REVIEW FOR EXAM 1

Be ready to state theorems and definitions.

The exam covers material from sections: $1.1,1.3,1.5,1.6,2.1,2.2$, and 2.3 .

CONCEPTS

1. True or False? Justify your answer.
(a) The functions $u(x)=\frac{\sqrt{x}(x+1)}{x^{2}+x}$ and $v(x)=\frac{1}{\sqrt{x}}$ are equal.
(b) $f \circ g=g \circ f$ holds for arbitrary functions f and g.
(c) If a horizontal line does not intersect the graph of a function f, then f does not have an inverse function.
(d) If $1<a<b$, then $\log _{a} 2>\log _{b} 2$.
(e) If a function $f(x)$ does not have a limit as x approaches a from the left, then $f(x)$ does not have a limit as x approaches a from the right.

SECTION 1.1

1. Determine whether each of the following graphs is a function. If not, provide a reason why.

2. Determine if each of the following rules defines y as a function of x. If not, provide a reason why.
(a) $x^{2}+2 x+y^{3}=17$
(b) $x^{2}+2 x+y^{2}+4 y-1=0$
(c) $x=\sin (y)$
3. Consider the following scenario.

A set of 10 missiles get launched and each missile follows a set of directions that tell the missile what target to blow up. Some of the missiles land on the same target.

Could this scenario represent a function? If so, identify what the function would be and what the domain and range are. If not, then explain why.
4. Consider the following scenario.

A person types a phrase into the search engine Google, hits enter, and multiple entries are returned.

Could this scenario represent a function? If so, identify what the function would be and what the domain and range are. If not, then explain why.
5. Consider the following function.

$$
f(x)= \begin{cases}-x & \text { if }-3 \leq \mathrm{x} \leq 0 \\ x^{2} & \text { if } 0<\mathrm{x}<2 \\ -1 & \text { if } 2<\mathrm{x} \leq 5\end{cases}
$$

(a) Sketch the graph of f.
(b) What is the domain of f ?
(c) What is the range of f ?
6. Consider the following function.

$$
g(x)=\frac{x^{2}-4}{x+2}
$$

(a) Sketch the graph of g.
(b) What is the domain of g ?
(c) What is the range of g ?
7. Express the following function as a single piecewise defined function.

$$
f(x)=|2 x-1|-|x+3|
$$

8. A camera is mounted at a point on the ground 500 meters from the base of a space shuttle launching pad. The shuttle rises vertically when launched, and the camera's angle of elevation is continually adjusted to follow the bottom of the shuttle.
(a) Express the height x as function of the angle of elevation θ.
(b) Find the domain of the function in part (a)
9. Determine if each of the following rules defines y as a function of x and explain why or why not. If the rule does define y as a function of x, determine the domain of the function.
(a) $x^{2}+y^{2}=3$
(b) $x^{2}+y^{3}=7$
(c) $y(x)= \begin{cases}x^{2}-7 & \text { if } x<0 \\ \frac{1}{x+2} & \text { if } x \geq 0\end{cases}$
(d) $y(x)= \begin{cases}2 x+1 & \text { if } x \geq 1 \\ 4-x^{3} & \text { if } x \leq 1 \\ 1 & \text { if } x=0\end{cases}$
10. Determine the domain of the following function and write it as a piecewise defined function without using the absolute value.
(a) $f(x)=\frac{x^{2}+4 x-5}{3-|x+2|}$

SECTION 1.3

1. Sketch the graph of the equation.
(a) $y=\frac{2 x-1}{x}$
(b) $y=-1+\sqrt{2-x}$
2. Let $f(x)=\sqrt{x}$ and $g(x)=x$. Does the domain of the product function $(f \cdot f)(x)$ equal the domain of $g(x)$? Justify your answer.
3. Sketch the graph of the equation $y=3-\frac{\sqrt{x-1}}{2}$ by translating, reflecting, compressing, and/or stretching the graph of $y=\sqrt{x}$
4. Let $f(x)$ and $g(x)$ be functions such that:

Domain of $f=(-\infty,+\infty)$
Range of $f=(-1,1)$
Domain of $g=(-1,+\infty)$
Range of $g=(-\infty, 0)$
What is the domain of $g \circ f$?
5. If $f(x)=8-x$ and $g(x)=\frac{1}{\sqrt{x}-1}$, find formulas for $(g \circ f)(x)$ and $(f \circ g)(x)$. What is the domain of $g \circ f$?
6. The graph of $y=a \frac{1}{\cos (x+b)+2}+c$ results when the graph of $y=\frac{1}{\cos (x)+2}$ is reflected over the x-axis, shifted 3 units to the right, and then shifted 4 units down. Find a, b, and c.
7. Find the domains of the compositions $f \circ g$ and $g \circ f$ if $f(x)=\sin ^{-1} x$ and $g(x)=\ln x$.
8. Sketch the graph of the function $f(x)=\frac{1}{2} \cos ^{-1}(x / 3)-1$ by translating, reflecting, stretching, compressing the graph of the inverse cosine function.
9. Sketch the graph of the function $1-e^{2 x-1}$ by translating, reflecting, stretching, compressing the graph of the natural exponential function.

