
4 Module Theory

4.1 Definitions and Examples

This section of notes roughly follows Section 10.1 in Dummit and Foote.

Let’s start with the definition of a module.

Definition 4.1. Let R be a ring (not necessarily commutative nor with 1). A left R-module (or
left module over R) is a set M together with

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, R ⇥M !M) denoted by rm, for all r 2 R and for all m 2M
that satisfies.

(a) (r + s)m = rm+ sm for all r, s 2 R and m 2M ,

(b) (rs)m = r(sm) for all r, s 2 R and m 2M , and

(c) r(m+n) = rm+ rn all r 2 R and m,n 2M .

(d) If R has a 1, then we also require: 1m =m for all m 2M .

We analogously define right R-modules. If R is commutative and M is a left R-module, then
we can make it a right R-module by defining mr = rm for all r 2 R and m 2 M . Notice that
we cannot do this in general if R is not commutative since Axiom (2b) may fail. Unless we
explicitly say otherwise, all modules will be left modules. Modules satisfying Axiom (2d) are
call unital modules. We will assume that all our modules are unital.

The axioms for a module should look familiar. If R is a field, the axioms are precisely those for
a vector space over R.

We emphasize that an abelian group M may have many di↵erent R-module structures for a
fixed ring R (in the same way a group G could act in many ways as a permutation group of
some fixed set S).

Definition 4.2. Let R be a ring and letM be an R-module. An R-submodule ofM is a subgroup
N of M that is closed under the action of ring elements, i.e., rn 2N for all r 2 R and n 2N .

As expected, submodules of M are just subsets of M that are themselves modules under the
same action. In particular, if R is a field, submodules are just vector subspaces. Every R-
module has at least two submodules: M and {0}. The latter is often written as just 0 and called
the trivial submodule.

Example 4.3. Let’s see some examples.

(1) Let R be any ring. ThenM = R is a left R-module, where the action of a ring element on a
module element is just usual ring multiplication. In this case, the submodules of M = R
are the left ideals of R.

(2) A special case of the first example is what R is a field. Then R is 1-dimensional vector
space over itself.
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(3) More generally, if R = F is a field, every vector space over F is an F-module and vice
versa. Let n 2 Z+ and let

Fn = {(a1, . . . , an) | ai 2 F for all i}.

We can make Fn into an n-dimensional vector space by defining addition and scalar
multiplication in the standard way.

(4) Let R be a ring with 1 and let n 2 Z+. As above, define

Rn = {(a1, . . . , an) | ai 2 R for all i}.

We can make Rn an R-module by defining addition and multiplication by elements of R
in the same manner as when R was a field. The module Rn is called the free module of
rank n over R.

(5) The same abelian groupM may have the structure of a module for several di↵erent rings
R. In particular, if M is an R-module and S is a subring of R with 1R = 1S , then M is
automatically an S-module. For example, the field R is an R-module, a Q-module, and a
Z-module.

(6) IfM is an R-module and for some 2-sided ideal I of R, am = 0 for all a 2 I and m 2M , we
sayM is annihilated by I . In this case, we can makeM into an (R/I )-module by defining
an action of the quotient ring R/I on M . For each m 2M and coset r + I 2 R/I , define

(r + I )m = rm.

Since am = 0 for all a 2 I and m 2M , this is well-defined. In the special case that I is a
maximal ideal in a commutative ring R and IM = 0, M is a vector space over the field
R/I .

(7) Z-modules...

(8) F[x]-modules...

Theorem 4.4 (Submodule Criterion). Let R be a ring and let M be an R-module. A subset N
of M is a submodule of M i↵

(1) N , ;, and

(2) x + ry 2N for all r 2 R and x,y 2N .

Definition 4.5. Let R be a commutative ring with 1. An R-algebra is a ring A with identity
together with a ring homomorphism f : R! A mapping 1R ! 1A such that the subring f (R)
of A is contained in the center of A (i.e., the set of all elements of A that commute with every
element of A).

