Section 6.2 (a) Answer: $\frac{x^{2}}{2}+2 x-2 \ln |x+1|+C$.
(b) Solution: To prove the formulas, just use the definition of antiderivative. For Part i, show that

$$
\frac{d}{d x}\left[\frac{\sqrt{x^{4}-1}}{x}+C\right]=\frac{x^{4}+1}{x^{2} \sqrt{x^{4}-1}}
$$

For Part ii, show that

$$
\frac{d}{d x}\left[\frac{\sin 3 x}{3 \cos 3 x}+C\right]=\frac{1}{3 \cos ^{2} 3 x} .
$$

Section 6.3 (a) Answer: $\frac{x^{2}}{2}+5 \ln |x|+C$.
(b) Answer: $\frac{1}{2} \ln \left(x^{2}+5\right)+C$.
(c) Solution: For $u=\sec (x)$ we get

$$
\int \sec ^{2}(x) \tan (x) d x=\frac{\sec ^{2}(x)}{2}+C
$$

For $u=\tan (x)$ we get

$$
\int \sec ^{2}(x) \tan (x) d x=\frac{\tan ^{2}(x)}{2}+C=\frac{\sec ^{2}(x)-1}{2}+C=\frac{\sec ^{2}(x)}{2}-\frac{1}{2}+C=\frac{\sec ^{2}(x)}{2}+C .
$$

(d) Answer: $\frac{1}{11} \cos ^{11}(x)-\frac{1}{9} \cos ^{9}(x)+C$.

Section 6.6 (a) Answer: $f(t)$ needs to be continuous on the interval $[x, x+h]$.
The MVT for integrals gives us that $\frac{1}{h} \int_{x}^{x+h} f(t) d t=f\left(x^{*}\right)$ for some number x^{*} in the interval $[x, x+h]$.
(b) Answer: If f is odd, the integral is 0 . If f is even, the integral equals $2 \int_{0}^{a} f(t) d t$.
(c) Answer: The integral is 0 since $\frac{x}{\sqrt{1+x^{4}}}$ is an odd function that is being integrated over a symmetric interval.
(d) Answer: $F^{\prime}(x)=2 x \ln \left(x^{6}\right)$.
(e) Answer: - 4 .

Section 6.8 (a) Solution: We let $u=2 x+e$ so that $d u=2 d x$. Then

$$
\int_{0}^{e} \frac{d x}{2 x+e}=\frac{1}{2} \int_{e}^{3 e} \frac{d u}{u}=\frac{\ln (3)}{2} .
$$

(b) Solution: We let $u=x+1$ so that $d u=d x$. Then we have that $x=u-1$ and hence $4 x-1=4(u-1)-1$. Thus

$$
\int_{0}^{2}(4 x-1)(x+1)^{3} d x=\int_{1}^{3}(4 u-5) u^{3} d u=\frac{468}{5} .
$$

(c) Answer: $\frac{1}{2}$.
(d) Solution: If we let $u=\sqrt{x}$, then $d u=\frac{1}{2 \sqrt{x}} d x$. Hence

$$
\begin{aligned}
\int_{1}^{9} \frac{\cos \sqrt{x}}{\sqrt{x}} d x & =2 \int_{1}^{9}(\cos \sqrt{x})\left(\frac{1}{2 \sqrt{x}}\right) d x \\
& =2 \int_{1}^{3} \cos u d u \\
& =2[\sin u]_{1}^{3} \\
& =2(\sin 3-\sin 1)
\end{aligned}
$$

Section 7.1 (a) Answer: $\left.\int_{0}^{1}\left(x^{2}-x^{3}\right) d x=\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right]_{0}^{1}=\frac{1}{12}$.
(b) Answer: 4.
(c) Answer: The area is $A=\frac{\sqrt{8}}{3}$, and it represents the difference between the change in the velocities of the two vehicles over the time interval $[0,2]$.