SECTION 1.5

1. For each of the following functions, find $f^{-1}(x)$ and state the domain and range of $f^{-1}(x)$.
(a) $f(x)=\frac{x+1}{x-1}$
(b) $f(x)=3 x^{3}-15$
2. Complete the following identities.
(a) $\tan \left(\sin ^{-1} x\right)=$
(b) $\cos \left(\tan ^{-1} x\right)=$
3. For each of the following functions, find $f^{-1}(x)$ and state the domain and range of $f^{-1}(x)$.
(a) $f(x)=\sqrt{-x}$
(b) $f(x)=12 x^{3}-1$

SECTION 1.6

1. Simplify $\ln \left(x^{2}\right)$.
2. Solve for x in the following equations.
(a) $\ln \left(x^{2}\right)=\ln x$
(b) $\ln \left(x^{2}\right)=(\ln x)^{2}$
(c) $\ln \sqrt{x}=\sqrt{\ln x}$
3. Solve for x in the following equations.
(a) $5^{x}=4$
(b) $2^{4 x+1}=3$
4. Given the equation $2^{t / \tau}=e^{\alpha t}$, solve for the growth constant α in terms of τ using natural logarithms. (The parameter τ is called the doubling time.)
5. Solve the following equations for t (in terms of x) using natural logarithms
(a) $\frac{e^{t}+e^{-t}}{2}=x$
(b) $\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}=x$
6. Simplify the following.
(a) $(-27)^{2 / 3}$
(b) $e^{3 \ln \pi}$
(c) $\log _{4} \frac{1}{2}+\log _{4} 8+\log _{4} 16$
7. Solve for x.
(a) $\ln \left(x^{2}+1\right)-\ln x=\ln 2$
(b) $e^{-2 x}-4 e^{-x}=5$
8. Explain how the graph of the logarithmic function with base $b>0$ can be obtained from the graph of the natural logarithmic function by using one or more translations, reflections, stretches or compressions.

SECTION 2.1

1. Sketch the graph of a possible function f that has all properties (a)-(g) listed below.
(a) The domain of f is $[-1,2]$
(b) $f(0)=f(2)=0$
(c) $f(-1)=1$
(d) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(e) $\lim _{x \rightarrow 0^{+}} f(x)=2$
(f) $\lim _{x \rightarrow 2^{-}} f(x)=1$
(g) $\lim _{x \rightarrow-1^{+}} f(x)=-1$
2. Sketch the graphs of possible functions f, g, and h such that: f satisfies property (a) below, g satisfies property (b) below, and h satisfies property (c) below. There should be three separate graphs.
(a) $\lim _{x \rightarrow 0} f(x)=1$
(b) $\lim _{x \rightarrow 0^{-}} g(x)=-1$ and $\lim _{x \rightarrow 0^{+}} g(x)=+1$
(c) $\lim _{x \rightarrow 0} h(x) \neq h(0)$
3. Find an equation for the tangent line to the curve $y=x^{3}$ at the point $(1,1)$.

SECTION 2.2

1. Find the following limits.
(a) $\lim _{x \rightarrow 2} x^{2}+4 x-12$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}+4 x+3}$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}-x-2}$
(d) $\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}-4 x+4}$
(e) $\lim _{x \rightarrow-3} \frac{x}{x+3}$
(f) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
2. For f defined as follows, find the given limits:
$f(x)= \begin{cases}3 x & \text { if } x<0 \\ 2 x+1 & \text { if } 0 \leq x \leq 4 \\ x^{2} & \text { if } x>4\end{cases}$
(a) $\lim _{x \rightarrow 0^{+}} f(x)$
(b) $\lim _{x \rightarrow 4} f(x)$
3. Let $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=6$, and $\lim _{x \rightarrow a} h(x)=0$. Find the following limits, if they exist:
(a) $\lim _{x \rightarrow a}(f(x)+2 g(x))$
(b) $\lim _{x \rightarrow a} \frac{(g(x))^{2}}{f(x)+5}$
(c) $\lim _{x \rightarrow a} \frac{2 f(x)}{h(x)}$
(d) $\lim _{x \rightarrow a} \frac{7 f(x)}{2 f(x)+g(x)}$
(e) $\lim _{x \rightarrow a} \sqrt[3]{g(x)+2}$
4. Find the following limits:
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-5 x-14}{x+2}$
(b) $\lim _{x \rightarrow 0} \frac{4 x-3}{4 x^{2}+3}$
(c) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}+3 x+2}{x^{2}-2 x-3}$

SECTION 2.3

1. Find the following limits.
(a) $\lim _{x \rightarrow \infty} 5 x^{2}-2 x+1$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-5}}{x-7}$
(c) $\lim _{x \rightarrow \infty} \frac{2}{\pi} \tan ^{-1}(x)$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{5 x^{2}-2}}{x+3}$
(e) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+3}-x$
(f) $\lim _{x \rightarrow 1^{-}} \ln (1-x)$