If A is an R-algebra, then it is easy to verify that A has a natural left and right unital R-module
structure defined by r · a = a · r = f (r)a, where f (r)a is just the multiplication in the ring A
(which is the same as af (r) since f (r) lies in center). In general, it is possible for an R-algebra
A to have other left (or right) R-module structures. Unless stated otherwise, we assume the
natural module structure on the algebra will be assumed.
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Here is an alternate definition.

Definition 4.6. Let R be a commutative ring with 1. An R-algebra is a ring A that is also an
R-module such that the multiplication map A⇥A! A is R-bilinear, that is,

r ⇤ (ab) = (r ⇤ a) · b = a · (rb)

for all a,b 2 A and r 2 R, where denotes the R-action on A.

Loosely speaking, the definition above says that an R-algebra is an R-module, where we are
also allowed to multiply the module elements.

Theorem 4.7. Definitions 4.5 and 4.6 are equivalent.

Example 4.8. Here are a few quick examples. Throughout assume that R is a commutative
ring with 1.

(1) Any ring with 1 is a Z-algebra.

(2) Let A be any ring with 1A. If R is a subring of the center of A containing 1A, then A is an
R-algebra under f (r) = r1A for r 2 R. For example, the polynomial ring R[x1, . . . ,xn] is an
R-algebra.

(3) The group ring R[G] for a finite group G is an R-algebra.

(4) If A is an R-algebra, then the R-module structure of A depends only on the subring
f (R) contained in center of A. If we replace R by its image f (R), we see that up to ring
homomorphism, every algebraA arises from a subring of the center ofA that contains 1A.

(5) In the special case that R = F is a field, F is isomorphic to its image under f , so we can
identify F itself as a subring of A. So, saying that A is an algebra over a field F is the same
as saying that the ring A contains the field F in its center and the identity of A and of F
are the same.

Definition 4.9. If A and B are two R-algebra, an R-algebra homomorphism (respectively,
isomorphism) is a ring homomorphism (respectively, isomorphism) � : A! B such that

(1) �(1A) = 1B

(2) �(r · a) = r ·�(a) for all r 2 R and a 2 A.
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4.2 Quotient Modules and Module Homomorphisms

This section of notes roughly follows Section 10.2 in Dummit and Foote.

There are no big surprises in this section. Essentially, everything works out exactly as you
think it should.

Definition 4.10. Let R be a ring and let M and N be R-modules.

(1) Amap � :M!N is an R-module homomorphism if it respects the R-module structures
of M and N :

(a) �(x + y) = �(x) +�(y) for all x,y 2M ;

(b) �(rx) = r�(x) for all r 2 R and x 2M .

(2) An R-module homomorphism is an isomorphism if it is both injective and surjective. In
this case, we say that M and N are isomorphic and write M �N .

(3) If � :M!N is an R-module homomorphism, define the kernel of � via

ker(�) := {x 2M | �(x) = 0}

and the image of � via

�(M) := {y 2N | �(x) = y for some x 2M}.

(4) Let M and N be R-modules and define HomR(M,N ) to be the set of all R-module homo-
morphisms from M into N .

Remark 4.11. Every R-module homomorphism is always a group homomorphism of abelian
groups. However, not every group homomorphism of abelian groups yields an R-module ho-
momorphism.

Theorem 4.12. If � :M ! N is an R-module homomorphism, then ker(�) is an R-submodule
of M and �(N ) is an R-submodule of N .

Example 4.13. Let’s see some examples.

(1) If R is a field, then R-module homomorphisms are linear transformations.

(2) If R is a ring and M = R is a module over itself, then R-module homomorphisms (even
from R to itself) need not be ring homomorphisms and vice versa. For example, when
R = Z, the Z-module homomorphism  : x 7! 2x is not a ring homomorphism. When
R = F[x] for some field F, the ring homomorphism � : f (x) 7! f (x2) is not an F[x]-module
homomorphism since x2 = �(x) = �(x · 1) = x�(1) = x is a contradiction.

(3) If R is a ring andM = Rn, then the projection map ⇡i : Rn! R given by �i(x1, . . . ,xn) = xi
is a surjective R-module homomorphism with kernel equal to the submodule of n-tuples
that have a zero in position i.

