Math 1300: Calculus I, Fall 2006; Instructor: Dana Ernst Section 5.3: More on Curve Sketching (Part I)

We are interested in the following features of the graph of a function:

- symmetries
- x-intercepts
- y-intercepts
- vertical asymptotes
- behavior as $x \rightarrow \infty$ and $x \rightarrow-\infty$ (horizontal asymptote)
- intervals of increase, intervals of decrease
- relative extrema
- intervals of concavity
- inflection points

In general, we will be given a function and asked to sketch its graph. To do this, we will have to identify some or all of the features above. Let's first try to sketch the graph of a function where all of the above information is given.

Example 1: Sketch the graph of the function that has the following properties.

1. $f(-5)=0, f(-3)=-3, f(-2)=0$
2. $f(-1.5)=.5, f(-.5)=1, f(1.5)=2.5$
3. $\lim _{x \rightarrow 0} f(x)=\infty$ and $\lim _{x \rightarrow 3} f(x)=\infty$
4. $\lim _{x \rightarrow \infty} f(x)=1$ and $\lim _{x \rightarrow-\infty} f(x)=1$
5. $f^{\prime}(-3)$ undefined
6. $f^{\prime}(1.5)=0, f^{\prime}(-1.5)=0$
7. $f^{\prime}(x)>0$ on $(-3,0)$ and $(1.5,3)$
8. $f^{\prime}(x)<0$ on $(-\infty,-3),(0,1.5)$, and $(3, \infty)$
9. $f^{\prime \prime}(x)>0$ on $(-1.5,0),(0,3)$, and $(3, \infty)$
10. $f^{\prime \prime}(x)<0$ on $(-\infty,-3)$ and $(-3,-1.5)$

Guidelines for Sketching Graphs of Functions

1. Determine whether there is symmetry about the y-axis or the origin.
2. Find x and y-intercepts.
3. Identify vertical asymptotes.
4. Determine end behavior by computing limits of $f(x)$ as $x \rightarrow \infty$ and $x \rightarrow-\infty$ (Does graph have any horizontal asymptotes?).
5. Find critical points, determine intervals of increase and decrease, and identify any relative extrema.
6. Find x-values where $f^{\prime \prime}(x)=0$ or is undefined, determine intervals of concavity, and identify any inflection points

Let's start by sketching the graphs of some rational functions.
Example 2: Sketch the graph of the following functions. (You probably don't have room to do these examples on here, so use another sheet of paper.)
(a) $f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}$
(b) $g(x)=\frac{-x}{\left(x^{2}-1\right)^{2}}$

