all of our characterizations of Galois extensions K/F in one place.

(1) Fields with [K : F] = |Aut(K/F)| (Definition 3.12)

(2) Splitting fields of separable polynomials over F (Corollary 3.13/Theorem 3.23)

(3) Fields where F is precisely the set of elements fixed by Aut(K/F) (Corollary 3.20)

(4) Finite, normal, and separable extensions (Theorem 3.23)

We are finally ready to tackle the Fundamental Theorem of Galois Theory.

Theorem 3.25 (Fundamental Theorem of Galois Theory). Let K/F be a Galois extension. Then
there is a bijection

{subfields E of K containing F}$ {subgroups H of Gal(K/F)}

Given by the correspondences

E 7! {the elements of G fixing E}
{the fixed field of H} 7!H

which are inverses of each other. Under this correspondence, we have the following:

(1) If E1,E2 correspond to H1,H2, respectively, then E1 ✓ E2 i↵ H2 H1

(2) [K : E] = |H | and [E : F] = [Gal(K/F) :H].

(3) K/E is always Galois with Galois group Gal(K/E) =H .

(4) E is Galois over F i↵ H is a normal subgroup in Gal(K/F). If this is the case, then the
Galois group is isomorphic to the quotient group:

Gal(E/F) �Gal(K/F)/H

More generally, even if H is not necessarily normal in Gal(K/F), the isomorphisms of E
(into a fixed algebraic closure of F containing K) that fix F are in one-to-one correspon-
dence with the cosets {�(H)} of H in Gal(K/F).

(5) If E1,E2 correspond to H1,H2, respectively, then the intersection E1 \ E2 corresponds to
the group hH1,H2i and the composite subfield E1E2 corresponds to H1 \H2. Hence the
lattice of subfields of K containing F and the lattice of subgroups of Gal(K/F) are dual.
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Example 3.26. We conclude this section by tinkering with three examples.

(1) Q(
p
2,
p
3)/Q

(2) Q( 3
p
2,⇣3)/Q

(3) Splitting field of x8 � 2 over Q
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