(4) For Z-modules, Condition (a) of being a module homomorphism forces Condition (b).
This implies that Z-module homomorphisms are the same as abelian group homomor-
phisms.

(5) Let R be a ring, let I be a 2-sided ideal of R and suppose M and N are R-modules an-
nihilated by I (i.e., am = 0 and an = 0 for all a 2 I , n 2 N , and m 2 M). Any R-module
homomorphism from N to M is then automatically a homomorphism of R/I-modules
(see Example 4.3(6)). For example, if A is an additive abelian group such that for some
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prime p, px = 0 for all x 2 A, then any group homomorphism from A to itself is a Z/pZ-
module homomorphism, i.e., a linear transformation over the field Zp. In particular, the
group of all group homomorphisms of A is the group of invertible linear transformations
from A to itself: GL(A).

Theorem 4.14. Let M,N , and L be R-modules.

(1) A map � : M ! N is an R-module homomorphism i↵ �(rx + y) = r�(x) + �(y) for all
x,y 2M and r 2 R.

(2) Let �, 2HomR(M,N ). Define � + via

(� + )(m) = �(m) + (m)

for all m 2 M . Then � +  2 HomR(M,N ) and with this operation HomR(M,N ) is an
abelian group. If R is a commutative ring, then for r 2 R, define r� via

(r�)(m) = r(�(m))

for m 2M . Then r� 2 HomR(M,N ) and with this action of the commutative ring R, the
abelian group HomR(M,N ) is an R-module.

(3) If � 2HomR(L,M) and  2HomR(M,N ), then  �� 2HomR(L,N ).

(4) With addition as above and multiplication as function composition, HomR(M,M) is a
ring with 1. When R is commutative, HomR(M,M) is an R-algebra.

Definition 4.15. The ring HomR(M,M) is called the endomorphism ring of M and may be
denoted by EndR(M). Elements of EndR(M) are called endomorphisms.

When R is commutative, there is a natural map from R into EndR(M) given by r 7! rI , where
the latter endomorphisms of M is just multiplication by r on M . The image of R is contained
in the center of EndR(M), so if R has an identity, EndR(M) is an R-algebra. The ring homomor-
phism from R to EndR(M) may not be injective since for some r 2 R, we may have rm = 0 for
all m 2M (e.g., R = Z, M = Z/2Z, and r = 2).

When R is a field, this map is injective (no unit is in the kernel) and the copy of R in EndR(M)
is called the subring of scalar transformations.

Recall that if G is a group and H  G, then we can form the quotient group G/H exactly when
H is a normal subgroup of G. However, if G is abelian, then every subgroup is normal. In the
case of a module M , every submodule is automatically a normal subgroup of M . We wish to
show that we can always form the quotient module M/N for any submodule N .

Theorem 4.16. Let R be a ring, let M be an R-module, and let N be a submodule of M . The
(additive, abelian) quotient group M/N can be made into an R-module by defining an action
of elements of R by

r(x +N ) = (rx) +N,

for all r 2 R and x +N 2M/N . The natural projection ⇡ :M !M/N defined by ⇡(x) = x +N is
an R-module homomorphism with kernel N .

Definition 4.17. Let A and B be submodules of the R-module M . The sum of A and B is the
set

A+B = {a+ b | a 2 A,b 2 B}.
Theorem 4.18. Let A and B be submodules of the R-module M . Then A + B is the smallest
submodule of M that contains both A and B and A\ B is the largest submodule of M that is
contained in both A and B.
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All the isomorphism theorems stated for groups also hold for R-modules.

Theorem 4.19 (Isomorphism Theorems for Modules). Let M and N be R-modules.

(1) (First) Let � : M ! N be an R-module homomorphism. Then ker(�) is a submodule of
M and M/ ker(�) � �(M).

(2) (Second) If A and B are submodules of M , then (A+B)/B � A/(A\B).

(3) (Third) If A and B are submodules of M such that A ✓ B, then (M/A)/(B/A) �M/B.

