Math 1300: Calculus I, Fall 2006
 Answer Sheet for Review 3

1. Your graph should look something like this:

2. No, $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist.
3. 11.5 and 11.5
4. Answer: $\frac{1}{6}$.
5. (a) $\sum_{k=0}^{n}\left(\frac{1}{2^{k}}\right)^{3}=\sum_{k=0}^{n} \frac{1}{8^{k}}$
(b) $\lim _{n \rightarrow \infty} \frac{8\left(8^{n}-1 / 8\right)}{7\left(8^{n}\right)}=\frac{8}{7} \mathrm{~cm}^{3}$
6. Solution:
(1) Increasing: $(-\infty,-2] \cup[0, \infty)$

Decreasing: $[-2,0]$
(2) Relative Maximum: $\left(-2,4 e^{-2}\right)$ Relative Minimum: $(0,0)$
(3) Concave Up: $(-\infty,-2-\sqrt{2}) \cup(-2+\sqrt{2},+\infty)$

Concave Down: $(-2-\sqrt{2},-2+\sqrt{2})$ Inflection Points: $x=-2 \pm \sqrt{2}$
7. $f(x)$ attains its minimum of 1 at $x=0$. By the definition of an absolute minimum, $f(x) \geq 1>0$ for all x. The desired inequality follows directly from this.
8. To prove the first statement in the Hint, suppose that the graph of f has a point $P=(b, f(b))$ with b in I such that P lies below or on the tangent line ℓ and $a<b$. Then

$$
\frac{f(b)-f(a)}{b-a} \leq(\text { the slope of } \ell)=f^{\prime}(a)
$$

Since f is differentiable on the open interval I and a, b are in I, we get that f is continuous on $[a, b]$ and differentiable on (a, b). Hence by the Mean-Value Theorem

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \quad \text { for some } c \text { in }(a, b)
$$

Thus $f^{\prime}(a) \geq f^{\prime}(c)$ holds for this c in (a, b).
The proof of the second statement in the Hint is similar.
These two statements show that if some point of the graph of f on the interval I is below or on the line ℓ, then f^{\prime} is not increasing on I, that is, f is not concave up on I. Hence, if f is concave up on I, then every point of the graph of f on I is above the line ℓ.
9. Note that f is not continuous on $[-1,2]$. Now, $f^{\prime}(x)=1-x^{-2}$ and $\frac{f(2)-f(-1)}{2-(-1)}=\frac{3}{2}$, but there is no solution to $1-x^{-2}=\frac{3}{2}$ in the real numbers.
10. False, as $f(x)=e^{x}$ is a counterexample.
11. $\int_{1}^{11} f(x) d x=\int_{0}^{11} f(x) d x-\int_{0}^{1} f(x) d x=29-(-7)=36$.
12. $\int_{0}^{3} e^{1+x} d x$.
13. Critical points at $x=0$ and $x=1$, absolute maximum at $x=0$, absolute minimum at $x=-1$.
14. Answer: 1.
15. $f(x)$ is increasing on $(-\infty,+\infty)$ since $f^{\prime}(x)$ is always positive.
16. $f(x)$ has an inflection point at $x=a$ if n is odd and ≥ 3.
17. Symmetries: none
x-INTERCEPT: $x=0$
y-INTERCEPT: $y=0$
Vertical asymptote: The line $x=1$

Horizontal asymptote: Since $\lim _{x \rightarrow+\infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$, the line $y=0$ is a horizontal asymptote.

DERIVATIVES: $f^{\prime}(x)=\frac{1+2 x}{3 x^{2 / 3}(1-x)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(5 x^{2}+5 x-1\right)}{9 x^{5 / 3}(1-x)^{3}}$

Critical points: $x=-1 / 2$ and $x=0$

Increasing/Decreasing behavior: $f(x)$ is decreasing on the interval $(-\infty,-1 / 2$], and increasing on the intervals $[-1 / 2,1)$ and $(1,+\infty)$.

Relative extrema: $f(x)$ has a relative minimum at $x=-1 / 2$

Concavity: The numbers for which $f^{\prime \prime}(x)=0$ are $-\frac{1}{2}+\frac{3 \sqrt{5}}{10}$ and $-\frac{1}{2}-\frac{3 \sqrt{5}}{10} ; f^{\prime \prime}$ is undefined for $x=0$ and discontinuous at $x=1$. Checking the sign of $f^{\prime \prime}$ on the intervals determined by these numbers, we get that $f(x)$ is concave down on $\left(-\infty,-\frac{1}{2}-\frac{3 \sqrt{5}}{10}\right)$, concave up on $\left(-\frac{1}{2}-\frac{3 \sqrt{5}}{10}, 0\right)$, concave down on $\left(0,-\frac{1}{2}+\frac{3 \sqrt{5}}{10}\right)$, concave up on $\left(-\frac{1}{2}+\right.$ $\left.\frac{3 \sqrt{5}}{10}, 1\right)$, and concave down on $(1, \infty)$.
INFLECTION POINTS: $x=-\frac{1}{2}-\frac{3 \sqrt{5}}{10}, x=0$, and $x=-\frac{1}{2}+\frac{3 \sqrt{5}}{10}$
Your graph should look like this:

ANSWER TO \#18 IN SECTION 5.3:

$$
\frac{2+3 x-x^{3}}{x}-\left(3-x^{2}\right)=\frac{2}{x} \rightarrow 0 \text { as } x \rightarrow \pm \infty
$$

The graph should look like

where the dotted green curve is the curvilinear asymptote.
18. 30 km from B.
19. Here are the answers:
(1) The x-intercepts are $(\sqrt{2}, 0)$ and $(-\sqrt{2}, 0)$. There are no y-intercepts.
(2) There are no critical points since $f^{\prime}(x)$ is never zero and $x=0$ (where there derivative is undefined) is not in the domain of f.
(3) f is increasing on $(-\infty, 0)$ and $(0, \infty) . f$ is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$.
(4) There is a vertical asymptote $x=0$ and an oblique asymptote $y=x$.

The graph should look like:

Answers for True or False:

(a) False.

For example, $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$ is an indeterminate form of type ∞ / ∞ such that $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}=1$ but $\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(x+\sin (x))}{\frac{d}{d x} x}=\lim _{x \rightarrow c \infty} \frac{1+\cos (x)}{1}$ does not exist.
(b) False.

For example, $f(x)=x^{3}$ is increasing and differentiable on $(-\infty, \infty)$, but $f^{\prime}(0)=$ 0 .
(c) True.

If f is not increasing on I, then there exist $a<b$ in I such that $f(a) \geq f(b)$. Since f is differentiable on I, it follows that f is continuous on $[a, b]$ and differentiable on (a, b). As f is not increasing on $[a, b]$, we get from Theorem 5.1.2 that $f^{\prime}(x) \ngtr 0$ for some x in I.
(d) False.

The function $f(x)=x^{3}$ does not have a relative extremum, but $f^{\prime}(0)=0$.
(e) False.

The function $f(x)=\sqrt[3]{x}$ has an inflection point at $x=0$, but $f^{\prime \prime}(0)$ is not defined.
(f) True.

If $f^{\prime \prime}(x)$ is continuous on I and $f^{\prime \prime}(x) \neq 0$ for all x in I, then by the IntermediateValue Theorem $f^{\prime \prime}(x)$ does not change sign on I. Hence either $f^{\prime \prime}(x)>0$ for all x in I, so f is concave up on I, or $f^{\prime \prime}(x)<0$ for all x in I, so f is concave down on I.
(g) True.

If $f(x)=\frac{P(x)}{Q(x)}$ is a rational function, then long division yields polynomials $q(x)$ and $r(x)$ such that $P(x)=q(x) Q(x)+r(x)$ and the degree of $r(x)$ is less than the degree of $Q(x)$. Hence

$$
f(x)=\frac{q(x) Q(x)+r(x)}{Q(x)}=q(x)+\frac{r(x)}{Q(x)}
$$

where

$$
\lim _{x \rightarrow \infty} \frac{r(x)}{Q(x)}=0=\lim _{x \rightarrow-\infty} \frac{r(x)}{Q(x)}
$$

Thus $y=q(x)$ is an asymptote of f.
(h) False.
$f(x)=\sqrt[3]{x}$ has a vertical tangent line at $x=0$, but it has no vertical asymptote since it is continuous everywhere.
(i) True.

Define a function h by $h(x)=g(x)-2 f(x)$ for all x in $(-\infty, \infty)$. The assumptions imply that $h(0)=0$ and $h^{\prime}(x)=g^{\prime}(x)-2 f^{\prime}(x)=0$ for all x in $(-\infty, \infty)$. Therefore by the Constant Difference Theorem $h(x)=0$ for all x in $(-\infty, \infty)$. Hence $g(x)=2 f(x)$ for all x in $(-\infty, \infty)$.
(j) False.

Let

$$
f(x)= \begin{cases}1 / x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Then f is differentiable on $(0,1), f^{\prime}(x)<0$ for all x in $(0,1)$, and $\frac{f(1)-f(0)}{1-0}=$ $1>0$. Therefore there is no c in $(0,1)$ such that $\frac{f(1)-f(0)}{1-0}=f^{\prime}(c)$.