Section 7.2 (a) Answer: The volume is $V=\pi\left(1-\frac{1}{n}\right)$, and $V \rightarrow \pi$ as $n \rightarrow \infty$.
(b) Answer: For each x in $[-1,1]$ the length of one side of a square cross-section is $2 \sqrt{1-x^{2}}$. The volume is $\frac{16}{3}$ cubic units.
(c) Answer: $\frac{9}{70}$.

Section 7.3 (a) Solution:

$$
\text { i. } \begin{aligned}
V\left(R_{1}\right) & =\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x \\
V\left(R_{2}\right) & =\int_{c}^{d} 2 \pi y(G(y)-F(y)) d y \\
V\left(R_{3}\right) & =\int_{0}^{s} 2 \pi y\left(k^{-1}(y)-h^{-1}(y)\right) d y=\int_{0}^{t} \pi\left(h(x)^{2}-k(x)^{2}\right) d x .
\end{aligned}
$$

ii. $V\left(R_{1}\right)=\int_{a}^{b} 2 \pi x(f(x)-g(x)) d x$;
$V\left(R_{2}\right)=\int_{c}^{d} \pi\left(G(y)^{2}-F(y)^{2}\right) d y ;$
$V\left(R_{3}\right)=\int_{0}^{s} \pi\left(k^{-1}(y)^{2}-h^{-1}(y)^{2}\right) d y=\int_{0}^{t} 2 \pi x(h(x)-k(x)) d x$.
(b) Answer: 229.02 .
(c) Answer: $6 \pi^{2}$.

True or False?

Answers:
(a) True.
$|f(x)| \geq f(x)$ for all x in $[a, b]$, therefore the inequality for their definite integrals from a to b holds by Theorem 6.5.6(b).
(b) True.

The definite integral does not depend on the variable of integration.
(c) False.
$\int f(x) d x$ is a class of functions of x, while $\int f(t) d t$ is a class of functions of t.
(d) True.

Using the substitution $u=2 x$ (hence $d u=2 d x$) and then replacing u by x we get that

$$
\int_{a / 2}^{b / 2} f(2 x) d x=\int_{a}^{b} f(u) \frac{1}{2} d u=\frac{1}{2} \int_{a}^{b} f(x) d x
$$

(e) False.

The Fundamental Theorem of Calculus cannot be applied to the function $h(x)=$ $\frac{1}{x^{2}}$, since h is not continuous on $[-1,1]$.
(In fact, since $h(x)=\frac{1}{x^{2}}$ is not bounded on $[-1,1], h$ is not integrable on $[-1,1]$ by Theorem 6.5.8(b).)
(f) True.

By the Fundamental Theorem of Calculus $F(x)$ is differentiable on I, and $F^{\prime}(x)=f(x)$ on I. Therefore, if $F(x)=\int_{a}^{x} f(t) d t$ has a relative extremum at $x=b$, then $F^{\prime}(b)=0$, and hence $f(b)=F^{\prime}(b)=0$.
(g) False.

For example, let $I=[0,2], a=0$, let $f(x)=0$ for all $x \in I$, and let $g(x)=\left\{\begin{array}{ll}0 & \text { if } x \neq 1, \\ 1 & \text { if } x=1,\end{array}\right.$ where $0 \leq x \leq 2$.
Then $\int_{0}^{x} g(x) d x=0=\int_{0}^{x} f(x) d x$ for all x in [0, 2], but $g(x)=f(x)$ fails for $x=1$ in $[0,2]$.
(h) False.

For example, $\int \frac{1}{x}=\ln (|x|)+C$, and $\ln (|x|)$ is not a rational function.
(i) False. $f(x)$ could be $c e^{x}$ for any constant c. For example, $f(x)=100 e^{x}$ works.
(j) False. Since $\sin x \leq \cos x$ on $[0, \pi / 4]$ and $\sin x \geq \cos x$ on $[\pi / 4, \pi]$ the area enclosed by the curves is $\int_{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\pi / 4}^{\pi}(\sin x-\cos x) d x=2 \sqrt{2}$.