(4) (Fourth) Let N be a submodule of M . There is a bijection between the submodules of
M that contain N and the submodules of M/N . The correspondence is given by A $
A/N , for all A ◆N . This correspondence commutes with the process of taking sums and
intersections (i.e., is a lattice isomorphism between the lattice of submodules of M/N
and the lattice of submodules of M that contain N ).
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4.3 Generation of Modules, Direct Sums, and Free Modules

This section of notes roughly follows Section 10.3 in Dummit and Foote.

Let R be a ring with 1. We begin with a series of definitions.

Definition 4.20. Let M be an R-module and N1, . . . ,Nn be submodules of M .

(1) The sum of N1, . . . ,Nn is the set of all finite sums of elements from the set Ni :

N1 + · · ·+Nn := {a1 + · · ·+ an | ai 2Ni}.

(2) For any subset A of M , let

RA := {r1a1 + · · ·+ rmam | r1, . . . , rm 2 R,a1, . . . , am 2 A,m 2 Z+}
By the convention RA = {0} if A = ;. If A is the finite set {a1, . . . , an}, we write Ra1+· · ·+Ran
for RA. If N is a submodule ofM (possibly N =M) and N = RA, for some subset A ofM ,
we call A a set of generators or generating set for N , and we say N is generated by A.

(3) A submoduleN ofM (possiblyN =M) is finitely generated if there is some finite subset
A of M such that N = RA, that is, if N is generated by some finite subset.

(4) A submodule N of M (possibly N = M) is cyclic if there exists an element a 2 M such
that N = Ra, that is, if N is generated by one element:

N = Ra = {ra | r 2 R}.

Remark 4.21.

(1) These definitions do not require R to contain a 1. However, this condition ensures that A
is contained in RA.

(2) For any subset A ofM , it’s easy to check that RA is the smallest submodule ofM contain-
ing A.

(3) For submodules N1, . . . ,Nn, N1 + · · ·+Nn is the submodule generated by N1 [ · · ·[Nn and
is the smallest submodule containing all Ni . If N1, . . . ,Nn are generated by A1, . . . ,An,
respectively, then N1 + · · ·Nn is generated by A1 [ · · ·[An.

(4) A submodule N of an R-module M may have many di↵erent generating sets. If N is
finitely generated, then there is a smallest nonnegative integer d such thatN is generated
by d elements and no fewer. Any generating set consisting of d elements will be called a
minimal set of generators for N .

(5) The process of generating submodules of an R-module M by taking subsets A of M and
forming all finite R-linear combinations of elements of A is similar to taking the span of
a subset of vectors of a vector space.

Example 4.22. Here are a few examples.

(1) Let R = Z and let M be any R-module, i.e., any abelian group. If a 2M , then Za is just
the cyclic subgroup of M generated by a. More generally, M is generated as a Z-module
by a set A i↵ M is generated as a group by A.

(2) Let R be a ring with 1 and let M be the left R-module R itself. In this case, R is cyclic
since R = R1. Recall that the submodules of R are precisely the left ideals of R, so saying
I is a cyclic R-submodule of the left R-module R is the same as saying I is a principal
ideal of R. Saying I is a finitely generated R-submodule of R is the same as saying I is a
finitely generated ideal.
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When R is a commutative ring, we may write AR or aR for the submodule generated by
A or a, respectively. In this situation, AR = RA and aR = Ra. A PID is a commutative
integral domain R with identity in which every R-submodule of R is cyclic.

(3) Submodules of a finitely generated module need not be finitely generated. For exam-
ple, take M to be the cyclic R-module R itself, where R is the polynomial ring in in-
finitely variables x1,x2, . . . with coe�cients in some field F. The submodule generated by
{x1,x2, . . .} cannot be generated by any finite set.

(4) Let R be a ring with 1 and letM be the free module of rank n over R (see Example 4.3(4)).
For each i 2 {1, . . . ,n}, let ei = (0, . . . ,0,1,0, . . . ,0), where the 1 appears in position i. Since

(s1, . . . , sn) =
nX

i=1

siei ,

it is clear that M is generated by {e1, . . . , en}. If R is commutative, then this is a minimal
generating set.

Definition 4.23. LetM1, . . . ,Mk be a collection ofR-modules. The collection of k-tuples (m1, . . . ,mk),
where mi 2 Mi with addition and action of R defined componentwise is called the direction
product of M1, . . . ,Mk , denoted M1 ⇥ · · ·⇥Mk .

Remark 4.24. The direct product ofM1, . . . ,Mk is also referred to as the direct sum ofM1, . . . ,Mk

and is denotedM1� · · ·�Mk . The direct product and direct sum of an infinite number of mod-
ules are di↵erent in general.

Theorem4.25. LetN1, . . . ,Nk be submodules of theR-moduleM . Then the following are equiv-
alent:

(1) The map ⇡ :N1 ⇥ · · ·⇥Nk !N1 + · · ·+Nk defined by

⇡(a1, . . . , ak) = a1 + · · ·+ ak

is an isomorphism of R-modules:

N1 ⇥ · · ·⇥Nk �N1 + · · ·+Nk

(2) Nj \ (N1 \ · · ·\Nj�1 \Nj+1 \ · · ·\Nk) = 0 for all j 2 {1, . . . , k}.

(3) Every x 2N1 + · · ·+Nk can be written uniquely in the form a1 + · · ·+ ak with ai 2Ni .

If an R-module M = N1 + · · · + Nk is the sum of submodules N1, . . . ,Nk of M satisfying the
equivalent conditions of the theorem above, then M is said to be the internal direct sum of
N1, . . . ,Nk , written

M =N1 � · · ·�Nk.

By the theorem, this is equivalent the condition that every element m 2 M can be written
uniquely as the sum of elements m = n1 + · · · + nk for ni 2 Ni . Part (1) of the theorem is the
statement that the internal direct sum of N1, . . . ,Nk is isomorphic to the external direct sum,
which is why we identity them and use the same notation.

Definition 4.26. An R-module F is said to be free on the subset A of F if for every nonzero
element x 2 F, there exist unique nonzero elements r1, . . . , rn 2 R and unique a1, . . . , an 2 A such
that

x = r1a1 + · · ·+ rnan,

for some n 2 Z+. In this situation, we say A is a basis or set of free generators for F. If R is a
commutative ring, the cardinality of A is called the rank of F.
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There is a di↵erence between the uniqueness property of direct sum and the uniqueness prop-
erty of free modules. In the direct sum of two modules, say N1 �N2, each element can be
written uniquely as n1+n2, where uniqueness refers to the module elements n1 and n2. In free
modules, the uniqueness is on the ring elements (scalars) and the module elements.

Example 4.27. Let R = Z and N1 = N2 = Z/2Z. Then each element of N1 �N2 can be written
uniquely in the form n1 + n2, where ni 2 Ni . However, n1 can be expressed as n1 or 3n1 or
5n1, etc. So, each element does not have a unique representation in the form r1a1 + r2a2, where
r1, r2 2 R, a1 2N1, and a2 2N2. Thus, Z/2Z�Z/2Z is not a free Z-module on the set {(1,0), (0,1)}
(or any set actually).

Theorem 4.28. For any set A, there is a free R-module F(A) on the set A, where F(A) satisfies
the following universal property: If M is any R-module and � : A!M is any map of sets, then
there is a unique R-module homomorphism � : F(A)!M such that �(a) = �(a) for all a 2 A.
When A is the finite set {a1, . . . , an}, F(A) = Ra1 � · · ·�Ran � Rn.

Corollary 4.29.

(1) If F1 and F2 are free modules on the same set A, there is a unique isomorphism between
F1 and F2 that is the identity on A.

(2) If F is any free R-module with basis A, then F � F(A). In particular, F enjoys the same
universal property with respect to A as F(A) does in Theorem 4.28.

Part (2) of the corollary guarantees that we can specify an R-module homomorphism from a
free module F into some other R-module by simply stating its value on the elements of a basis
and then extending linearly.

When R = Z, the free module on a set A is called the free abelian group on A. If |A| = n, F(A)
is called the free abelian group of rank n and is isomorphic to Z� · · ·�Z (n summands).
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